--- license: apache-2.0 language: - zh base_model: - stabilityai/stable-diffusion-3-medium pipeline_tag: text-to-image --- ![FLUX.1 [schnell] Grid](./PEA-Diffusion.png) `MultilingualSD3-adapter` is a multilingual adapter tailored for the [SD3](https://huggingface.co/stabilityai/stable-diffusion-3-medium). Originating from an ECCV 2024 paper titled [PEA-Diffusion](https://arxiv.org/abs/2311.17086). The open-source code is available at https://github.com/OPPO-Mente-Lab/PEA-Diffusion. # Usage We used the multilingual encoder [umt5-xxl](https://huggingface.co/google/umt5-xxl),[Mul-OpenCLIP](https://huggingface.co/laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k) and [HunyuanDiT_CLIP](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i). We implemented a reverse denoising process for distillation training. ## `MultilingualSD3` ```python import os import torch import torch.nn as nn from typing import Any, Callable, Dict, List, Optional, Union import inspect from diffusers.models.transformers import SD3Transformer2DModel from diffusers.image_processor import VaeImageProcessor from diffusers.schedulers import FlowMatchEulerDiscreteScheduler from diffusers import AutoencoderKL from tqdm import tqdm from PIL import Image from transformers import T5Tokenizer,T5EncoderModel,BertModel, BertTokenizer import open_clip class MLP(nn.Module): def __init__(self, in_dim=1024, out_dim=2048, hidden_dim=2048, out_dim1=4096, use_residual=True): super().__init__() if use_residual: assert in_dim == out_dim self.layernorm = nn.LayerNorm(in_dim) self.projector = nn.Sequential( nn.Linear(in_dim, hidden_dim, bias=False), nn.GELU(), nn.Linear(hidden_dim, hidden_dim, bias=False), nn.GELU(), nn.Linear(hidden_dim, hidden_dim, bias=False), nn.GELU(), nn.Linear(hidden_dim, out_dim, bias=False), ) self.fc = nn.Linear(out_dim, out_dim1) self.use_residual = use_residual def forward(self, x): residual = x x = self.layernorm(x) x = self.projector(x) x2 = nn.GELU()(x) x2 = self.fc(x2) return x2 class Transformer(nn.Module): def __init__(self, d_model, n_heads, out_dim1, out_dim2,num_layers=1) -> None: super().__init__() self.encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=n_heads, dim_feedforward=2048, batch_first=True) self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=num_layers) self.linear1 = nn.Linear(d_model, out_dim1) self.linear2 = nn.Linear(d_model, out_dim2) def forward(self, x): x = self.transformer_encoder(x) x1 = self.linear1(x) x1 = torch.mean(x1,1) x2 = self.linear2(x) return x1,x2 def image_grid(imgs, rows, cols): assert len(imgs) == rows*cols w, h = imgs[0].size grid = Image.new('RGB', size=(cols*w, rows*h)) grid_w, grid_h = grid.size for i, img in enumerate(imgs): grid.paste(img, box=(i%cols*w, i//cols*h)) return grid def retrieve_timesteps( scheduler, num_inference_steps: Optional[int] = None, device: Optional[Union[str, torch.device]] = None, timesteps: Optional[List[int]] = None, sigmas: Optional[List[float]] = None, **kwargs, ): if timesteps is not None and sigmas is not None: raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") if timesteps is not None: accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) if not accepts_timesteps: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" timestep schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) elif sigmas is not None: accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) if not accept_sigmas: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" sigmas schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) else: scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) timesteps = scheduler.timesteps return timesteps, num_inference_steps class StableDiffusionTest(): def __init__(self,model_path,text_encoder_path,text_encoder_path1,text_encoder_path2,proj_path,proj_t5_path): super().__init__() self.transformer = SD3Transformer2DModel.from_pretrained(model_path, subfolder="transformer",torch_dtype=dtype).to(device) self.vae = AutoencoderKL.from_pretrained(model_path, subfolder="vae").to(device,dtype=dtype) self.