Improve model card for InternVL2_5-2B-MPO: Add abstract and enhance tags
Browse filesHello team,
I've reviewed the model card for `InternVL2_5-2B-MPO` and identified a few improvements to make it even more informative and discoverable:
1.  **Added Paper Abstract:** I've included the abstract from the paper "Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling" (arXiv:2412.05271) under a new `
    	
        README.md
    CHANGED
    
    | @@ -1,17 +1,19 @@ | |
| 1 | 
             
            ---
         | 
| 2 | 
            -
            license: mit
         | 
| 3 | 
            -
            pipeline_tag: image-text-to-text
         | 
| 4 | 
            -
            library_name: transformers
         | 
| 5 | 
             
            base_model:
         | 
| 6 | 
            -
             | 
| 7 | 
            -
            base_model_relation: finetune
         | 
| 8 | 
             
            datasets:
         | 
| 9 | 
            -
             | 
| 10 | 
             
            language:
         | 
| 11 | 
            -
             | 
|  | |
|  | |
|  | |
| 12 | 
             
            tags:
         | 
| 13 | 
            -
             | 
| 14 | 
            -
             | 
|  | |
|  | |
|  | |
| 15 | 
             
            ---
         | 
| 16 |  | 
| 17 | 
             
            # InternVL2_5-2B-MPO
         | 
| @@ -24,6 +26,9 @@ tags: | |
| 24 | 
             
              <img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png">
         | 
| 25 | 
             
            </div>
         | 
| 26 |  | 
|  | |
|  | |
|  | |
| 27 | 
             
            ## Introduction
         | 
| 28 |  | 
| 29 | 
             
            We introduce InternVL2.5-MPO, an advanced multimodal large language model (MLLM) series that demonstrates superior overall performance. This series builds upon InternVL2.5 and Mixed Preference Optimization.
         | 
| @@ -113,18 +118,18 @@ Additionally, the BCO loss is employed as the quality loss, which helps the mode | |
| 113 | 
             
            The loss function is defined as:
         | 
| 114 |  | 
| 115 | 
             
            $$
         | 
| 116 | 
            -
            \mathcal{L}_{\text{q}}=\mathcal{L}_{\text{q}}^+ + \mathcal{L}_{\text{q}} | 
| 117 | 
             
            $$
         | 
| 118 |  | 
| 119 | 
             
            where \\(\mathcal{L}_{\text{q}}^{+}\\) and \\(\mathcal{L}_{\text{q}}^{+}\\) represent the loss for chosen and rejected responses, respectively.
         | 
| 120 | 
             
            Each response type's loss is calculated independently, requiring the model to differentiate the absolute quality of individual responses. The loss terms are given by:
         | 
| 121 |  | 
| 122 | 
             
            $$
         | 
| 123 | 
            -
            \mathcal{L}_{\text{q}}^+=-\log \sigma\left(\beta \log \frac{\pi_\theta\left(y_c \mid x\right)}{\pi_0\left(y_c \mid x\right)} - \delta\right) | 
| 124 | 
             
            $$
         | 
| 125 |  | 
| 126 | 
             
            $$
         | 
| 127 | 
            -
            \mathcal{L}_{\text{q}}^-=-\log \sigma\left(-\left(\beta \log \frac{\pi_\theta\left(y_r \mid x\right)}{\pi_0\left(y_r \mid x\right)} - \delta\right) \right) | 
| 128 | 
             
            $$
         | 
| 129 |  | 
| 130 | 
             
            where \\(\delta\\) represents the reward shift, calculated as the moving average of previous rewards to stabilize training.
         | 
| @@ -133,7 +138,7 @@ Finally, the SFT loss is used as the generation loss to help the model learn the | |
| 133 | 
             
