update readme about vLLM
Browse files
README.md
CHANGED
|
@@ -31,6 +31,7 @@ This dataset enables Bee-8B to achieve exceptional performance, particularly in
|
|
| 31 |
- **State-of-the-Art Open Model:** Our model, **Bee-8B**, achieves state-of-the-art performance among fully open MLLMs and is highly competitive with recent semi-open models like InternVL3.5-8B, demonstrating the power of high-quality data.
|
| 32 |
|
| 33 |
## News
|
|
|
|
| 34 |
|
| 35 |
- **[2025.10.13]** 🐝 **Bee-8B is Released\!** Our model is now publicly available. You can download it from [Hugging Face](https://huggingface.co/collections/Open-Bee/bee-8b-68ecbf10417810d90fbd9995).
|
| 36 |
|
|
@@ -101,6 +102,159 @@ output_text = processor.decode(output_ids, skip_special_tokens=True)
|
|
| 101 |
print(output_text)
|
| 102 |
```
|
| 103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
## Experimental Results
|
| 105 |
|
| 106 |
<figure align="center">
|
|
|
|
| 31 |
- **State-of-the-Art Open Model:** Our model, **Bee-8B**, achieves state-of-the-art performance among fully open MLLMs and is highly competitive with recent semi-open models like InternVL3.5-8B, demonstrating the power of high-quality data.
|
| 32 |
|
| 33 |
## News
|
| 34 |
+
- **[2025.10.20]** 🚀 **vLLM Support is Here!** Bee-8B now supports high-performance inference with [vLLM](https://github.com/vllm-project/vllm), enabling faster and more efficient deployment for production use cases.
|
| 35 |
|
| 36 |
- **[2025.10.13]** 🐝 **Bee-8B is Released\!** Our model is now publicly available. You can download it from [Hugging Face](https://huggingface.co/collections/Open-Bee/bee-8b-68ecbf10417810d90fbd9995).
|
| 37 |
|
|
|
|
| 102 |
print(output_text)
|
| 103 |
```
|
| 104 |
|
| 105 |
+
### Using vLLM for High-Performance Inference
|
| 106 |
+
|
| 107 |
+
#### Install vLLM
|
| 108 |
+
|
| 109 |
+
> [!IMPORTANT]
|
| 110 |
+
> Bee-8B support will be officially available in vLLM **v0.11.1**. Until then, please install vLLM from source:
|
| 111 |
+
|
| 112 |
+
```bash
|
| 113 |
+
git clone https://github.com/vllm-project/vllm.git
|
| 114 |
+
cd vllm
|
| 115 |
+
VLLM_USE_PRECOMPILED=1 uv pip install --editable .
|
| 116 |
+
```
|
| 117 |
+
|
| 118 |
+
Once vLLM v0.11.1 is released, you will be able to install it directly via pip:
|
| 119 |
+
```bash
|
| 120 |
+
pip install vllm>=0.11.1
|
| 121 |
+
```
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
#### Offline Inference
|
| 125 |
+
```python
|
| 126 |
+
from transformers import AutoProcessor
|
| 127 |
+
from vllm import LLM, SamplingParams
|
| 128 |
+
from PIL import Image
|
| 129 |
+
import requests
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def main():
|
| 133 |
+
|
| 134 |
+
model_path = "Open-Bee/Bee-8B-RL"
|
| 135 |
+
|
| 136 |
+
llm = LLM(
|
| 137 |
+
model=model_path,
|
| 138 |
+
limit_mm_per_prompt={"image": 5},
|
| 139 |
+
trust_remote_code=True,
|
| 140 |
+
tensor_parallel_size=1,
|
| 141 |
+
gpu_memory_utilization=0.8,
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
sampling_params = SamplingParams(
|
| 145 |
+
temperature=0.6,
|
| 146 |
+
max_tokens=16384,
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
image_url = "https://huggingface.co/Open-Bee/Bee-8B-RL/resolve/main/assets/logo.png"
|
| 150 |
+
image = Image.open(requests.get(image_url, stream=True).raw)
|
| 151 |
+
|
| 152 |
+
messages = [
|
| 153 |
+
{
|
| 154 |
+
"role":
|
| 155 |
+
"user",
|
| 156 |
+
"content": [
|
| 157 |
+
{
|
| 158 |
+
"type": "image",
|
| 159 |
+
"image": image
|
| 160 |
+
},
|
| 161 |
+
{
|
| 162 |
+
"type":
|
| 163 |
+
"text",
|
| 164 |
+
"text":
|
| 165 |
+
"Based on this picture, write an advertising slogan about Bee-8B (a Fully Open Multimodal Large Language Model)."
