CuiLong7 commited on
Commit
c6de385
·
verified ·
1 Parent(s): 3b10553

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,831 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ pipeline_tag: image-text-to-text
4
+ library_name: transformers
5
+ base_model:
6
+ - OpenGVLab/InternVL3_5-30B-A3B
7
+ base_model_relation: finetune
8
+ datasets:
9
+ - OpenGVLab/MMPR-v1.2
10
+ - OpenGVLab/MMPR-Tiny
11
+ language:
12
+ - multilingual
13
+ tags:
14
+ - internvl
15
+ - custom_code
16
+ ---
17
+
18
+ # InternVL3_5-30B-A3B-Flash
19
+
20
+ [\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL) [\[📜 InternVL 1.0\]](https://huggingface.co/papers/2312.14238) [\[📜 InternVL 1.5\]](https://huggingface.co/papers/2404.16821) [\[📜 InternVL 2.5\]](https://huggingface.co/papers/2412.05271) [\[📜 InternVL2.5-MPO\]](https://huggingface.co/papers/2411.10442) [\[📜 InternVL3\]](https://huggingface.co/papers/2504.10479) [\[📜 InternVL3.5\]](https://huggingface.co/papers/2508.18265)
21
+
22
+ [\[🆕 Blog\]](https://internvl.github.io/blog/) [\[🗨️ Chat Demo\]](https://chat.intern-ai.org.cn/) [\[🚀 Quick Start\]](#quick-start) [\[📖 Documents\]](https://internvl.readthedocs.io/en/latest/)
23
+
24
+ <div align="center">
25
+ <img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png">
26
+ </div>
27
+
28
+ ## Introduction
29
+
30
+ We introduce *InternVL3.5*, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the *Cascade Reinforcement Learning (Cascade RL)* framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a *Visual Resolution Router (ViR)* that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled *Vision-Language Deployment (DvD)* strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0\% gain in overall reasoning performance and a 4.05 \\(\times\\) inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.
31
+
32
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance.jpg)
33
+
34
+ > Hatched bars represent closed-source commercial models. We report average scores on a set of multimodal general, reasoning, text, and agentic benchmarks: MMBench v1.1 (en), MMStar,BLINK, HallusionBench, AI2D, OCRBench, MMVet, MME-RealWorld (en), MVBench, VideoMME, MMMU, MathVista, MathVision, MathVerse, DynaMath, WeMath, LogicVista, MATH500, AIME24, AIME25, GPQA, MMLU-Pro, GAOKAO, IFEval, SGP-Bench, VSI-Bench, ERQA, SpaCE-10, and OmniSpatial.
35
+
36
+ See [quick start](#quick-start) for how to use our model.
37
+
38
+ ## InternVL3.5 Family
39
+
40
+ In the following table, we provide an overview of the InternVL3.5 series.
41
+ To maintain consistency with earlier generations, we provide two model formats: [the GitHub format](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B), consistent with prior releases, and [the HF format](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B-HF), aligned with the official Transformers standard.
42
+
43
+ > If you want to convert the checkpoint between these two formats, please refer to the scripts about [custom2hf](https://github.com/OpenGVLab/InternVL/blob/main/internvl_chat/tools/internvl_custom2hf.py) and [hf2custom](https://github.com/OpenGVLab/InternVL/blob/main/internvl_chat/tools/internvl_hf2custom.py).
44
+
45
+
46
+ ### Github Format
47
+
48
+
49
+ | Model | #Vision Param | #Language Param | #Total Param | HF Link | ModelScope Link |
50
+ | --------------------- | ------------- | --------------- | ------------ | ------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------- |
51
+ | InternVL3.5-1B | 0.3B | 0.8B | 1.1B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-1B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-1B) |
52
+ | InternVL3.5-2B | 0.3B | 2.0B | 2.3B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-2B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-2B) |
53
+ | InternVL3.5-4B | 0.3B | 4.4B | 4.7B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-4B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-4B) |
54
+ | InternVL3.5-8B | 0.3B | 8.2B | 8.5B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-8B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-8B) |
55
+ | InternVL3.5-14B | 0.3B | 14.8B | 15.1B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-14B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-14B) |
56
+ | InternVL3.5-38B | 5.5B | 32.8B | 38.4B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-38B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-38B) |
57
+ | InternVL3.5-20B-A4B | 0.3B | 20.9B | 21.2B-A4B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-GPT-OSS-20B-A4B-Preview) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-GPT-OSS-20B-A4B-Preview) |
58
+ | InternVL3.5-30B-A3B | 0.3B | 30.5B | 30.8B-A3B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-30B-A3B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-30B-A3B) |
59
+ | InternVL3.5-241B-A28B | 5.5B | 235.1B | 240.7B-A28B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-241B-A28B) |
60
+
61
+
62
+ ### HuggingFace Format
63
+
64
+
65
+ | Model | #Vision Param | #Language Param | #Total Param | HF Link | ModelScope Link |
66
+ | ------------------------ | ------------- | --------------- | ------------ | --------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------- |
67
+ | InternVL3.5-1B-HF | 0.3B | 0.8B | 1.1B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-1B-HF) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-1B-HF) |
68
+ | InternVL3.5-2B-HF | 0.3B | 2.0B | 2.3B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-2B-HF) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-2B-HF) |
69
+ | InternVL3.5-4B-HF | 0.3B | 4.4B | 4.7B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-4B-HF) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-4B-HF) |
70
+ | InternVL3.5-8B-HF | 0.3B | 8.2B | 8.5B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-8B-HF) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-8B-HF) |
71
+ | InternVL3.5-14B-HF | 0.3B | 14.8B | 15.1B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-14B-HF) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-14B-HF) |
72
+ | InternVL3.5-38B-HF | 5.5B | 32.8B | 38.4B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-38B-HF) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-38B-HF) |
73
+ | InternVL3.5-20B-A4B-HF | 0.3B | 20.9B | 21.2B-A4B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-GPT-OSS-20B-A4B-Preview-HF) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-GPT-OSS-20B-A4B-Preview-HF) |
74
+ | InternVL3.5-30B-A3B-HF | 0.3B | 30.5B | 30.8B-A3B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-30B-A3B-HF) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-30B-A3B-HF) |
75
+ | InternVL3.5-241B-A28B-HF | 5.5B | 235.1B | 240.7B-A28B | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B-HF) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-241B-A28B-HF) |
76
+
77
+
78
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_overall.jpg)
79
+
80
+ > We conduct the evaluation with [VLMEvalkit](https://github.com/open-compass/VLMEvalKit). ***To enable the Thinking mode of our model, please set the system prompt to [R1_SYSTEM_PROMPT](https://github.com/open-compass/VLMEvalKit/blob/main/vlmeval/vlm/internvl/internvl_chat.py#L38).*** When enabling Thinking mode, we recommend setting `do_sample=True` and `temperature=0.6` to mitigate undesired repetition.