            The loss function is defined as:
         | 
| 134 |  | 
| 135 | 
             
            $$
         | 
| 136 | 
            -
            \mathcal{L}_{\text{gen}}=-\frac{\log\pi_\theta\left(y_c \mid x\right)}{\left| y_c \right|} | 
| 137 | 
             
            $$
         | 
| 138 |  | 
| 139 | 
             
            ## Evaluation on Multimodal Capability
         | 
| @@ -344,40 +349,50 @@ generation_config = dict(max_new_tokens=1024, do_sample=True) | |
| 344 | 
             
            # pure-text conversation (纯文本对话)
         | 
| 345 | 
             
            question = 'Hello, who are you?'
         | 
| 346 | 
             
            response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
         | 
| 347 | 
            -
            print(f'User: {question} | 
|  | |
| 348 |  | 
| 349 | 
             
            question = 'Can you tell me a story?'
         | 
| 350 | 
             
            response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
         | 
| 351 | 
            -
            print(f'User: {question} | 
|  | |
| 352 |  | 
| 353 | 
             
            # single-image single-round conversation (单图单轮对话)
         | 
| 354 | 
            -
            question = '<image | 
|  | |
| 355 | 
             
            response = model.chat(tokenizer, pixel_values, question, generation_config)
         | 
| 356 | 
            -
            print(f'User: {question} | 
|  | |
| 357 |  | 
| 358 | 
             
            # single-image multi-round conversation (单图多轮对话)
         | 
| 359 | 
            -
            question = '<image | 
|  | |
| 360 | 
             
            response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
         | 
| 361 | 
            -
            print(f'User: {question} | 
|  | |
| 362 |  | 
| 363 | 
             
            question = 'Please write a poem according to the image.'
         | 
| 364 | 
             
            response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
         | 
| 365 | 
            -
            print(f'User: {question} | 
|  | |
| 366 |  | 
| 367 | 
             
            # multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
         | 
| 368 | 
             
            pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
         | 
| 369 | 
             
            pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
         | 
| 370 | 
             
            pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
         | 
| 371 |  | 
| 372 | 
            -
            question = '<image | 
|  | |
| 373 | 
             
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 374 | 
             
                                           history=None, return_history=True)
         | 
| 375 | 
            -
            print(f'User: {question} | 
|  | |
| 376 |  | 
| 377 | 
             
            question = 'What are the similarities and differences between these two images.'
         | 
| 378 | 
             
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 379 | 
             
                                           history=history, return_history=True)
         | 
| 380 | 
            -
            print(f'User: {question} | 
|  | |
| 381 |  | 
| 382 | 
             
            # multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
         | 
| 383 | 
             
            pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
         | 
| @@ -385,17 +400,21 @@ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat1 | |
| 385 | 
             
            pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
         | 
| 386 | 
             
            num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
         | 
| 387 |  | 
| 388 | 
            -
            question = 'Image-1: <image | 
|  | |
|  | |
| 389 | 
             
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 390 | 
             
                                           num_patches_list=num_patches_list,
         | 
| 391 | 
             
                                           history=None, return_history=True)
         | 
| 392 | 
            -
            print(f'User: {question} | 
|  | |
| 393 |  | 
| 394 | 
             
            question = 'What are the similarities and differences between these two images.'
         | 
| 395 | 
             
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 396 | 
             
                                           num_patches_list=num_patches_list,
         | 
| 397 | 
             
                                           history=history, return_history=True)
         | 
| 398 | 
            -
            print(f'User: {question} | 
|  | |
| 399 |  | 
| 400 | 
             
            # batch inference, single image per sample (单图批处理)
         | 
| 401 | 
             
            pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
         | 
| @@ -403,13 +422,15 @@ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat1 | |
| 403 | 
             
            num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
         | 
| 404 | 
             
            pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
         | 
| 405 |  | 
| 406 | 
            -
            questions = ['<image | 
|  | |
| 407 | 
             
            responses = model.batch_chat(tokenizer, pixel_values,
         | 
| 408 | 
             
                                         num_patches_list=num_patches_list,
         | 
| 409 | 
             
                                         questions=questions,
         | 
| 410 | 
             
                                         generation_config=generation_config)
         | 
| 411 | 
             
            for question, response in zip(questions, responses):
         | 
| 412 | 
            -
                print(f'User: {question} | 
|  | |
| 413 |  | 
| 414 | 
             