|
| 166 |
+
},
|
| 167 |
+
],
|
| 168 |
+
},
|
| 169 |
+
]
|
| 170 |
+
|
| 171 |
+
processor = AutoProcessor.from_pretrained(model_path,
|
| 172 |
+
trust_remote_code=True)
|
| 173 |
+
prompt = processor.apply_chat_template(
|
| 174 |
+
messages,
|
| 175 |
+
tokenize=False,
|
| 176 |
+
add_generation_prompt=True,
|
| 177 |
+
enable_thinking=True,
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
mm_data = {"image": image}
|
| 181 |
+
llm_inputs = {
|
| 182 |
+
"prompt": prompt,
|
| 183 |
+
"multi_modal_data": mm_data,
|
| 184 |
+
}
|
| 185 |
+
|
| 186 |
+
outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
|
| 187 |
+
generated_text = outputs[0].outputs[0].text
|
| 188 |
+
|
| 189 |
+
print(generated_text)
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
if __name__ == '__main__':
|
| 193 |
+
main()
|
| 194 |
+
```
|
| 195 |
+
|
| 196 |
+
#### Online Serving
|
| 197 |
+
- Start the server
|
| 198 |
+
```bash
|
| 199 |
+
vllm serve \
|
| 200 |
+
Open-Bee/Bee-8B-RL \
|
| 201 |
+
--served-model-name bee-8b-rl \
|
| 202 |
+
--tensor-parallel-size 8 \
|
| 203 |
+
--gpu-memory-utilization 0.8 \
|
| 204 |
+
--host 0.0.0.0 \
|
| 205 |
+
--port 8000 \
|
| 206 |
+
--trust-remote-code
|
| 207 |
+
```
|
| 208 |
+
|
| 209 |
+
- Using OpenAI Python Client to Query the server
|
| 210 |
+
```python
|
| 211 |
+
from openai import OpenAI
|
| 212 |
+
|
| 213 |
+
# Set OpenAI's API key and API base to use vLLM's API server.
|
| 214 |
+
openai_api_key = "EMPTY"
|
| 215 |
+
openai_api_base = "http://localhost:8000/v1"
|
| 216 |
+
|
| 217 |
+
client = OpenAI(
|
| 218 |
+
api_key=openai_api_key,
|
| 219 |
+
base_url=openai_api_base,
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
# image url
|
| 223 |
+
image_messages = [
|
| 224 |
+
{
|
| 225 |
+
"role":
|
| 226 |
+
"user",
|
| 227 |
+
"content": [
|
| 228 |
+
{
|
| 229 |
+
"type": "image_url",
|
| 230 |
+
"image_url": {
|
| 231 |
+
"url":
|
| 232 |
+
"https://huggingface.co/Open-Bee/Bee-8B-RL/resolve/main/assets/logo.png"
|
| 233 |
+
},
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"type":
|
| 237 |
+
"text",
|
| 238 |
+
"text":
|
| 239 |
+
"Based on this picture, write an advertising slogan about Bee-8B (a Fully Open Multimodal Large Language Model)."
|
| 240 |
+
},
|
| 241 |
+
],
|
| 242 |
+
},
|
| 243 |
+
]
|
| 244 |
+
|
| 245 |
+
chat_response = client.chat.completions.create(
|
| 246 |
+
model="bee-8b-rl",
|
| 247 |
+
messages=image_messages,
|
| 248 |
+
max_tokens=16384,
|
| 249 |
+
extra_body={
|
| 250 |
+
"chat_template_kwargs": {
|
| 251 |
+
"enable_thinking": True
|
| 252 |
+
},
|
| 253 |
+
},
|
| 254 |
+
)
|
| 255 |
+
print("Chat response:", chat_response.choices[0].message.content)
|
| 256 |
+
```
|
| 257 |
+
|
| 258 |
## Experimental Results
|
| 259 |
|
| 260 |
<figure align="center">
|