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_path, subfolder="scheduler") self.vae_scale_factor = ( 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8 ) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.default_sample_size = ( self.transformer.config.sample_size if hasattr(self, "transformer") and self.transformer is not None else 128 ) self.text_encoder_t5 = T5EncoderModel.from_pretrained(text_encoder_path).to(device,dtype=dtype) self.tokenizer_t5 = T5Tokenizer.from_pretrained(text_encoder_path) self.text_encoder = BertModel.from_pretrained(f"{text_encoder_path1}/clip_text_encoder", False, revision=None).to(device,dtype=dtype) self.tokenizer = BertTokenizer.from_pretrained(f"{text_encoder_path1}/tokenizer") self.text_encoder2, _, _ = open_clip.create_model_and_transforms('xlm-roberta-large-ViT-H-14', pretrained=text_encoder_path2) self.tokenizer2 = open_clip.get_tokenizer('xlm-roberta-large-ViT-H-14') self.text_encoder2.text.output_tokens = True self.text_encoder2 = self.text_encoder2.to(device,dtype=dtype) self.proj = MLP(2048, 2048, 2048, 4096, use_residual=False).to(device,dtype=dtype) self.proj.load_state_dict(torch.load(proj_path, map_location="cpu")) self.proj_t5 = Transformer(d_model=4096, n_heads=8, out_dim1=2048, out_dim2=4096).to(device,dtype=dtype) self.proj_t5.load_state_dict(torch.load(proj_t5_path, map_location="cpu")) def encode_prompt(self, prompt, device, do_classifier_free_guidance=True, negative_prompt=None): batch_size = len(prompt) if isinstance(prompt, list) else 1 text_input_ids_t5 = self.tokenizer_t5( prompt, padding="max_length", max_length=77, truncation=True, add_special_tokens=False, return_tensors="pt", ).input_ids.to(device) text_embeddings = self.text_encoder_t5(text_input_ids_t5) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=77, truncation=True, return_tensors="pt", ) input_ids = text_inputs.input_ids.to(device) attention_mask = text_inputs.attention_mask.to(device) encoder_hidden_states = self.text_encoder(input_ids,attention_mask=attention_mask)[0] text_input_ids = self.tokenizer2(prompt).to(device) _,encoder_hidden_states2 = self.text_encoder2.encode_text(text_input_ids) encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states2], dim=-1) encoder_hidden_states_t5 = text_embeddings[0] encoder_hidden_states = self.proj(encoder_hidden_states) add_text_embeds,encoder_hidden_states_t5 = self.proj_t5(encoder_hidden_states_t5.half()) prompt_embeds = torch.cat([encoder_hidden_states, encoder_hidden_states_t5], dim=-2) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: if negative_prompt is None: uncond_tokens = [""] * batch_size else: uncond_tokens = negative_prompt text_input_ids_t5 = self.tokenizer_t5( uncond_tokens, padding="max_length", max_length=77, truncation=True, add_special_tokens=False, return_tensors="pt", ).input_ids.to(device) text_embeddings = self.text_encoder_t5(text_input_ids_t5) text_inputs = self.tokenizer( uncond_tokens, padding="max_length", max_length=77, truncation=True, return_tensors="pt", ) input_ids = text_inputs.input_ids.to(device) attention_mask = text_inputs.attention_mask.to(device) encoder_hidden_states = self.text_encoder(input_ids,attention_mask=attention_mask)[0] text_input_ids = self.tokenizer2(uncond_tokens).to(device) _,encoder_hidden_states2 = self.text_encoder2.encode_text(text_input_ids) encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states2], dim=-1) encoder_hidden_states_t5 = text_embeddings[0] encoder_hidden_states_uncond = self.proj(encoder_hidden_states) add_text_embeds_uncond,encoder_hidden_states_t5_uncond = self.proj_t5(encoder_hidden_states_t5.half()) prompt_embeds_uncond = torch.cat([encoder_hidden_states_uncond, encoder_hidden_states_t5_uncond], dim=-2) prompt_embeds = torch.cat([prompt_embeds_uncond, prompt_embeds], dim=0) pooled_prompt_embeds = torch.cat([add_text_embeds_uncond, add_text_embeds], dim=0) return prompt_embeds,pooled_prompt_embeds def prepare_latents( self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, ): if latents is not