            # video multi-round conversation (视频多轮对话)
         | 
| 415 | 
             
            def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
         | 
| @@ -447,17 +468,24 @@ def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=3 | |
| 447 | 
             
            video_path = './examples/red-panda.mp4'
         | 
| 448 | 
             
            pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
         | 
| 449 | 
             
            pixel_values = pixel_values.to(torch.bfloat16).cuda()
         | 
| 450 | 
            -
            video_prefix = ''.join([f'Frame{i+1}: <image | 
|  | |
| 451 | 
             
            question = video_prefix + 'What is the red panda doing?'
         | 
| 452 | 
            -
            # Frame1: <image | 
|  | |
|  | |
|  | |
|  | |
| 453 | 
             
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 454 | 
             
                                           num_patches_list=num_patches_list, history=None, return_history=True)
         | 
| 455 | 
            -
            print(f'User: {question} | 
|  | |
| 456 |  | 
| 457 | 
             
            question = 'Describe this video in detail.'
         | 
| 458 | 
             
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 459 | 
             
                                           num_patches_list=num_patches_list, history=history, return_history=True)
         | 
| 460 | 
            -
            print(f'User: {question} | 
|  | |
| 461 | 
             
            ```
         | 
| 462 |  | 
| 463 | 
             
            #### Streaming Output
         | 
| @@ -539,7 +567,9 @@ image_urls=[ | |
| 539 |  | 
| 540 | 
             
            images = [load_image(img_url) for img_url in image_urls]
         | 
| 541 | 
             
            # Numbering images improves multi-image conversations
         | 
| 542 | 
            -
            response = pipe((f'Image-1: {IMAGE_TOKEN} | 
|  | |
|  | |
| 543 | 
             
            print(response.text)
         | 
| 544 | 
             
            ```
         | 
| 545 |  | 
| @@ -659,3 +689,13 @@ If you find this project useful in your research, please consider citing: | |
| 659 | 
             
              year={2024}
         | 
| 660 | 
             
            }
         | 
| 661 | 
             
            ```
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
             
            ---
         | 
|  | |
|  | |
|  | |
| 2 | 
             
            base_model:
         | 
| 3 | 
            +
            - OpenGVLab/InternVL2_5-2B
         | 
|  | |
| 4 | 
             
            datasets:
         | 
| 5 | 
            +
            - OpenGVLab/MMPR-v1.1
         | 
| 6 | 
             
            language:
         | 
| 7 | 
            +
            - multilingual
         | 
| 8 | 
            +
            library_name: transformers
         | 
| 9 | 
            +
            license: mit
         | 
| 10 | 
            +
            pipeline_tag: image-text-to-text
         | 
| 11 | 
             
            tags:
         | 
| 12 | 
            +
            - internvl
         | 
| 13 | 
            +
            - custom_code
         | 
| 14 | 
            +
            - multimodal
         | 
| 15 | 
            +
            - vision-language-model
         | 
| 16 | 
            +
            base_model_relation: finetune
         | 
| 17 | 
             
            ---
         | 
| 18 |  | 
| 19 | 
             
            # InternVL2_5-2B-MPO
         | 
|  | |
| 26 | 
             
              <img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png">
         | 
| 27 | 
             
