Upload folder using huggingface_hub
Browse files
    	
        README.md
    CHANGED
    
    | @@ -112,7 +112,7 @@ We welcome MLLM benchmark developers to assess our InternVL1.5 and InternVL2 ser | |
| 112 |  | 
| 113 | 
             
            We provide an example code to run InternVL2-4B using `transformers`.
         | 
| 114 |  | 
| 115 | 
            -
            We also welcome you to experience the InternVL2 series models in our [online demo](https://internvl.opengvlab.com/). | 
| 116 |  | 
| 117 | 
             
            > Please use transformers==4.37.2 to ensure the model works normally.
         | 
| 118 |  | 
| @@ -172,7 +172,7 @@ def split_model(model_name): | |
| 172 | 
             
                device_map = {}
         | 
| 173 | 
             
                world_size = torch.cuda.device_count()
         | 
| 174 | 
             
                num_layers = {
         | 
| 175 | 
            -
                    'InternVL2-1B': 24, 'InternVL2-2B': 24, 'InternVL2-4B': 32, 'InternVL2-8B': 32, | 
| 176 | 
             
                    'InternVL2-26B': 48, 'InternVL2-40B': 60, 'InternVL2-Llama3-76B': 80}[model_name]
         | 
| 177 | 
             
                # Since the first GPU will be used for ViT, treat it as half a GPU.
         | 
| 178 | 
             
                num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
         | 
|  | |
| 112 |  | 
| 113 | 
             
            We provide an example code to run InternVL2-4B using `transformers`.
         | 
| 114 |  | 
| 115 | 
            +
            We also welcome you to experience the InternVL2 series models in our [online demo](https://internvl.opengvlab.com/).
         | 
| 116 |  | 
| 117 | 
             
            > Please use transformers==4.37.2 to ensure the model works normally.
         | 
| 118 |  | 
|  | |
| 172 | 
             
                device_map = {}
         | 
| 173 | 
             
                world_size = torch.cuda.device_count()
         | 
| 174 | 
             
                num_layers = {
         | 
| 175 | 
            +
                    'InternVL2-1B': 24, 'InternVL2-2B': 24, 'InternVL2-4B': 32, 'InternVL2-8B': 32,
         | 
| 176 | 
             
                    'InternVL2-26B': 48, 'InternVL2-40B': 60, 'InternVL2-Llama3-76B': 80}[model_name]
         | 
| 177 | 
             
                # Since the first GPU will be used for ViT, treat it as half a GPU.
         | 
| 178 | 
             
                num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
         | 