None: return latents.to(device=device, dtype=dtype) shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) latents = torch.randn(shape, generator=generator, dtype=dtype).to(device) return latents @property def guidance_scale(self): return self._guidance_scale @property def clip_skip(self): return self._clip_skip # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def joint_attention_kwargs(self): return self._joint_attention_kwargs @property def num_timesteps(self): return self._num_timesteps @property def interrupt(self): return self._interrupt @torch.no_grad() def __call__( self, prompt: Union[str, List[str]] = None, prompt_2: Optional[Union[str, List[str]]] = None, prompt_3: Optional[Union[str, List[str]]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 28, timesteps: List[int] = None, guidance_scale: float = 7.0, negative_prompt: Optional[Union[str, List[str]]] = None, negative_prompt_2: Optional[Union[str, List[str]]] = None, negative_prompt_3: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, joint_attention_kwargs: Optional[Dict[str, Any]] = None, clip_skip: Optional[int] = None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], ): height = height or self.default_sample_size * self.vae_scale_factor width = width or self.default_sample_size * self.vae_scale_factor self._guidance_scale = guidance_scale self._clip_skip = clip_skip self._joint_attention_kwargs = joint_attention_kwargs self._interrupt = False if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] prompt_embeds,pooled_prompt_embeds = self.encode_prompt(prompt, device) timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) self._num_timesteps = len(timesteps) num_channels_latents = self.transformer.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) for i, t in tqdm(enumerate(timesteps)): if self.interrupt: continue latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents timestep = t.expand(latent_model_input.shape[0]).to(dtype=dtype) noise_pred = self.transformer( hidden_states=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds.to(dtype=self.transformer.dtype), pooled_projections=pooled_prompt_embeds.to(dtype=self.transformer.dtype), joint_attention_kwargs=self.joint_attention_kwargs, return_dict=False, )[0] if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) latents_dtype = latents.dtype latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] if latents.dtype != latents_dtype: if torch.backends.mps.is_available(): latents = latents.to(latents_dtype) if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) negative_pooled_prompt_embeds = callback_outputs.pop( "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds ) if output_type == "latent": image = latents else: latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor image = self.vae.decode(latents, return_dict=False)[0] image = self.image_processor.postprocess(image, output_type=output_type) return image if __name__ == '__main__': device = "cuda" dtype = torch.float16 text_encoder_path = 'google/umt5-xxl' text_encoder_path1 = "Tencent-Hunyuan/HunyuanDiT/t2i" text_encoder_path2 = 'laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k/open_clip_pytorch_model.bin' model_path = "stabilityai/stable-diffusion-3-medium-diffusers" proj_path = "OPPOer/MultilingualSD3-adapter/pytorch_model.bin" proj_t5_path = "OPPOer/MultilingualSD3-adapter/pytorch_model_t5.bin" sdt = StableDiffusionTest(model_path,text_encoder_path,text_encoder_path1,text_encoder_path2,proj_path,proj_t5_path) batch=2 height = 1024 width = 1024 while True: raw_text = input("\nPlease Input Query (stop to exit) >>> ") if not raw_text: print('Query should not be empty!') continue if raw_text == "stop": break images = sdt([raw_text]*batch,height=height,width=width) grid = image_grid(images, rows=1, cols=batch) grid.save("MultilingualSD3.png") ``` To learn more check out the [diffusers](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux) documentation # License The adapter itself is Apache License 2.0, but it must follow the license of the main model.