Upload folder using huggingface_hub
Browse files- Dockerfile +16 -0
- SuperKart.joblib +3 -0
- app.py +51 -0
- requirements.txt +13 -0
Dockerfile
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9-slim
|
2 |
+
|
3 |
+
# Set the working directory inside the container
|
4 |
+
_____ /app #Complete the code to mention the command in Docker to set the working directory
|
5 |
+
|
6 |
+
# Copy all files from the current directory to the container's working directory
|
7 |
+
_____ . . #Complete the code to mention the command in Docker to copy the files from the current directory to the container's working directory
|
8 |
+
|
9 |
+
# Install dependencies from the requirements file without using cache to reduce image size
|
10 |
+
_____ pip install --no-cache-dir --upgrade -r requirements.txt #Complete the code to mention the command in Docker to install dependencies
|
11 |
+
|
12 |
+
# Define the command to start the application using Gunicorn with 4 worker processes
|
13 |
+
# - `-w 4`: Uses 4 worker processes for handling requests
|
14 |
+
# - `-b 0.0.0.0:7860`: Binds the server to port 7860 on all network interfaces
|
15 |
+
# - `app:app`: Runs the Flask app (assuming `app.py` contains the Flask instance named `app`)
|
16 |
+
CMD ["gunicorn", "-w", "4", "-b", "0.0.0.0:7860", "app:superkart_api"]
|
SuperKart.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2dd2bc92a66594f5ed40b4e98c53ebcbc07e5f75a56ebe67ad76bc98f17044b5
|
3 |
+
size 432451
|
app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Import necessary libraries
|
3 |
+
import numpy as np
|
4 |
+
import joblib # For loading the serialized model
|
5 |
+
import pandas as pd # For data manipulation
|
6 |
+
from flask import Flask, request, jsonify # For creating the Flask API
|
7 |
+
|
8 |
+
# Initialize Flask app with a name
|
9 |
+
superkart_api = Flask("SuperKart Sales Forecast") #Complete the code to define the name of the app
|
10 |
+
|
11 |
+
# Load the trained churn prediction model
|
12 |
+
model = joblib.load("SuperKart.joblib") #Complete the code to define the location of the serialized model
|
13 |
+
|
14 |
+
# Define a route for the home page
|
15 |
+
@superkart_api.get('/')
|
16 |
+
def home():
|
17 |
+
return "Welcome to the SuperKart Sales Forecast API!" #Complete the code to define a welcome message
|
18 |
+
|
19 |
+
# Define an endpoint to predict churn for a single customer
|
20 |
+
@superkart_api.post('/v1/predict')
|
21 |
+
def predict_sales():
|
22 |
+
# Get JSON data from the request
|
23 |
+
data = request.get_json()
|
24 |
+
|
25 |
+
# Extract relevant customer features from the input data. The order of the column names matters.
|
26 |
+
sample = {
|
27 |
+
'Product_Weight': data['Product_Weight'],
|
28 |
+
'Product_Sugar_Content': data['Product_Sugar_Content'],
|
29 |
+
'Product_Allocated_Area': data['Product_Allocated_Area'],
|
30 |
+
'Product_MRP': data['Product_MRP'],
|
31 |
+
'Store_Size': data['Store_Size'],
|
32 |
+
'Store_Location_City_Type': data['Store_Location_City_Type'],
|
33 |
+
'Store_Type': data['Store_Type'],
|
34 |
+
'Product_Id_char': data['Product_Id_char'],
|
35 |
+
'Store_Age_Years': data['Store_Age_Years'],
|
36 |
+
'Product_Type_Category': data['Product_Type_Category']
|
37 |
+
}
|
38 |
+
|
39 |
+
# Convert the extracted data into a DataFrame
|
40 |
+
input_data = pd.DataFrame([sample])
|
41 |
+
|
42 |
+
# Make a churn prediction using the trained model
|
43 |
+
prediction = model.predict(input_data).tolist()[0]
|
44 |
+
|
45 |
+
# Return the prediction as a JSON response
|
46 |
+
return jsonify({'Sales': prediction})
|
47 |
+
|
48 |
+
|
49 |
+
# Run the Flask app in debug mode
|
50 |
+
if __name__ == '__main__':
|
51 |
+
superkart_api.run(debug=True)
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas==2.2.2
|
2 |
+
numpy==2.0.2
|
3 |
+
scikit-learn==1.6.1
|
4 |
+
seaborn==0.13.2
|
5 |
+
joblib==1.4.2
|
6 |
+
xgboost==2.1.4
|
7 |
+
joblib==1.4.2
|
8 |
+
Werkzeug==2.2.2
|
9 |
+
flask==2.2.2
|
10 |
+
gunicorn==20.1.0
|
11 |
+
requests==2.32.3
|
12 |
+
uvicorn[standard]
|
13 |
+
streamlit==1.43.2
|