81
+
82
+ Our training pipeline comprises four stages: Multimodal Continual Pre-Training (**CPT**), Supervised Fine-Tuning (**SFT**), and Cascade Reinforcement Learning (**CascadeRL**). In CascadeRL, we first fine-tune the model using Mixed Preference Optimization (**MPO**) under an offline RL setting, followed by **GSPO** under an oneline RL setting.
83
+ For the Flash version of InternVL3.5, we additionally introduce a lightweight training stage, termed Visual Consistency Learning (**ViCO**), which reduces the token cost required to represent an image patch.
84
+
85
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/training_pipeline.jpg)
86
+
87
+ Here, we also open-source the model weights after different training stages for potential research usage.
88
+ ***If you're unsure which version to use, please select the one without any suffix, as it has completed the full training pipeline.***
89
+
90
+
91
+ | Model | Training Pipeline | HF Link | ModelScope Link |
92
+ | -------------------------------- | --------------------- | --------------------------------------------------------------------------- | ------------------------------------------------------------------------------------- |
93
+ | InternVL3.5-1B-Pretrained | CPT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-1B-Pretrained) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-1B-Pretrained) |
94
+ | InternVL3.5-1B-Instruct | CPT + SFT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-1B-Instruct) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-1B-Instruct) |
95
+ | InternVL3.5-1B-MPO | CPT + SFT + MPO | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-1B-MPO) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-1B-MPO) |
96
+ | InternVL3.5-1B | CPT + SFT + CascadeRL | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-1B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-1B) |
97
+ | InternVL3.5-2B-Pretrained | CPT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-2B-Pretrained) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-2B-Pretrained) |
98
+ | InternVL3.5-2B-Instruct | CPT + SFT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-2B-Instruct) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-2B-Instruct) |
99
+ | InternVL3.5-2B-MPO | CPT + SFT + MPO | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-2B-MPO) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-2B-MPO) |
100
+ | InternVL3.5-2B | CPT + SFT + CascadeRL | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-2B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-2B) |
101
+ | InternVL3.5-4B-Pretrained | CPT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-4B-Pretrained) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-4B-Pretrained) |
102
+ | InternVL3.5-4B-Instruct | CPT + SFT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-4B-Instruct) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-4B-Instruct) |
103
+ | InternVL3.5-4B-MPO | CPT + SFT + MPO | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-4B-MPO) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-4B-MPO) |
104
+ | InternVL3.5-4B | CPT + SFT + CascadeRL | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-4B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-4B) |
105
+ | InternVL3.5-8B-Pretrained | CPT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-8B-Pretrained) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-8B-Pretrained) |
106
+ | InternVL3.5-8B-Instruct | CPT + SFT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-8B-Instruct) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-8B-Instruct) |
107
+ | InternVL3.5-8B-MPO | CPT + SFT + MPO | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-8B-MPO) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-8B-MPO) |
108
+ | InternVL3.5-8B | CPT + SFT + CascadeRL | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-8B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-8B) |
109
+ | InternVL3.5-14B-Pretrained | CPT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-14B-Pretrained) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-14B-Pretrained) |
110
+ | InternVL3.5-14B-Instruct | CPT + SFT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-14B-Instruct) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-14B-Instruct) |
111
+ | InternVL3.5-14B-MPO | CPT + SFT + MPO | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-14B-MPO) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-14B-MPO) |
112
+ | InternVL3.5-14B | CPT + SFT + CascadeRL | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-14B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-14B) |
113
+ | InternVL3.5-30B-A3B-Pretrained | CPT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-30B-A3B-Pretrained) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-30B-A3B-Pretrained) |
114
+ | InternVL3.5-30B-A3B-Instruct | CPT + SFT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-30B-A3B-Instruct) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-30B-A3B-Instruct) |
115
+ | InternVL3.5-30B-A3B-MPO | CPT + SFT + MPO | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-30B-A3B-MPO) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-30B-A3B-MPO) |
116
+ | InternVL3.5-30B-A3B | CPT + SFT + CascadeRL | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-30B-A3B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-30B-A3B) |
117
+ | InternVL3.5-38B-Pretrained | CPT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-38B-Pretrained) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-38B-Pretrained) |
118
+ | InternVL3.5-38B-Instruct | CPT + SFT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-38B-Instruct) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-38B-Instruct) |
119
+ | InternVL3.5-38B-MPO | CPT + SFT + MPO | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-38B-MPO) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-38B-MPO) |
120
+ | InternVL3.5-38B | CPT + SFT + CascadeRL | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-38B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-38B) |
121
+ | InternVL3.5-241B-A28B-Pretrained | CPT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B-Pretrained) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-241B-A28B-Pretrained) |
122
+ | InternVL3.5-241B-A28B-Instruct | CPT + SFT | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B-Instruct) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-241B-A28B-Instruct) |
123
+ | InternVL3.5-241B-A28B-MPO | CPT + SFT + MPO | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B-MPO) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-241B-A28B-MPO) |
124
+ | InternVL3.5-241B-A28B | CPT + SFT + CascadeRL | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-241B-A28B) |
125
+
126
+
127
+ The Flash version of our model will be released as soon as possible.
128
+
129
+
130
+
131
+ ## Model Architecture
132
+
133
+ `InternVL3.5`:
134
+ This series of models follow the "ViT–MLP–LLM" paradigm adopted in previous versions of InternVL.
135
+ We initialize the language model using the Qwen3 series and GPT-OSS, and the vision encoder using InternViT-300M and InternViT-6B.
136
+ The Dynamic High Resolution strategy introduced in InternVL1.5 is also retained in our design.
137
+
138
+
139
+ `InternVL3.5-Flash`:
140
+ Compared to InternVL3.5, InternVL3.5-Flash further integrates the *Visual Resolution Router (ViR)*, thus yielding a series of efficient variants friendly suitable for resource-constrained scenarios.
141
+ Specifically, in InternVL3.5, each image patch is initially represented as 1024 visual tokens for the vision encoder, which are then compressed into 256 tokens via a pixel shuffle module before being passed to the Large Language Model (LLM).
142
+ In InternVL3.5-Flash, as shown in the Figure below, an additional pixel shuffle module with a higher compression rate is included, enabling the compression of visual tokens down to 64 tokens.
143
+ For each patch, the patch router determines the appropriate compression rate by assessing its semantic richness, and routes it to the corresponding pixel shuffle module accordingly.
144
+ Benefiting from this patch-aware compression mechanism, InternVL3.5-Flash is able to reduce the number of visual tokens by 50\% while maintaining nearly 100\% of the performance of InternVL3.5.
145
+
146
+
147
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/architecture.jpg)
148
+
149
+ ## Training and Deployment Strategy
150
+
151
+ ### Pre-Training
152
+
153
+ During the pre-training stage, we update all model parameters jointly using the combination of large-scale text and multimodal corpora. Specifically, given an arbitrary training sample consisting of a multimodal token sequence \\(\mathbf{x}=\left(x_1, x_2, \ldots, x_L\right)\\), the next token prediction (NTP) loss is calculated on each text token as follows:
154
+
155
+ $$
156
+ \mathcal{L}_{i}=-\log p_\theta\left(x_i \mid x_1, \ldots, x_{i-1}\right),
157
+ $$
158
+
159
+ where \\(x_i\\) is the predicted token and prefix tokens in \\(\{x_1, x_2, \ldots, x_{i-1}\}\\) can be either text tokens or image tokens. Notably, for conversation samples, only response tokens are included for the calculation of the loss.
