--- license: apache-2.0 base_model: - Qwen/Qwen-Image-Edit language: - en - zh library_name: diffusers pipeline_tag: image-to-image datasets: - OPPOer/X2Edit-Dataset ---

Qwen-Image-Edit-Pruning

GitHub
## Update - 2025/10/09: We release **[Qwen-Image-Edit-2509-Pruning-13B-4steps](https://huggingface.co/OPPOer/Qwen-Image-Edit-2509-Pruning)** - 2025/09/29: We release **[Qwen-Image-Edit-2509-Pruning-14B](https://huggingface.co/OPPOer/Qwen-Image-Edit-2509-Pruning)** - 2025/09/28: We release **[Qwen-Image-Edit-Pruning-13B-4steps](https://huggingface.co/OPPOer/Qwen-Image-Edit-Pruning)** ## Introduction This open-source project is based on Qwen-Image-Edit and has attempted model pruning, removing 20 layers while retaining the weights of 40 layers, resulting in a model size of 13.6B parameters. The pruned version will continue to be iterated upon. Please stay tuned.
## Quick Start Install the latest version of diffusers and pytorch ``` pip install torch pip install git+https://github.com/huggingface/diffusers ``` ### Qwen-Image-Edit-13B Inference ```python from diffusers import QwenImageEditPipeline import os from PIL import Image import time import torch model_name = "OPPOer/Qwen-Image-Edit-Pruning/Qwen-Image-Edit-13B-4steps" pipe = QwenImageEditPipeline.from_pretrained(model_name, torch_dtype=torch.bfloat16) pipe = pipe.to('cuda') subject_img = Image.open('input.jpg').convert('RGB') prompt = '改为数字插画风格' t1 = time.time() inputs = { "image": subject_img, "prompt": prompt, "generator": torch.manual_seed(42), "true_cfg_scale": 1, "num_inference_steps": 4, } with torch.inference_mode(): output = pipe(**inputs) output_image = output.images[0] output_image.save('output.jpg') ```