Text-to-Image
Diffusers
File size: 13,584 Bytes
669baca
 
6f50a07
b817743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
affcccb
b817743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa28183
 
 
 
b817743
 
 
 
 
 
fa28183
 
 
 
b817743
 
 
 
 
 
fa28183
 
 
 
b817743
 
 
 
 
 
fa28183
 
 
 
b817743
 
 
 
 
 
 
fa28183
ec59e48
fa28183
 
b817743
fa28183
ec59e48
fa28183
 
b817743
fa28183
ec59e48
fa28183
 
b817743
fa28183
ec59e48
fa28183
 
b817743
 
 
 
 
 
fa28183
ec59e48
fa28183
 
b817743
fa28183
ec59e48
fa28183
 
b817743
fa28183
ec59e48
fa28183
 
b817743
fa28183
ec59e48
fa28183
 
b817743
 
 
 
 
 
fa28183
ec59e48
fa28183
8258bbb
b817743
fa28183
ec59e48
fa28183
 
b817743
fa28183
ec59e48
387ec9c
 
b817743
fa28183
387ec9c
fa28183
 
b817743
 
 
 
 
 
fa28183
ec59e48
fa28183
 
b817743
fa28183
ec59e48
fa28183
 
b817743
fa28183
ec59e48
fa28183
 
b817743
fa28183
ec59e48
fa28183
 
b817743
 
 
 
 
 
 
 
 
 
 
 
a39705a
b817743
a39705a
 
 
b817743
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
---
license: apache-2.0
library_name: diffusers
base_model:
- stabilityai/stable-diffusion-xl-base-1.0
- black-forest-labs/FLUX.1-dev
pipeline_tag: text-to-image
---
# TLCM: Training-efficient Latent Consistency Model for Image Generation with 2-8 Steps

<p align="center">
   ๐Ÿ“ƒ <a href="https://arxiv.org/html/2406.05768v5" target="_blank">Paper</a> โ€ข 
   ๐Ÿค— <a href="https://huggingface.co/OPPOer/TLCM" target="_blank">Checkpoints</a> 
</p>

<!-- **TLCM: Training-efficient Latent Consistency Model for Image Generation with 2-8 Steps** -->

<!-- Our method accelerates LDMs via data-free multistep latent consistency distillation (MLCD), and data-free latent consistency distillation is proposed to efficiently guarantee the inter-segment consistency in MLCD. 

Furthermore, we introduce bags of techniques, e.g., distribution matching, adversarial learning, and preference learning, to enhance TLCMโ€™s performance at few-step inference without any real data.

TLCM demonstrates a high level of flexibility by enabling adjustment of sampling steps within the range of 2 to 8 while still producing competitive outputs compared
to full-step approaches. -->
we propose an innovative two-stage data-free consistency distillation (TDCD) approach to accelerate latent consistency model. The first stage improves consistency constraint  by data-free sub-segment consistency distillation (DSCD). The second stage enforces the
global consistency across inter-segments through data-free consistency distillation (DCD). Besides, we explore various
 techniques to promote TLCMโ€™s performance in data-free manner, forming Training-efficient Latent Consistency
 Model (TLCM) with 2-8 step inference.

TLCM demonstrates a high level of flexibility by enabling adjustment of sampling steps within the range of 2 to 8 while still producing competitive outputs compared
to full-step approaches.

- [Install Dependency](#install-dependency)
- [Example Use](#example-use)
- [Art Gallery](#art-gallery)
- [Addition](#addition)
- [Citation](#citation)

## Install Dependency

```
pip install diffusers 
pip install transformers accelerate
```
or try
```
pip install prefetch_generator zhconv peft loguru transformers==4.39.1 accelerate==0.31.0
```
## Example Use

We provide an example inference script in the directory of this repo. 
You should download the LoRA path from [Flux-LoRA](https://huggingface.co/OPPOer/TLCMFlux) or [SDXL-LoRA](https://huggingface.co/OPPOer/TLCMSDXL) and use a base model, such as [SDXL1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) , as the recommended option.
After that, you can activate the generation with the following code:
```
python inference.py --prompt {Your prompt} --output_dir {Your output directory} --lora_path {Lora_directory} --base_model_path {Base_model_directory} --infer-steps 4
```
More parameters are presented in paras.py. You can modify them according to your requirements.