160
+ Additionally, to mitigate bias toward either longer or shorter responses during training, we adopt the square averaging to re-weight the NTP loss as follows:
161
+
162
+ $$
163
+ \mathcal{L}_{i}^{'} = \frac{w_i}{\sum_j w_j} \cdot \mathcal{L}_i, \quad w_i = \frac{1}{N^{0.5}},
164
+ $$
165
+
166
+ where \\(N\\) denotes the number of tokens in the training sample on which the loss needs to be calculated. The random JPEG compression is also included to enhance the model's real-world performance.
167
+
168
+ ### Supervised Fine-Tuning
169
+
170
+ During the SFT phase, we adopt the same objective as in the pre-training stage and use the square-root averaging strategy to calculate the final loss. In this stage, the context window is set to 32K tokens to adapt long-context information.
171
+ Compared to InternVL3, the SFT stage of InternVL3.5 contains more high-quality and diverse training data derived from three sources:
172
+
173
+ (1) Instruction-following data from InternVL3, which are reused to preserve broad coverage of vision–language tasks.
174
+
175
+ (2) Multimodal reasoning data in the "Thinking" mode, which are included to instill long-thinking capabilities in the model. To construct such data, we first use InternVL3-78B to describe the image and then input the description into DeepSeek-R1 to sample rollouts with detailed reasoning processes. Rollouts with an incorrect final answer are filtered out. The questions in these datasets cover various expert domains, such as mathematics and scientific disciplines, thereby strengthening performance on different reasoning tasks.
176
+
177
+ (3) Capability-expansion datasets, which endow InternVL3.5 with new skills, including GUI-based interaction, embodied interaction, and scalable vect
178
+
179
+ ### Cascade Reinforcement Learning
180
+
181
+ Cascade RL aims to combine the benefits of offline RL and online RL to progressively facilitate the post-training of MLLMs in an efficient manner.
182
+ Specifically, we first fine-tune the model using an offline RL algorithm as an efficient warm-up stage to reach a satisfied results, which can guarantee the high-quality rollouts for the latter stage.
183
+ Subsequently, we employ an online RL algorithm to further refine the output distribution based on rollouts generated by the model itself. Compared to the single offline or online RL stage, our cascaded RL achieves significant performance improvements at a fraction of the GPU time cost.
184
+
185
+
186
+
187
+ During the offline RL stage, we employ mixed preference optimization (MPO) to fine-tune the model. Specifically, the training objective of MPO is a combination of preference loss \\(\mathcal{L}_{p}\\), quality loss \\(\mathcal{L}_{q}\\), and generation loss \\(\mathcal{L}_{g}\\), which can be formulated as follows:
188
+
189
+ $$
190
+ \mathcal{L}_{\text{MPO}}=
191
+ w_{p} \mathcal{L}_{p}
192
+ +
193
+ w_{q} \mathcal{L}_{q}
194
+ +
195
+ w_{g} \mathcal{L}_{g}
196
+ ,
197
+ $$
198
+
199
+ where \\(w_{*}\\) represents the weight assigned to each loss component.
200
+ The DPO loss, BCO loss, and LM loss serve as the preference loss, quality loss, and generation loss, respectively.
201
+
202
+
203
+ During the online RL stage, we employ GSPO, without reference model constraints, as our online RL algorithm, which we find more effective in training both dense and mixture-of-experts (MoE) models. Similar to GRPO, the advantage is defined as the normalized reward across responses sampled from the same query.
204
+ The training objective of GSPO is given by:
205
+
206
+ $$
207
+ \mathcal{L}_{\mathrm{GSPO}}(\theta)=\mathbb{E}_{x \sim \mathcal{D},\left\{y_i\right\}_{i=1}^G \sim \pi_{\theta \text { old }}(\cdot \mid x)}\left[\frac{1}{G} \sum_{i=1}^G \min \left(s_i(\theta) \widehat{A}_i, \operatorname{clip}\left(s_i(\theta), 1-\varepsilon, 1+\varepsilon\right) \widehat{A}_i\right)\right],
208
+ $$
209
+
210
+ where the importance sampling ratio is defined as the geometric mean of the per-token ratios.
211
+
212
+ > Please see [our paper](https://huggingface.co/papers/2508.18265) for more technical and experimental details.
213
+
214
+
215
+ ### Visual Consistency Learning
216
+
217
+
218
+ We further include ViCO as an additional training stage to integrate the *visual resolution router (ViR)* into InternVL3.5, thereby reducing the inference cost of InternVL3.5. The obtained efficient version of InternVL3.5 are termed as *InternVL3.5-Flash*. In particular, ViCO comprises two stages:
219
+
220
+ `Consistency training`:
221
+ In this stage, the entire model is trained to minimize the divergence between response distributions conditioned on visual tokens with different compression rates.
222
+ In practice, we introduce an extra reference model, which is frozen and initialized with InternVL3.5.
223
+ Given a sample, each image patch is represented as either 256 or 64 tokens, and the training objective is defined as follows:
224
+
225
+
226
+ $$
227
+ \mathcal{L}_\text{ViCO} =
228
+ \mathbb{E}_{\xi \sim \mathcal{R}} \Bigg[
229
+ \frac{1}{N} \sum_{i=1}^{N} \mathrm{KL} \Big(
230
+ \pi_{\theta_{ref}}\left(y_i \mid y_{<i}, I\right) \;\Big\|\;
231
+ \pi_{\theta_{policy}}\left(y_i \mid y_{<i}, I_\xi\right)
232
+ \Big)
233
+ \Bigg],
234
+ $$
235
+
236
+ where \\(\mathrm{KL}\) denotes the KL divergence and \(\xi\) denotes the compression rate, which is uniformly sampled from \(\{\frac{1}{4},\frac{1}{16}\}\). The image \(I_\xi\) is represented as 256 tokens when \(\xi=\frac{1}{4}\) and 64 tokens when \(\xi=\frac{1}{16}\). Notably, the reference model always performs inference with \(\xi=\frac{1}{4}\).
237
+
238
+
239
+ `Router training`:
240
+ This stage aims to train the ViR to select an appropriate trade-off resolution for different inputs.
241
+ ViR is formulated as a binary classifier and trained using standard cross-entropy loss.
242
+ To construct the route targets, we first compute the KL divergence between the model outputs conditioned on uncompressed visual tokens (i.e., 256 tokens per patch) and those conditioned on compressed visual tokens (i.e., 64 tokens per patch).
243
+ During this stage, the main MLLM (ViT, MLP and LLM) is kept frozen, and only the ViR is trained.