            </div>
         | 
| 28 |  | 
| 29 | 
            +
            ## Abstract
         | 
| 30 | 
            +
            We introduce InternVL 2.5, an advanced multimodal large language model (MLLM) series that builds upon InternVL 2.0, maintaining its core model architecture while introducing significant enhancements in training and testing strategies as well as data quality. In this work, we delve into the relationship between model scaling and performance, systematically exploring the performance trends in vision encoders, language models, dataset sizes, and test-time configurations. Through extensive evaluations on a wide range of benchmarks, including multi-discipline reasoning, document understanding, multi-image / video understanding, real-world comprehension, multimodal hallucination detection, visual grounding, multilingual capabilities, and pure language processing, InternVL 2.5 exhibits competitive performance, rivaling leading commercial models such as GPT-4o and Claude-3.5-Sonnet. Notably, our model is the first open-source MLLMs to surpass 70% on the MMMU benchmark, achieving a 3.7-point improvement through Chain-of-Thought (CoT) reasoning and showcasing strong potential for test-time scaling. We hope this model contributes to the open-source community by setting new standards for developing and applying multimodal AI systems. HuggingFace demo see this https URL
         | 
| 31 | 
            +
             | 
| 32 | 
             
            ## Introduction
         | 
| 33 |  | 
| 34 | 
             
            We introduce InternVL2.5-MPO, an advanced multimodal large language model (MLLM) series that demonstrates superior overall performance. This series builds upon InternVL2.5 and Mixed Preference Optimization.
         | 
|  | |
| 118 | 
             
            The loss function is defined as:
         | 
| 119 |  | 
| 120 | 
             
            $$
         | 
| 121 | 
            +
            \mathcal{L}_{\text{q}}=\mathcal{L}_{\text{q}}^+ + \mathcal{L}_{\text{q}}^-,\tag{3}
         | 
| 122 | 
             
            $$
         | 
| 123 |  | 
| 124 | 
             
            where \\(\mathcal{L}_{\text{q}}^{+}\\) and \\(\mathcal{L}_{\text{q}}^{+}\\) represent the loss for chosen and rejected responses, respectively.
         | 
| 125 | 
             
            Each response type's loss is calculated independently, requiring the model to differentiate the absolute quality of individual responses. The loss terms are given by:
         | 
| 126 |  | 
| 127 | 
             
            $$
         | 
| 128 | 
            +
            \mathcal{L}_{\text{q}}^+=-\log \sigma\left(\beta \log \frac{\pi_\theta\left(y_c \mid x\right)}{\pi_0\left(y_c \mid x\right)} - \delta\right),\tag{4}
         | 
| 129 | 
             
            $$
         | 
| 130 |  | 
| 131 | 
             
            $$
         | 
| 132 | 
            +
            \mathcal{L}_{\text{q}}^-=-\log \sigma\left(-\left(\beta \log \frac{\pi_\theta\left(y_r \mid x\right)}{\pi_0\left(y_r \mid x\right)} - \delta\right) \right),\tag{5}
         | 
| 133 | 
             
            $$
         | 
| 134 |  | 
| 135 | 
             
            where \\(\delta\\) represents the reward shift, calculated as the moving average of previous rewards to stabilize training.
         | 
|  | |
| 138 | 
             
            The loss function is defined as:
         | 
| 139 |  | 
| 140 | 
             
            $$
         | 
| 141 | 
            +
            \mathcal{L}_{\text{gen}}=-\frac{\log\pi_\theta\left(y_c \mid x\right)}{\left| y_c \right|}.\tag{6}
         | 
| 142 | 
             
            $$
         | 
| 143 |  | 
| 144 | 
             
            ## Evaluation on Multimodal Capability
         | 
|  | |
| 349 | 
             
            # pure-text conversation (纯文本对话)
         | 
| 350 | 
             
            question = 'Hello, who are you?'
         | 
| 351 | 
             
            response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
         | 
| 352 | 
            +
            print(f'User: {question}
         | 
| 353 | 
            +
            Assistant: {response}')
         | 
| 354 |  | 
| 355 | 
             
            question = 'Can you tell me a story?'
         | 
| 356 | 
             
            response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
         | 
| 357 | 
            +
            print(f'User: {question}
         | 
| 358 | 
            +
            Assistant: {response}')
         | 
| 359 |  | 
| 360 | 
             
