|
from torch.utils.data import Dataset |
|
import os |
|
import json |
|
import numpy as np |
|
import torch |
|
import imageio |
|
import math |
|
import cv2 |
|
from torchvision import transforms |
|
|
|
def cartesian_to_spherical(xyz): |
|
ptsnew = np.hstack((xyz, np.zeros(xyz.shape))) |
|
xy = xyz[:,0]**2 + xyz[:,1]**2 |
|
z = np.sqrt(xy + xyz[:,2]**2) |
|
theta = np.arctan2(np.sqrt(xy), xyz[:,2]) |
|
|
|
azimuth = np.arctan2(xyz[:,1], xyz[:,0]) |
|
return np.array([theta, azimuth, z]) |
|
|
|
|
|
def get_T(T_target, T_cond): |
|
theta_cond, azimuth_cond, z_cond = cartesian_to_spherical(T_cond[None, :]) |
|
theta_target, azimuth_target, z_target = cartesian_to_spherical(T_target[None, :]) |
|
|
|
d_theta = theta_target - theta_cond |
|
d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi) |
|
d_z = z_target - z_cond |
|
|
|
d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()]) |
|
return d_T |
|
|
|
def get_spherical(T_target, T_cond): |
|
theta_cond, azimuth_cond, z_cond = cartesian_to_spherical(T_cond[None, :]) |
|
theta_target, azimuth_target, z_target = cartesian_to_spherical(T_target[None, :]) |
|
|
|
d_theta = theta_target - theta_cond |
|
d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi) |
|
d_z = z_target - z_cond |
|
|
|
d_T = torch.tensor([math.degrees(d_theta.item()), math.degrees(d_azimuth.item()), d_z.item()]) |
|
return d_T |
|
|
|
class RTMV(Dataset): |
|
def __init__(self, root_dir='datasets/RTMV/google_scanned',\ |
|
first_K=64, resolution=256, load_target=False): |
|
self.root_dir = root_dir |
|
self.scene_list = sorted(next(os.walk(root_dir))[1]) |
|
self.resolution = resolution |
|
self.first_K = first_K |
|
self.load_target = load_target |
|
|
|
def __len__(self): |
|
return len(self.scene_list) |
|
|
|
def __getitem__(self, idx): |
|
scene_dir = os.path.join(self.root_dir, self.scene_list[idx]) |
|
with open(os.path.join(scene_dir, 'transforms.json'), "r") as f: |
|
meta = json.load(f) |
|
imgs = [] |
|
poses = [] |
|
for i_img in range(self.first_K): |
|
meta_img = meta['frames'][i_img] |
|
|
|
if i_img == 0 or self.load_target: |
|
img_path = os.path.join(scene_dir, meta_img['file_path']) |
|
img = imageio.imread(img_path) |
|
img = cv2.resize(img, (self.resolution, self.resolution), interpolation = cv2.INTER_LINEAR) |
|
imgs.append(img) |
|
|
|
c2w = meta_img['transform_matrix'] |
|
poses.append(c2w) |
|
|
|
imgs = (np.array(imgs) / 255.).astype(np.float32) |
|
imgs = torch.tensor(self.blend_rgba(imgs)).permute(0, 3, 1, 2) |
|
imgs = imgs * 2 - 1. |
|
poses = torch.tensor(np.array(poses).astype(np.float32)) |
|
return imgs, poses |
|
|
|
def blend_rgba(self, img): |
|
img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:]) |
|
return img |
|
|
|
|
|
class GSO(Dataset): |
|
def __init__(self, root_dir='datasets/GoogleScannedObjects',\ |
|
split='val', first_K=5, resolution=256, load_target=False, name='render_mvs'): |
|
self.root_dir = root_dir |
|
with open(os.path.join(root_dir, '%s.json' % split), "r") as f: |
|
self.scene_list = json.load(f) |
|
self.resolution = resolution |
|
self.first_K = first_K |
|
self.load_target = load_target |
|
self.name = name |
|
|
|
def __len__(self): |
|
return len(self.scene_list) |
|
|
|
def __getitem__(self, idx): |
|
scene_dir = os.path.join(self.root_dir, self.scene_list[idx]) |
|
with open(os.path.join(scene_dir, 'transforms_%s.json' % self.name), "r") as f: |
|
meta = json.load(f) |
|
imgs = [] |
|
poses = [] |
|
for i_img in range(self.first_K): |
|
meta_img = meta['frames'][i_img] |
|
|
|
if i_img == 0 or self.load_target: |
|
img_path = os.path.join(scene_dir, meta_img['file_path']) |
|
img = imageio.imread(img_path) |
|
img = cv2.resize(img, (self.resolution, self.resolution), interpolation = cv2.INTER_LINEAR) |
|
imgs.append(img) |
|
|
|
c2w = meta_img['transform_matrix'] |
|
poses.append(c2w) |
|
|
|
imgs = (np.array(imgs) / 255.).astype(np.float32) |
|
mask = imgs[:, :, :, -1] |
|
imgs = torch.tensor(self.blend_rgba(imgs)).permute(0, 3, 1, 2) |
|
imgs = imgs * 2 - 1. |
|
poses = torch.tensor(np.array(poses).astype(np.float32)) |
|
return imgs, poses |
|
|
|
def blend_rgba(self, img): |
|
img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:]) |
|
return img |
|
|
|
class WILD(Dataset): |
|
def __init__(self, root_dir='data/nerf_wild',\ |
|
first_K=33, resolution=256, load_target=False): |
|
self.root_dir = root_dir |
|
self.scene_list = sorted(next(os.walk(root_dir))[1]) |
|
self.resolution = resolution |
|
self.first_K = first_K |
|
self.load_target = load_target |
|
|
|
def __len__(self): |
|
return len(self.scene_list) |
|
|
|
def __getitem__(self, idx): |
|
scene_dir = os.path.join(self.root_dir, self.scene_list[idx]) |
|
with open(os.path.join(scene_dir, 'transforms_train.json'), "r") as f: |
|
meta = json.load(f) |
|
imgs = [] |
|
poses = [] |
|
for i_img in range(self.first_K): |
|
meta_img = meta['frames'][i_img] |
|
|
|
if i_img == 0 or self.load_target: |
|
img_path = os.path.join(scene_dir, meta_img['file_path']) |
|
img = imageio.imread(img_path + '.png') |
|
img = cv2.resize(img, (self.resolution, self.resolution), interpolation = cv2.INTER_LINEAR) |
|
imgs.append(img) |
|
|
|
c2w = meta_img['transform_matrix'] |
|
poses.append(c2w) |
|
|
|
imgs = (np.array(imgs) / 255.).astype(np.float32) |
|
imgs = torch.tensor(self.blend_rgba(imgs)).permute(0, 3, 1, 2) |
|
imgs = imgs * 2 - 1. |
|
poses = torch.tensor(np.array(poses).astype(np.float32)) |
|
return imgs, poses |
|
|
|
def blend_rgba(self, img): |
|
img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:]) |
|
return img |