244
+ Specifically, we first compute the loss ratio for each patch:
245
+
246
+ $$
247
+ r_i = \frac{\mathcal{L}_\text{ViCO}\big(y_i \mid I_{\frac{1}{16}}\big)}{\mathcal{L}_\text{ViCO}\big(y_i \mid I_{\frac{1}{4}}\big)},
248
+ $$
249
+
250
+ which quantifies the relative increase in loss caused by compressing the visual tokens. Based on this ratio, the binary ground-truth label for the patch router is defined as:
251
+
252
+ $$
253
+ y_i^\text{router} =
254
+ \begin{cases}
255
+ 0, & r_i < \tau \; \text{(compression has negligible impact)} \\
256
+ 1, & r_i \ge \tau \; \text{(compression has significant impact)},
257
+ \end{cases}
258
+ $$
259
+
260
+ where \(y_i^{\text{router}}=0\) and \(y_i^{\text{router}}=1\) indicate that the compression rate \(\xi\) is set to \(\tfrac{1}{16}\) and \(\tfrac{1}{4}\), respectively.
261
+
262
+ > Please see [our paper](https://huggingface.co/papers/2508.18265) for more technical and experimental details.
263
+
264
+
265
+ ### Test-Time Scaling
266
+
267
+
268
+ Test-time scaling (TTS) has been empirically demonstrated as an effective approach to enhance the reasoning capabilities of LLMs and MLLMs, particularly for complex tasks necessitating multi-step inference.
269
+ In this work, we implement a comprehensive test-time scaling approach that simultaneously improves reasoning depth (i.e., deep thinking) and breadth (i.e., parallel thinking).
270
+
271
+ `Deep Thinking`: By activating the Thinking mode, we guide the model to deliberately engage in step-by-step reasoning (i.e., decomposing complex problems into logical steps and validating intermediate conclusions) prior to generating the final answer. This approach systematically improves the logical structure of solutions for complex problems, particularly those requiring multi-step inference, and enhances reasoning depth.
272
+
273
+ `Parallel Thinking`: Following InternVL3, for reasoning tasks, we adopt the Best-of-N (BoN) strategy by employing [VisualPRM-v1.1](https://huggingface.co/OpenGVLab/VisualPRM-8B-v1_1) as the critic model to select the optimal response from multiple reasoning candidates.
274
+ This approach improves reasoning breadth.
275
+
276
+ > Notably, unless otherwise specified, the experimental results reported in our paper are obtained without applying TTS. Thus far, we have only applied TTS to reasoning benchmarks, since we found that the model already exhibits strong perception and understanding capabilities, and initiating TTS yields no significant improvement.
277
+
278
+
279
+ ### Decoupled Vision-Language Deployment
280
+
281
+ In multimodal inference, the vision encoder and language model have distinct computational characteristics. The vision encoder that transforms images into semantic features is highly parallelizable and does not rely on long-term history state. In contrast, the language model adopts the inference in an autoregressive manner, which requires previous states to compute the next one. This sequential property makes the language part more sensitive to memory bandwidth and latency.
282
+ When MLLMs are deployed online at scale, the vision and language models often block each other, thus incurring additional inference cost. This effect becomes more pronounced with larger vision models or higher-resolution images.
283
+
284
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/DvD.jpg)
285
+
286
+ As shown in the Figure above, we propose decoupled vision-language deployment (DvD) to address this issue by separating vision and language processing, with a particular focus on optimizing the prefilling stage. The vision subsystem batches and processes images to produce compact feature embeddings, which are then transmitted to the language subsystem for fusion with the text context prior to decoding. This separation alleviates blocking and brings multimodal prefilling performance closer to that of pure language models.
287
+ In our system implementation, the ViT and MLP (and ViR for InternVL3.5-Flash) are deployed on the vision server, while the language server executes only the LLM. The communication is unidirectional, transmitting BF16 visual features over TCP, with RDMA optionally employed to achieve higher transmission speed. Vision processing, feature transmission, and language processing are organized into an asynchronous three-stage pipeline, enabling overlapped execution and minimizing pipeline stalls.
288
+
289
+
290
+ DvD increases GPU utilization and processing efficiency on the vision side, while enabling the language server to focus exclusively on the LLM’s prefilling and decoding without being blocked by vision computation. This design leads to improved throughput and responsiveness. Moreover, the architecture supports independent hardware cost optimization for the vision and language modules, and facilitates the seamless integration of new modules without requiring modifications to the language server deployment.
291
+
292
+
293
+ ## Evaluation on Multimodal Capability
294
+
295
+ ### Multimodal Reasoning and Mathematics
296
+
297
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_reasoning.jpg)
298
+
299
+ ### OCR, Chart, and Document Understanding
300
+
301
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_ocr.jpg)
302
+
303
+ ### Multi-Image Understanding & Real-World Comprehension
304
+
305
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_multi_images.jpg)
306
+
307
+ ### Comprehensive Multimodal Understanding & Multimodal Hallucination Evaluation
308
+
309
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_comprehensive.jpg)
310
+
311
+ ### Visual Grounding
312
+
313
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_grounding.jpg)
314
+
315
+ ### Multimodal Multilingual Understanding
316
+
317
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_multilingual.jpg)
318
+
319
+ ### Video Understanding
320
+
321
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_video.jpg)
322
+
323
+ ### GUI Tasks
324
+
325
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_gui.jpg)
326
+
327
+ ### Embodied Tasks
328
+
329
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_embody.jpg)
330
+
331
+ ### SVG Tasks
332
+
333
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_svg.jpg)
334
+
335
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_svg_gen.jpg)
336
+
337
+ ## Evaluation on Language Capability
338
+
339
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_text.jpg)
340
+
341
+ ## Ablation Study
342
+
343
+ ### Cascade Reinforcement Learning
344
+
345
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/ablation_cascade_rl.jpg)
346
+
347
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/ablation_cascade_rl_table.jpg)
348
+
349
+ ### Decoupled Vision-Language Deployment
350
+
351
+
352
+ ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/ablation_dvd.jpg)
353
+
354
+ ## Quick Start
355
+
356
+ We provide an example code to run `InternVL3.5-8B` using `transformers`. Please note that our models with up to 30B parameters can be deployed on a single A100 GPU, while the 38B model requires two A100 GPUs and the 235B model requires eight A100 GPUs.
357
+
358
+ > In most cases, both [LMDeploy](https://github.com/InternLM/lmdeploy) and [vLLM](https://github.com/vllm-project/vllm) can be used for model deployment. However, for InternVL3.5-20B-A4B, we recommend using vLLM since lmdeploy has not yet supported GPT-OSS.
359
+
360
+ > Please use transformers>=4.52.1 to ensure the model works normally. For the 20B version of our model, transformers>=4.55.0 is required.