<p style="font-size: 24px; font-weight: bold; color: #FF5733; text-align: center;">
    <span style=" padding: 10px; border-radius: 5px;">
        ๐Ÿš€ Update ๐Ÿš€
    </span>
</p>


We integrate LCMScheduler in the diffuser pipeline for our workflow, so now you can now use a simpler version below with the base model SDXL 1.0, and we **highly recommend** it :
```
import torch,diffusers
from diffusers import LCMScheduler,AutoPipelineForText2Image
from peft import LoraConfig, get_peft_model

model_id = "stabilityai/stable-diffusion-xl-base-1.0"
lora_path = 'path/to/the/lora'
lora_config = LoraConfig(
        r=64,
        target_modules=[
            "to_q",
            "to_k",
            "to_v",
            "to_out.0",
            "proj_in",
            "proj_out",
            "ff.net.0.proj",
            "ff.net.2",
            "conv1",
            "conv2",
            "conv_shortcut",
            "downsamplers.0.conv",
            "upsamplers.0.conv",
            "time_emb_proj",
        ],
    )

pipe = AutoPipelineForText2Image.from_pretrained(model_id,torch_dtype=torch.float16, variant="fp16")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
unet=pipe.unet
unet = get_peft_model(unet, lora_config)
unet.load_adapter(lora_path, adapter_name="default")
pipe.unet=unet
pipe.to('cuda')

eval_step=4 # the step can be changed within 2-8 steps

prompt = "An astronaut riding a horse in the jungle"
# disable guidance_scale by passing 0
image = pipe(prompt=prompt, num_inference_steps=eval_step, guidance_scale=0).images[0]
```


We also adapt our methods based on [**FLUX**](https://huggingface.co/black-forest-labs/FLUX.1-dev) model. 
You can down load the corresponding LoRA model [here]() and load it with the base model for faster sampling.
The sampling script for faster FLUX sampling as below:
```
import os,torch
from diffusers import FluxPipeline
from scheduling_flow_match_tlcm import FlowMatchEulerTLCMScheduler
from peft import LoraConfig, get_peft_model

model_id = "black-forest-labs/FLUX.1-dev"
lora_path = "path/to/the/lora/folder"
lora_config = LoraConfig(
    r=64,
    target_modules=[
        "to_k", "to_q", "to_v", "to_out.0",
        "proj_in",
        "proj_out",
        "ff.net.0.proj",
        "ff.net.2",
        "context_embedder", "x_embedder",
        "linear", "linear_1", "linear_2",
        "proj_mlp",
        "add_k_proj", "add_q_proj", "add_v_proj", "to_add_out",
        "ff_context.net.0.proj", "ff_context.net.2"
        ],
        )

pipe = FluxPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
pipe.scheduler = FlowMatchEulerTLCMScheduler.from_config(pipe.scheduler.config)
pipe.to('cuda:0')
transformer = pipe.transformer
transformer = get_peft_model(transformer, lora_config)
transformer.load_adapter(lora_path, adapter_name="default", is_trainable=False)
pipe.transformer=transformer

eval_step=4 # the step can be changed within 2-8 steps

prompt = "An astronaut riding a horse in the jungle"
image = pipe(prompt=prompt, num_inference_steps=eval_step, guidance_scale=7).images[0]
```
## Art Gallery
Here we present some examples based on **SDXL** with different samping steps.

<div align="center">
    <p>2-Steps Sampling</p>
</div>
<div style="display: flex; justify-content: center; flex-wrap: wrap;">
    <img src="assets/SDXL/2steps/dog.jpg" alt="ๅ›พ็‰‡1" width="170" style="margin: 0px;" />
    <img src="assets/SDXL/2steps/girl1.jpg" alt="ๅ›พ็‰‡2" width="170" style="margin: 0px;" />
    <img src="assets/SDXL/2steps/girl2.jpg" alt="ๅ›พ็‰‡3" width="170" style="margin: 0px;" />
    <img src="assets/SDXL/2steps/rose.jpg" alt="ๅ›พ็‰‡4" width="170" style="margin: 0px;" />
</div>