            # single-image single-round conversation (单图单轮对话)
         | 
| 361 | 
            +
            question = '<image>
         | 
| 362 | 
            +
            Please describe the image shortly.'
         | 
| 363 | 
             
            response = model.chat(tokenizer, pixel_values, question, generation_config)
         | 
| 364 | 
            +
            print(f'User: {question}
         | 
| 365 | 
            +
            Assistant: {response}')
         | 
| 366 |  | 
| 367 | 
             
            # single-image multi-round conversation (单图多轮对话)
         | 
| 368 | 
            +
            question = '<image>
         | 
| 369 | 
            +
            Please describe the image in detail.'
         | 
| 370 | 
             
            response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
         | 
| 371 | 
            +
            print(f'User: {question}
         | 
| 372 | 
            +
            Assistant: {response}')
         | 
| 373 |  | 
| 374 | 
             
            question = 'Please write a poem according to the image.'
         | 
| 375 | 
             
            response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
         | 
| 376 | 
            +
            print(f'User: {question}
         | 
| 377 | 
            +
            Assistant: {response}')
         | 
| 378 |  | 
| 379 | 
             
            # multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
         | 
| 380 | 
             
            pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
         | 
| 381 | 
             
            pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
         | 
| 382 | 
             
            pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
         | 
| 383 |  | 
| 384 | 
            +
            question = '<image>
         | 
| 385 | 
            +
            Describe the two images in detail.'
         | 
| 386 | 
             
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 387 | 
             
                                           history=None, return_history=True)
         | 
| 388 | 
            +
            print(f'User: {question}
         | 
| 389 | 
            +
            Assistant: {response}')
         | 
| 390 |  | 
| 391 | 
             
            question = 'What are the similarities and differences between these two images.'
         | 
| 392 | 
             
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 393 | 
             
                                           history=history, return_history=True)
         | 
| 394 | 
            +
            print(f'User: {question}
         | 
| 395 | 
            +
            Assistant: {response}')
         | 
| 396 |  | 
| 397 | 
             
            # multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
         | 
| 398 | 
             
            pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
         | 
|  | |
| 400 | 
             
            pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
         | 
| 401 | 
             
            num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
         | 
| 402 |  | 
| 403 | 
            +
            question = 'Image-1: <image>
         | 
| 404 | 
            +
            Image-2: <image>
         | 
| 405 | 
            +
            Describe the two images in detail.'
         | 
| 406 | 
             
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 407 | 
             
                                           num_patches_list=num_patches_list,
         | 
| 408 | 
             
                                           history=None, return_history=True)
         | 
| 409 | 
            +
            print(f'User: {question}
         | 
| 410 | 
            +
            Assistant: {response}')
         | 
| 411 |  | 
| 412 | 
             
            question = 'What are the similarities and differences between these two images.'
         | 
| 413 | 
             
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 414 | 
             
                                           num_patches_list=num_patches_list,
         | 
| 415 | 
             
                                           history=history, return_history=True)
         | 
| 416 | 
            +
            print(f'User: {question}
         | 
| 417 | 
            +
            Assistant: {response}')
         | 
| 418 |  | 
| 419 | 
             
            # batch inference, single image per sample (单图批处理)
         | 
| 420 | 
             
            pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
         | 
|  | |
| 422 | 
             
            num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
         | 
| 423 | 
             
            pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
         | 
| 424 |  | 
| 425 | 
            +
            questions = ['<image>
         | 
| 426 | 
            +
            Describe the image in detail.'] * len(num_patches_list)
         | 
| 427 | 
             
            responses = model.batch_chat(tokenizer, pixel_values,
         | 
| 428 | 
             
                                         num_patches_list=num_patches_list,
         | 
| 429 | 
             
                                         questions=questions,
         | 
| 430 | 
             
                                         generation_config=generation_config)
         | 
| 431 | 
             
            for question, response in zip(questions, responses):
         | 
| 432 | 
            +
                print(f'User: {question}
         | 
| 433 | 
            +
            Assistant: {response}')
         | 
| 434 |  | 
| 435 | 
             