361
+
362
+ ### Model Loading
363
+
364
+ #### 16-bit (bf16 / fp16)
365
+
366
+ ```python
367
+ import torch
368
+ from transformers import AutoTokenizer, AutoModel
369
+ path = "OpenGVLab/InternVL3_5-8B"
370
+ model = AutoModel.from_pretrained(
371
+ path,
372
+ torch_dtype=torch.bfloat16,
373
+ low_cpu_mem_usage=True,
374
+ use_flash_attn=True,
375
+ trust_remote_code=True).eval().cuda()
376
+ ```
377
+
378
+ #### BNB 8-bit Quantization
379
+
380
+ ```python
381
+ import torch
382
+ from transformers import AutoTokenizer, AutoModel
383
+ path = "OpenGVLab/InternVL3_5-8B"
384
+ model = AutoModel.from_pretrained(
385
+ path,
386
+ torch_dtype=torch.bfloat16,
387
+ load_in_8bit=True,
388
+ low_cpu_mem_usage=True,
389
+ use_flash_attn=True,
390
+ trust_remote_code=True).eval()
391
+ ```
392
+
393
+ #### Multiple GPUs
394
+
395
+ ```python
396
+ import math
397
+ import torch
398
+ from transformers import AutoTokenizer, AutoModel
399
+
400
+ path = "OpenGVLab/InternVL3_5-8B"
401
+ model = AutoModel.from_pretrained(
402
+ path,
403
+ torch_dtype=torch.bfloat16,
404
+ low_cpu_mem_usage=True,
405
+ use_flash_attn=True,
406
+ trust_remote_code=True,
407
+ device_map="auto").eval()
408
+ ```
409
+
410
+ ### Thinking Mode
411
+
412
+ To enable thinking mode, please set the system prompt to our Thinking System Prompt. When enabling Thinking mode, we recommend setting `do_sample=True` and `temperature=0.6` to mitigate undesired repetition.
413
+
414
+ ```python
415
+ R1_SYSTEM_PROMPT = """
416
+ You are an AI assistant that rigorously follows this response protocol:
417
+
418
+ 1. First, conduct a detailed analysis of the question. Consider different angles, potential solutions, and reason through the problem step-by-step. Enclose this entire thinking process within <think> and </think> tags.
419
+
420
+ 2. After the thinking section, provide a clear, concise, and direct answer to the user's question. Separate the answer from the think section with a newline.
421
+
422
+ Ensure that the thinking process is thorough but remains focused on the query. The final answer should be standalone and not reference the thinking section.
423
+ """.strip()
424
+
425
+ model.system_message = R1_SYSTEMP_PROMPT
426
+ ```
427
+
428
+ ### Inference with Transformers
429
+
430
+ ```python
431
+ import math
432
+ import numpy as np
433
+ import torch
434
+ import torchvision.transforms as T
435
+ from decord import VideoReader, cpu
436
+ from PIL import Image
437
+ from torchvision.transforms.functional import InterpolationMode
438
+ from transformers import AutoModel, AutoTokenizer
439
+
440
+ IMAGENET_MEAN = (0.485, 0.456, 0.406)
441
+ IMAGENET_STD = (0.229, 0.224, 0.225)
442
+
443
+ def build_transform(input_size):
444
+ MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
445
+ transform = T.Compose([
446
+ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
447
+ T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
448
+ T.ToTensor(),
449
+ T.Normalize(mean=MEAN, std=STD)
450
+ ])
451
+ return transform
452
+
453
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
454
+ best_ratio_diff = float('inf')
455
+ best_ratio = (1, 1)
456
+ area = width * height
457
+ for ratio in target_ratios:
458
+ target_aspect_ratio = ratio[0] / ratio[1]
459
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
460
+ if ratio_diff < best_ratio_diff:
461
+ best_ratio_diff = ratio_diff
462
+ best_ratio = ratio
463
+ elif ratio_diff == best_ratio_diff:
464
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
465
+ best_ratio = ratio
466
+ return best_ratio
467
+
468
+ def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
469
+ orig_width, orig_height = image.size
470
+ aspect_ratio = orig_width / orig_height
471
+
472
+ # calculate the existing image aspect ratio
473
+ target_ratios = set(
474
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
475
+ i * j <= max_num and i * j >= min_num)
476
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
477
+
478
+ # find the closest aspect ratio to the target
479
+ target_aspect_ratio = find_closest_aspect_ratio(
480
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
481
+
482
+ # calculate the target width and height
483
+ target_width = image_size * target_aspect_ratio[0]
484
+ target_height = image_size * target_aspect_ratio[1]
485
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
486
+
487
+ # resize the image
488
+ resized_img = image.resize((target_width, target_height))
489
+ processed_images = []
490
+ for i in range(blocks):
491
+ box = (
492
+ (i % (target_width // image_size)) * image_size,
493
+ (i // (target_width // image_size)) * image_size,
494
+ ((i % (target_width // image_size)) + 1) * image_size,
495
+ ((i // (target_width // image_size)) + 1) * image_size
496
+ )
497
+ # split the image
498
+ split_img = resized_img.crop(box)
499
+ processed_images.append(split_img)
500
+ assert len(processed_images) == blocks
501
+ if use_thumbnail and len(processed_images) != 1:
502
+ thumbnail_img = image.resize((image_size, image_size))
503
+ processed_images.append(thumbnail_img)
504
+ return processed_images
505
+
506
+ def load_image(image_file, input_size=448, max_num=12):
507
+ image = Image.open(image_file).convert('RGB')
508
+ transform = build_transform(input_size=input_size)
509
+ images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
510
+ pixel_values = [transform(image) for image in images]
511
+ pixel_values = torch.stack(pixel_values)
512
+ return pixel_values
513
+
514
+ path = 'OpenGVLab/InternVL3_5-8B'
515
+ model = AutoModel.from_pretrained(
516
+ path,
517
+ torch_dtype=torch.bfloat16,
518
+ load_in_8bit=False,
519
+ low_cpu_mem_usage=True,
520
+ use_flash_attn=True,
521
+ trust_remote_code=True,
522
+ device_map="auto").eval()
523
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
524
+
525
+ # set the max number of tiles in `max_num`
526
+ pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
527
+ generation_config = dict(max_new_tokens=1024, do_sample=True)
528
+
529
+ # pure-text conversation (纯文本对话)
530
+ question = 'Hello, who are you?'
531
+ response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
532
+ print(f'User: {question}\nAssistant: {response}')
533
+
534
+ question = 'Can you tell me a story?'
535
+ response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
536
+ print(f'User: {question}\nAssistant: {response}')
537
+
538
+ # single-image single-round conversation (单图单轮对话)
539
+ question = '<image>\nPlease describe the image shortly.'
540
+ response = model.chat(tokenizer, pixel_values, question, generation_config)
541
+ print(f'User: {question}\nAssistant: {response}')
542
+
543
+ # single-image multi-round conversation (单图多轮对话)
544
+ question = '<image>\nPlease describe the image in detail.'
545
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
546
+ print(f'User: {question}\nAssistant: {response}')
547
+
548
+ question = 'Please write a poem according to the image.'
549
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
550
+ print(f'User: {question}\nAssistant: {response}')
551
+
552
+ # multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
553
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
554
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
555
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
556
+
557
+ question = '<image>\nDescribe the two images in detail.'