<div align="center">
    <p>3-Steps Sampling</p>
</div>
<div style="display: flex; justify-content: center; flex-wrap: wrap;">
    <img src="assets/SDXL/3steps/batman.jpg" alt="ๅ›พ็‰‡1" width="170" style="margin: 0px;" />
    <img src="assets/SDXL/3steps/horse.jpg" alt="ๅ›พ็‰‡2" width="170" style="margin: 0px;" />
    <img src="assets/SDXL/3steps/living room.jpg" alt="ๅ›พ็‰‡3" width="170" style="margin: 0px;" />
    <img src="assets/SDXL/3steps/woman.jpg" alt="ๅ›พ็‰‡4" width="170" style="margin: 0px;" />
</div>

<div align="center">
    <p>4-Steps Sampling</p>
</div>
<div style="display: flex; justify-content: center; flex-wrap: wrap;">
    <img src="assets/SDXL/4steps/boat.jpg" alt="ๅ›พ็‰‡1" width="170" style="margin: 0px;" />
    <img src="assets/SDXL/4steps/building.jpg" alt="ๅ›พ็‰‡2" width="170" style="margin: 0px;" />
    <img src="assets/SDXL/4steps/mountain.jpg" alt="ๅ›พ็‰‡3" width="170" style="margin: 0px;" />
    <img src="assets/SDXL/4steps/wedding.jpg" alt="ๅ›พ็‰‡4" width="170" style="margin: 0px;" />
</div>

<div align="center">
    <p>8-Steps Sampling</p>
</div>
<div style="display: flex; justify-content: center; flex-wrap: wrap;">
    <img src="assets/SDXL/8steps/car.jpg" alt="ๅ›พ็‰‡1" width="170" style="margin: 0px;" />
    <img src="assets/SDXL/8steps/cat.jpg" alt="ๅ›พ็‰‡2" width="170" style="margin: 0px;" />
    <img src="assets/SDXL/8steps/robot.jpg" alt="ๅ›พ็‰‡3" width="170" style="margin: 0px;" />
    <img src="assets/SDXL/8steps/woman.jpg" alt="ๅ›พ็‰‡4" width="170" style="margin: 0px;" />
</div>