            # video multi-round conversation (视频多轮对话)
         | 
| 436 | 
             
            def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
         | 
|  | |
| 468 | 
             
            video_path = './examples/red-panda.mp4'
         | 
| 469 | 
             
            pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
         | 
| 470 | 
             
            pixel_values = pixel_values.to(torch.bfloat16).cuda()
         | 
| 471 | 
            +
            video_prefix = ''.join([f'Frame{i+1}: <image>
         | 
| 472 | 
            +
            ' for i in range(len(num_patches_list))])
         | 
| 473 | 
             
            question = video_prefix + 'What is the red panda doing?'
         | 
| 474 | 
            +
            # Frame1: <image>
         | 
| 475 | 
            +
            Frame2: <image>
         | 
| 476 | 
            +
            ...
         | 
| 477 | 
            +
            Frame8: <image>
         | 
| 478 | 
            +
            {question}
         | 
| 479 | 
             
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 480 | 
             
                                           num_patches_list=num_patches_list, history=None, return_history=True)
         | 
| 481 | 
            +
            print(f'User: {question}
         | 
| 482 | 
            +
            Assistant: {response}')
         | 
| 483 |  | 
| 484 | 
             
            question = 'Describe this video in detail.'
         | 
| 485 | 
             
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 486 | 
             
                                           num_patches_list=num_patches_list, history=history, return_history=True)
         | 
| 487 | 
            +
            print(f'User: {question}
         | 
| 488 | 
            +
            Assistant: {response}')
         | 
| 489 | 
             
            ```
         | 
| 490 |  | 
| 491 | 
             
            #### Streaming Output
         | 
|  | |
| 567 |  | 
| 568 | 
             
            images = [load_image(img_url) for img_url in image_urls]
         | 
| 569 | 
             
            # Numbering images improves multi-image conversations
         | 
| 570 | 
            +
            response = pipe((f'Image-1: {IMAGE_TOKEN}
         | 
| 571 | 
            +
            Image-2: {IMAGE_TOKEN}
         | 
| 572 | 
            +
            describe these two images', images))
         | 
| 573 | 
             
            print(response.text)
         | 
| 574 | 
             
            ```
         | 
| 575 |  | 
|  | |
| 689 | 
             
              year={2024}
         | 
| 690 | 
             
            }
         | 
| 691 | 
             
            ```
         | 
| 692 | 
            +
             | 
| 693 | 
            +
            ## Acknowledgement
         | 
| 694 | 
            +
             | 
| 695 | 
            +
            InternVL is built with reference to the code of the following projects: [OpenAI CLIP](https://github.com/openai/CLIP), [Open CLIP](https://github.com/mlfoundations/open_clip), [CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark), [EVA](https://github.com/baaivision/EVA/tree/master), [InternImage](https://github.com/OpenGVLab/InternImage), [ViT-Adapter](https://github.com/czczup/ViT-Adapter), [MMSegmentation](https://github.com/open-mmlab/mmsegmentation), [Transformers](https://github.com/huggingface/transformers), [DINOv2](https://github.com/facebookresearch/dinov2), [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2), [Qwen-VL](https://github.com/QwenLM/Qwen-VL/tree/master/eval_mm), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work!
         | 
| 696 | 
            +
             | 
| 697 | 
            +
            ______________________________________________________________________
         | 
| 698 | 
            +
             | 
| 699 | 
            +
            Scan the following QR Code, join our WeChat group.
         | 
| 700 | 
            +
             | 
| 701 | 
            +
            <p align="center"><img width="300" alt="image" src="https://github.com/user-attachments/assets/f776df09-ebba-4fd5-80c2-fec4ff1518be"></p>
         | 