558
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
559
+ history=None, return_history=True)
560
+ print(f'User: {question}\nAssistant: {response}')
561
+
562
+ question = 'What are the similarities and differences between these two images.'
563
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
564
+ history=history, return_history=True)
565
+ print(f'User: {question}\nAssistant: {response}')
566
+
567
+ # multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
568
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
569
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
570
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
571
+ num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
572
+
573
+ question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
574
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
575
+ num_patches_list=num_patches_list,
576
+ history=None, return_history=True)
577
+ print(f'User: {question}\nAssistant: {response}')
578
+
579
+ question = 'What are the similarities and differences between these two images.'
580
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
581
+ num_patches_list=num_patches_list,
582
+ history=history, return_history=True)
583
+ print(f'User: {question}\nAssistant: {response}')
584
+
585
+ # batch inference, single image per sample (单图批处理)
586
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
587
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
588
+ num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
589
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
590
+
591
+ questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
592
+ responses = model.batch_chat(tokenizer, pixel_values,
593
+ num_patches_list=num_patches_list,
594
+ questions=questions,
595
+ generation_config=generation_config)
596
+ for question, response in zip(questions, responses):
597
+ print(f'User: {question}\nAssistant: {response}')
598
+
599
+ # video multi-round conversation (视频多轮对话)
600
+ def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
601
+ if bound:
602
+ start, end = bound[0], bound[1]
603
+ else:
604
+ start, end = -100000, 100000
605
+ start_idx = max(first_idx, round(start * fps))
606
+ end_idx = min(round(end * fps), max_frame)
607
+ seg_size = float(end_idx - start_idx) / num_segments
608
+ frame_indices = np.array([
609
+ int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
610
+ for idx in range(num_segments)
611
+ ])
612
+ return frame_indices
613
+
614
+ def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
615
+ vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
616
+ max_frame = len(vr) - 1
617
+ fps = float(vr.get_avg_fps())
618
+
619
+ pixel_values_list, num_patches_list = [], []
620
+ transform = build_transform(input_size=input_size)
621
+ frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
622
+ for frame_index in frame_indices:
623
+ img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
624
+ img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
625
+ pixel_values = [transform(tile) for tile in img]
626
+ pixel_values = torch.stack(pixel_values)
627
+ num_patches_list.append(pixel_values.shape[0])
628
+ pixel_values_list.append(pixel_values)
629
+ pixel_values = torch.cat(pixel_values_list)
630
+ return pixel_values, num_patches_list
631
+
632
+ video_path = './examples/red-panda.mp4'
633
+ pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
634
+ pixel_values = pixel_values.to(torch.bfloat16).cuda()
635
+ video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
636
+ question = video_prefix + 'What is the red panda doing?'
637
+ # Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
638
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
639
+ num_patches_list=num_patches_list, history=None, return_history=True)
640
+ print(f'User: {question}\nAssistant: {response}')
641
+
642
+ question = 'Describe this video in detail.'
643
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
644
+ num_patches_list=num_patches_list, history=history, return_history=True)
645
+ print(f'User: {question}\nAssistant: {response}')
646
+ ```
647
+
648
+ #### Streaming Output
649
+
650
+ Besides this method, you can also use the following code to get streamed output.
651
+
652
+ ```python
653
+ from transformers import TextIteratorStreamer
654
+ from threading import Thread
655
+
656
+ # Initialize the streamer
657
+ streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
658
+ # Define the generation configuration
659
+ generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer)
660
+ # Start the model chat in a separate thread
661
+ thread = Thread(target=model.chat, kwargs=dict(
662
+ tokenizer=tokenizer, pixel_values=pixel_values, question=question,
663
+ history=None, return_history=False, generation_config=generation_config,
664
+ ))
665
+ thread.start()
666
+
667
+ # Initialize an empty string to store the generated text
668
+ generated_text = ''
669
+ # Loop through the streamer to get the new text as it is generated
670
+ for new_text in streamer:
671
+ if new_text == model.conv_template.sep:
672
+ break
673
+ generated_text += new_text
674
+ print(new_text, end='', flush=True) # Print each new chunk of generated text on the same line
675
+ ```
676
+
677
+ ## Finetune
678
+
679
+ Many repositories now support fine-tuning of the InternVL series models, including [InternVL](https://github.com/OpenGVLab/InternVL), [SWIFT](https://github.com/modelscope/ms-swift), [XTuner](https://github.com/InternLM/xtuner), and others. Please refer to their documentation for more details on fine-tuning.
680
+
681
+ ## Deployment
682
+
683
+ ### LMDeploy
684
+
685
+ LMDeploy is a toolkit for compressing, deploying, and serving LLMs & VLMs.
686
+
687
+ ```sh
688
+ pip install lmdeploy>=0.9.1
689
+ ```
690
+
691
+ LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.
692
+
693
+ #### A 'Hello, world' Example
694
+
695
+ ```python
696
+ from lmdeploy import pipeline, PytorchEngineConfig
697
+ from lmdeploy.vl import load_image
698
+
699
+ image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
700
+
701
+ # Please set tp=2 for the 38B version and tp=8 for the 241B-A28B version.
702
+ model = 'OpenGVLab/InternVL3_5-8B'
703
+ pipe = pipeline(model, backend_config=PytorchEngineConfig(session_len=32768, tp=1))
704
+
705
+ response = pipe(('describe this image', image))
706
+ print(response.text)
707
+ ```
708
+
709
+ #### Multi-images Inference
710
+
711
+ When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.
712
+
713
+ ```python
714
+ from lmdeploy import pipeline, PytorchEngineConfig
715
+ from lmdeploy.vl import load_image
716
+ from lmdeploy.vl.constants import IMAGE_TOKEN
717
+
718
+ # Please set tp=2 for the 38B version and tp=8 for the 241B-A28B version.
719
+ model = 'OpenGVLab/InternVL3_5-8B'
720
+ pipe = pipeline(model, backend_config=PytorchEngineConfig(session_len=32768, tp=1))
721
+
722
+ image_urls=[
723
+ 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
724
+ 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg'
725
+ ]
726
+
727
+ images = [load_image(img_url) for img_url in image_urls]
728
+ # Numbering images improves multi-image conversations
729
+ response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
730
+ print(response.text)
731
+ ```
732
+
733
+ #### Batch Prompts Inference
734
+
735
+ Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
736
+
737
+ ```python
738
+ from lmdeploy import pipeline, PytorchEngineConfig
739
+ from lmdeploy.vl import load_image
740
+
741
+ # Please set tp=2 for the 38B version and tp=8 for the 241B-A28B version.