We also present some examples based on **FLUX**.
<div align="center">
    <p>3-Steps Sampling</p>
</div>
<div style="display: flex; justify-content: center; flex-wrap: wrap;">
    <div style="text-align: center; margin: 0px;">
        <img src="assets/FLUX/3steps/portrait.jpg" alt="ๅ›พ็‰‡1" width="170" />
        <span style="font-size: 12px;">Seasoned female journalist...</span><br>
        <span style="font-size: 12px;">eyes behind glasses...</span>
    </div>
    <div style="text-align: center; margin: 0px;">
        <img src="assets/FLUX/3steps/hallway.jpg" alt="ๅ›พ็‰‡2" width="170" />
        <span style="font-size: 12px;">A grand hallway</span><br>
        <span style="font-size: 12px;">inside an opulent palace...</span>
    </div>
    <div style="text-align: center; margin: 0px;">
        <img src="assets/FLUX/3steps/starnight.jpg" alt="ๅ›พ็‰‡3" width="170" />
        <span style="font-size: 12px;">Van Goghโ€™s Starry Night...</span><br>
        <span style="font-size: 12px;">replace... with cityscape</span>
    </div>
    <div style="text-align: center; margin: 0px;">
        <img src="assets/FLUX/3steps/sailor.jpg" alt="ๅ›พ็‰‡4" width="170" />
        <span style="font-size: 12px;">A weathered sailor...</span><br>
        <span style="font-size: 12px;">blue eyes...</span>
    </div>
</div>
<div align="center">
    <p>4-Steps Sampling</p>
</div>
<div style="display: flex; justify-content: center; flex-wrap: wrap;">
    <div style="text-align: center; margin: 0px;">
        <img src="assets/FLUX/4steps/guitar.jpg" alt="ๅ›พ็‰‡1" width="170" />
        <span style="font-size: 12px;">A guitar,</span><br>
        <span style="font-size: 12px;">2d minimalistic icon...</span>
    </div>
    <div style="text-align: center; margin: 0px;">
        <img src="assets/FLUX/4steps/cat.jpg" alt="ๅ›พ็‰‡2" width="170" />
        <span style="font-size: 12px;">A cat</span><br>
        <span style="font-size: 12px;">near the window...</span>
    </div>
    <div style="text-align: center; margin: 0px;">
        <img src="assets/FLUX/4steps/rabbit.jpg" alt="ๅ›พ็‰‡3" width="170" />
        <span style="font-size: 12px;">close up photo of a rabbit...</span><br>
        <span style="font-size: 12px;">forest in spring...</span>
    </div>
    <div style="text-align: center; margin: 0px;">
        <img src="assets/FLUX/4steps/blossom.jpg" alt="ๅ›พ็‰‡4" width="170" />
        <span style="font-size: 12px;">...urban decay...</span><br>
        <span style="font-size: 12px;">...a vibrant cherry blossom...</span>
    </div>
</div>
<div align="center">
    <p>6-Steps Sampling</p>
</div>
<div style="display: flex; justify-content: center; flex-wrap: wrap;">
    <div style="text-align: center; margin: 0px;">
        <img src="assets/FLUX/6steps/dog.jpg" alt="ๅ›พ็‰‡1" width="170" />
        <span style="font-size: 12px;">A cute dog</span><br>
        <span style="font-size: 12px;">on the grass...</span>
    </div>
    <div style="text-align: center; margin: 0px;">
        <img src="assets/FLUX/6steps/tea.jpg" alt="ๅ›พ็‰‡2" width="170" />
        <span style="font-size: 12px;">...hot floral tea</span><br>
        <span style="font-size: 12px;">in glass kettle...</span>
    </div>
    <div style="text-align: center; margin: 0px;">
        <img src="assets/FLUX/6steps/bag.jpg" alt="ๅ›พ็‰‡3" width="170" />
        <span style="font-size: 12px;">...a bag...</span><br>
        <span style="font-size: 12px;">luxury product style...</span>
    </div>
    <div style="text-align: center; margin: 0px;">
        <img src="assets/FLUX/6steps/cat.jpg" alt="ๅ›พ็‰‡4" width="170" />
        <span style="font-size: 12px;">a master jedi cat...</span><br>
        <span style="font-size: 12px;">wearing a jedi cloak hood</span>
    </div>
</div>
<div align="center">
    <p>8-Steps Sampling</p>
</div>
<div style="display: flex; justify-content: center; flex-wrap: wrap;">
    <div style="text-align: center; margin: 0px;">
        <img src="assets/FLUX/8steps/lion.jpg" alt="ๅ›พ็‰‡1" width="170" />
        <span style="font-size: 12px;">A lion...</span><br>
        <span style="font-size: 12px;">low-poly game art...</span>
    </div>
    <div style="text-align: center; margin: 0px;">
        <img src="assets/FLUX/8steps/street.jpg" alt="ๅ›พ็‰‡2" width="170" />
        <span style="font-size: 12px;">Tokyo street...</span><br>
        <span style="font-size: 12px;">blurred motion...</span>
    </div>
    <div style="text-align: center; margin: 0px;">
        <img src="assets/FLUX/8steps/dragon.jpg" alt="ๅ›พ็‰‡3" width="170" />
        <span style="font-size: 12px;">A tiny red dragon sleeps</span><br>
        <span style="font-size: 12px;">curled up in a nest...</span>
    </div>
    <div style="text-align: center; margin: 0px;">
        <img src="assets/FLUX/8steps/female.jpg" alt="ๅ›พ็‰‡4" width="170" />
        <span style="font-size: 12px;">A female...a postcard</span><br>
        <span style="font-size: 12px;">with "WanderlustDreamer"</span>
    </div>
</div>


## Addition

We also provide the latent lpips model [here](https://huggingface.co/OPPOer/TLCM). 
More details are presented in the paper.

## Citation

```
@article{xie2024tlcm,
  title={TLCM: Training-efficient Latent Consistency Model for Image Generation with 2-8 Steps},
  author={Xie, Qingsong and Liao, Zhenyi and Deng, Zhijie and Lu, Haonan},
  journal={arXiv preprint arXiv:2406.05768},
  year={2024}
}
```