OneclickAI's picture
Upload 3 files
39c2220 verified
raw
history blame
2.87 kB
import numpy as np
import tensorflow as tf
from tensorflow import keras
from keras import layers
print("TensorFlow ๋ฒ„์ „:", tf.__version__)
# 1. ๋ฐ์ดํ„ฐ ๋กœ๋“œ ๋ฐ ์ „์ฒ˜๋ฆฌ
print("\n1. ๋ฐ์ดํ„ฐ ๋กœ๋“œ ๋ฐ ์ „์ฒ˜๋ฆฌ๋ฅผ ์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค...")
# num_words=10000: ๊ฐ€์žฅ ๋นˆ๋„๊ฐ€ ๋†’์€ 1๋งŒ ๊ฐœ์˜ ๋‹จ์–ด๋งŒ ์‚ฌ์šฉ
(x_train, y_train), (x_test, y_test) = keras.datasets.imdb.load_data(num_words=10000)
print(f"ํ•™์Šต ๋ฐ์ดํ„ฐ ๊ฐœ์ˆ˜: {len(x_train)}")
print(f"ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ ๊ฐœ์ˆ˜: {len(x_test)}")
# ๋ฌธ์žฅ์˜ ๊ธธ์ด๋ฅผ ๋™์ผํ•˜๊ฒŒ ๋งž์ถ”๊ธฐ ์œ„ํ•ด ํŒจ๋”ฉ(padding) ์ฒ˜๋ฆฌ (maxlen=256)
x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=256)
x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=256)
print("๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ๊ฐ€ ์™„๋ฃŒ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.")
# 2. LSTM ๋ชจ๋ธ ์ƒ์„ฑ, ํ•™์Šต ๋ฐ ์ €์žฅ
print("\n2. LSTM ๋ชจ๋ธ ํ•™์Šต์„ ์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค...")
# LSTM ๋ชจ๋ธ ์•„ํ‚คํ…์ฒ˜ ์ •์˜
lstm_model = keras.Sequential([
layers.Embedding(input_dim=10000, output_dim=128),
layers.LSTM(64),
layers.Dense(1, activation="sigmoid")
])
# ๋ชจ๋ธ ์ปดํŒŒ์ผ
lstm_model.compile(
loss="binary_crossentropy",
optimizer="adam",
metrics=["accuracy"]
)
print("\n--- LSTM ๋ชจ๋ธ ๊ตฌ์กฐ ---")
lstm_model.summary()
# ๋ชจ๋ธ ํ•™์Šต
batch_size = 128
epochs = 1 # ์˜ˆ์ œ์ด๋ฏ€๋กœ epoch๋ฅผ ์ค„์—ฌ์„œ ์‹คํ–‰ ์‹œ๊ฐ„์„ ๋‹จ์ถ•ํ•ฉ๋‹ˆ๋‹ค.
history_lstm = lstm_model.fit(
x_train, y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_test, y_test)
)
# ๋ชจ๋ธ ํ‰๊ฐ€
score_lstm = lstm_model.evaluate(x_test, y_test, verbose=0)
print(f"\nLSTM ๋ชจ๋ธ ํ…Œ์ŠคํŠธ ๊ฒฐ๊ณผ -> Loss: {score_lstm[0]:.4f}, Accuracy: {score_lstm[1]:.4f}\n")
# ํ•™์Šต๋œ LSTM ๋ชจ๋ธ ์ €์žฅ
lstm_model.save("lstm_model.keras")
print("LSTM ๋ชจ๋ธ์ด 'lstm_model.keras' ํŒŒ์ผ๋กœ ์ €์žฅ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.")
# 3. GRU ๋ชจ๋ธ ์ƒ์„ฑ, ํ•™์Šต ๋ฐ ์ €์žฅ
print("\n3. GRU ๋ชจ๋ธ ํ•™์Šต์„ ์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค...")
# GRU ๋ชจ๋ธ ์•„ํ‚คํ…์ฒ˜ ์ •์˜
gru_model = keras.Sequential([
layers.Embedding(input_dim=10000, output_dim=128),
layers.GRU(64),
layers.Dense(1, activation="sigmoid")
])
# ๋ชจ๋ธ ์ปดํŒŒ์ผ
gru_model.compile(
loss="binary_crossentropy",
optimizer="adam",
metrics=["accuracy"]
)
print("\n--- GRU ๋ชจ๋ธ ๊ตฌ์กฐ ---")
gru_model.summary()
# ๋ชจ๋ธ ํ•™์Šต
history_gru = gru_model.fit(
x_train, y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_test, y_test)
)
# ๋ชจ๋ธ ํ‰๊ฐ€
score_gru = gru_model.evaluate(x_test, y_test, verbose=0)
print(f"\nGRU ๋ชจ๋ธ ํ…Œ์ŠคํŠธ ๊ฒฐ๊ณผ -> Loss: {score_gru[0]:.4f}, Accuracy: {score_gru[1]:.4f}")
# ํ•™์Šต๋œ GRU ๋ชจ๋ธ ์ €์žฅ
gru_model.save("gru_model.keras")
print("GRU ๋ชจ๋ธ์ด 'gru_model.keras' ํŒŒ์ผ๋กœ ์ €์žฅ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.")