742
+ model = 'OpenGVLab/InternVL3_5-8B'
743
+ pipe = pipeline(model, backend_config=PytorchEngineConfig(session_len=32768, tp=1))
744
+
745
+ image_urls=[
746
+ "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
747
+ "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg"
748
+ ]
749
+ prompts = [('describe this image', load_image(img_url)) for img_url in image_urls]
750
+ response = pipe(prompts)
751
+ print(response)
752
+ ```
753
+
754
+ #### Multi-turn Conversation
755
+
756
+ There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
757
+
758
+ ```python
759
+ from lmdeploy import pipeline, PytorchEngineConfig, GenerationConfig
760
+ from lmdeploy.vl import load_image
761
+
762
+ # Please set tp=2 for the 38B version and tp=8 for the 241B-A28B version.
763
+ model = 'OpenGVLab/InternVL3_5-8B'
764
+ pipe = pipeline(model, backend_config=PytorchEngineConfig(session_len=32768, tp=1))
765
+
766
+ image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
767
+ gen_config = GenerationConfig(top_k=50, top_p=0.95, temperature=0.6, max_new_tokens=8192)
768
+ sess = pipe.chat(('describe this image', image), gen_config=gen_config)
769
+ print(sess.response.text)
770
+ sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
771
+ print(sess.response.text)
772
+ ```
773
+
774
+ #### Service
775
+
776
+ LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
777
+
778
+ ```shell
779
+ lmdeploy serve api_server OpenGVLab/InternVL3_5-8B --server-port 23333 --tp 1 --backend pytorch
780
+ ```
781
+
782
+ To use the OpenAI-style interface, you need to install OpenAI:
783
+
784
+ ```shell
785
+ pip install openai
786
+ ```
787
+
788
+ Then, use the code below to make the API call:
789
+
790
+ ```python
791
+ from openai import OpenAI
792
+
793
+ client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
794
+ model_name = client.models.list().data[0].id
795
+ response = client.chat.completions.create(
796
+ model=model_name,
797
+ messages=[{
798
+ 'role':
799
+ 'user',
800
+ 'content': [{
801
+ 'type': 'text',
802
+ 'text': 'describe this image',
803
+ }, {
804
+ 'type': 'image_url',
805
+ 'image_url': {
806
+ 'url':
807
+ 'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
808
+ },
809
+ }],
810
+ }],
811
+ temperature=0.8,
812
+ top_p=0.8)
813
+ print(response)
814
+ ```
815
+
816
+ ## License
817
+
818
+ This project is released under the apache-2.0 License. This project uses the pre-trained Qwen3 as a component, which is licensed under the apache-2.0 License.
819
+
820
+ ## Citation
821
+
822
+ If you find this project useful in your research, please consider citing:
823
+
824
+ ```BibTeX
825
+ @article{wang2025internvl3_5,
826
+ title={InternVL3.5: Advancing Open-Source Multimodal Models in Versatility, Reasoning, and Efficiency},
827
+ author={Wang, Weiyun and Gao, Zhangwei and Gu, Lixin and Pu, Hengjun and Cui, Long and Wei, Xingguang and Liu, Zhaoyang and Jing, Linglin and Ye, Shenglong and Shao, Jie and others},
828
+ journal={arXiv preprint arXiv:2508.18265},
829
+ year={2025}
830
+ }
831
+ ```
added_tokens.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 151677,
3
+ "</img>": 151670,
4
+ "</quad>": 151673,
5
+ "</ref>": 151675,
6
+ "</think>": 151668,
7
+ "</tool_call>": 151658,
8
+ "</tool_response>": 151666,
9
+ "<IMG_CONTEXT>": 151671,
10
+ "<box>": 151676,
11
+ "<img>": 151669,
12
+ "<quad>": 151672,
13
+ "<ref>": 151674,
14
+ "<think>": 151667,
15
+ "<tool_call>": 151657,
16
+ "<tool_response>": 151665,
17
+ "<|box_end|>": 151649,
18
+ "<|box_start|>": 151648,
19
+ "<|endoftext|>": 151643,
20
+ "<|file_sep|>": 151664,
21
+ "<|fim_middle|>": 151660,
22
+ "<|fim_pad|>": 151662,
23
+ "<|fim_prefix|>": 151659,
24
+ "<|fim_suffix|>": 151661,
25
+ "<|im_end|>": 151645,
26
+ "<|im_start|>": 151644,
27
+ "<|image_pad|>": 151655,
28
+ "<|object_ref_end|>": 151647,
29
+ "<|object_ref_start|>": 151646,
30
+ "<|quad_end|>": 151651,
31
+ "<|quad_start|>": 151650,
32
+ "<|repo_name|>": 151663,
33
+ "<|video_pad|>": 151656,
34
+ "<|vision_end|>": 151653,
35
+ "<|vision_pad|>": 151654,
36
+ "<|vision_start|>": 151652
37
+ }
chat_template.jinja ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {% for message in messages %}{{'<|im_start|>' + message['role'] + '
2
+ '}}{% if message['content'] is string %}{{ message['content'] }}{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' %}{{ '<image>
3
+ ' }}{% elif content['type'] == 'video' %}{{ '<video>
4
+ ' }}{% elif content['type'] == 'text' %}{{ content['text'] }}{% endif %}{% endfor %}{% endif %}{{'<|im_end|>
5
+ '}}{% endfor %}{% if add_generation_prompt %}{{'<|im_start|>assistant
6
+ ' }}{% endif %}
config.json ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "InternVLChatModel"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
7
+ "AutoModel": "modeling_internvl_chat.InternVLChatModel",
8
+ "AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
9
+ },
10
+ "downsample_ratio": 0.5,
11
+ "dynamic_image_size": true,
12
+ "eos_token_id": 151645,
13
+ "force_image_size": 448,
14
+ "flash_mode": true,
15
+ "flash_relative_threshold": 0.1,
16
+ "flash_absolute_threshold": 0.5,
17
+ "llm_config": {
18
+ "_name_or_path": "/root/codespace/checkpoints/Qwen3-30B-A3B",
19
+ "architectures": [
20
+ "Qwen3MoeForCausalLM"
21
+ ],
22
+ "attention_bias": false,
23
+ "attention_dropout": 0.0,
24
+ "bos_token_id": 151643,
25
+ "decoder_sparse_step": 1,
26
+ "eos_token_id": 151645,
27
+ "head_dim": 128,
28
+ "hidden_act": "silu",
29
+ "hidden_size": 2048,
30
+ "initializer_range": 0.02,
31
+ "intermediate_size": 6144,
32
+ "max_position_embeddings": 40960,
33
+ "max_window_layers": 48,
34
+ "mlp_only_layers": [],
35
+ "model_type": "qwen3_moe",
36
+ "moe_intermediate_size": 768,
37
+ "norm_topk_prob": true,
38
+ "num_attention_heads": 32,
39
+ "num_experts": 128,
40
+ "num_experts_per_tok": 8,
41
+ "num_hidden_layers": 48,
42
+ "num_key_value_heads": 4,
43
+ "output_router_logits": false,
44
+ "rms_norm_eps": 1e-06,
45
+ "rope_scaling": null,
46
+ "rope_theta": 1000000.0,
47
+ "router_aux_loss_coef": 0.001,
48
+ "sliding_window": null,
49
+ "torch_dtype": "bfloat16",
50
+ "use_cache": true,
51
+ "use_sliding_window": false,
52
+ "vocab_size": 151936
53
+ },
54
+ "max_dynamic_patch": 12,
55
+ "min_dynamic_patch": 1,
56
+ "model_type": "internvl_chat",
57
+ "pad2square": false,
58
+ "pad_token_id": 151643,
59
+ "ps_version": "v2",
60
+ "select_layer": -1,
61
+ "template": "internvl2_5",
62
+ "tie_word_embeddings": false,
63
+ "torch_dtype": "bfloat16",
64
+ "transformers_version": null,
65
+ "use_backbone_lora": 0,
66
+ "use_llm_lora": 0,
67
+ "use_thumbnail": true,
68
+ "vision_config": {
69
+ "architectures": [
70
+ "InternVisionModel"
71
+ ],
72
+ "attention_dropout": 0.0,
73
+ "auto_map": {
74
+ "AutoConfig": "configuration_intern_vit.InternVisionConfig",
75
+ "AutoModel": "modeling_intern_vit.InternVisionModel"
76
+ },
77
+ "drop_path_rate": 0.1,
78
+ "dropout": 0.0,
79
+ "hidden_act": "gelu",
80
+ "hidden_size": 1024,
81
+ "image_size": 448,
82
+ "initializer_factor": 1.0,
83
+ "initializer_range": 0.02,
84
+ "intermediate_size": 4096,
85
+ "layer_norm_eps": 1e-06,
86
+ "model_type": "intern_vit_6b",
87
+ "norm_type": "layer_norm",
88
+ "num_attention_heads": 16,
89
+ "num_channels": 3,
90
+ "num_hidden_layers": 24,
91
+ "patch_size": 14,
92
+ "qk_normalization": false,
93
+ "qkv_bias": true,
94
+ "torch_dtype": "bfloat16",
95
+ "use_flash_attn": true
96
+ }
97
+ }
configuration_intern_vit.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import os
7
+ from typing import Union
8
+
9
+ from transformers.configuration_utils import PretrainedConfig
10
+ from transformers.utils import logging
11
+
12
+ logger = logging.get_logger(__name__)
13
+
14
+
15
+ class InternVisionConfig(PretrainedConfig):
16
+ r"""
17
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
18
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
19
+
20
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
21
+ documentation from [`PretrainedConfig`] for more information.
22
+
23
+ Args:
24
+ num_channels (`int`, *optional*, defaults to 3):
25
+ Number of color channels in the input images (e.g., 3 for RGB).
26
+ patch_size (`int`, *optional*, defaults to 14):
27
+ The size (resolution) of each patch.
28
+ image_size (`int`, *optional*, defaults to 224):
29
+ The size (resolution) of each image.
30
+ qkv_bias (`bool`, *optional*, defaults to `False`):
31
+ Whether to add a bias to the queries and values in the self-attention layers.
32
+ hidden_size (`int`, *optional*, defaults to 3200):
33
+ Dimensionality of the encoder layers and the pooler layer.
34
+ num_attention_heads (`int`, *optional*, defaults to 25):
35
+ Number of attention heads for each attention layer in the Transformer encoder.
36
+ intermediate_size (`int`, *optional*, defaults to 12800):
37
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
38
+ qk_normalization (`bool`, *optional*, defaults to `True`):
39
+ Whether to normalize the queries and keys in the self-attention layers.
40
+ num_hidden_layers (`int`, *optional*, defaults to 48):
41
+ Number of hidden layers in the Transformer encoder.
42
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
43
+ Whether to use flash attention mechanism.
44
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
45
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
46
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
47
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
48
+ The epsilon used by the layer normalization layers.
49
+ dropout (`float`, *optional*, defaults to 0.0):
50
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
51
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
52
+ Dropout rate for stochastic depth.
53
+ attention_dropout (`float`, *optional*, defaults to 0.0):
54
+ The dropout ratio for the attention probabilities.
55
+ initializer_range (`float`, *optional*, defaults to 0.02):
56
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
57
+ initializer_factor (`float`, *optional*, defaults to 0.1):
58
+ A factor for layer scale.
59
+ """
60
+
61
+ model_type = 'intern_vit_6b'
62
+
63
+ def __init__(
64
+ self,
65
+ num_channels=3,
66
+ patch_size=14,
67
+ image_size=224,
68
+ qkv_bias=False,
69
+ hidden_size=3200,
70
+ num_attention_heads=25,
71
+ intermediate_size=12800,
72
+ qk_normalization=True,
73
+ num_hidden_layers=48,
74
+ use_flash_attn=True,
75
+ hidden_act='gelu',
76
+ norm_type='rms_norm',
77
+ layer_norm_eps=1e-6,
78
+ dropout=0.0,
79
+ drop_path_rate=0.0,
80
+ attention_dropout=0.0,
81
+ initializer_range=0.02,
82
+ initializer_factor=0.1,
83
+ **kwargs,
84
+ ):
85
+ super().__init__(**kwargs)
86
+
87
+ self.hidden_size = hidden_size
88
+ self.intermediate_size = intermediate_size
89
+ self.dropout = dropout
90
+ self.drop_path_rate = drop_path_rate
91
+ self.num_hidden_layers = num_hidden_layers
92
+ self.num_attention_heads = num_attention_heads
93
+ self.num_channels = num_channels
94
+ self.patch_size = patch_size
95
+ self.image_size = image_size
96
+ self.initializer_range = initializer_range
97
+ self.initializer_factor = initializer_factor
98
+ self.attention_dropout = attention_dropout
99
+ self.layer_norm_eps = layer_norm_eps
100
+ self.hidden_act = hidden_act
101
+ self.norm_type = norm_type
102
+ self.qkv_bias = qkv_bias
103
+ self.qk_normalization = qk_normalization
104
+ self.use_flash_attn = use_flash_attn
105
+
106
+ @classmethod
107
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
108
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
109
+
110
+ if 'vision_config' in config_dict:
111
+ config_dict = config_dict['vision_config']
112
+
113
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
114
+ logger.warning(
115
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
116
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
117
+ )
118
+
119
+ return cls.from_dict(config_dict, **kwargs)
configuration_internvl_chat.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+ from typing import Dict, Any, Optional
9
+
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ from .configuration_intern_vit import InternVisionConfig
14
+
15
+ logger = logging.get_logger(__name__)
16
+
17
+
18
+ class InternVLChatConfig(PretrainedConfig):
19
+ model_type = 'internvl_chat'
20
+ is_composition = True
21
+
22
+ def __init__(
23
+ self,
24
+ vision_config: Optional[Dict[str, Any]] = None,
25
+ llm_config: Optional[Dict[str, Any]] = None,
26
+ use_backbone_lora=0,
27
+ use_llm_lora=0,
28
+ select_layer=-1,
29
+ force_image_size=None,
30
+ downsample_ratio=0.5,
31
+ template=None,
32
+ dynamic_image_size=False,
33
+ use_thumbnail=False,
34
+ ps_version="v1",
35
+ min_dynamic_patch=1,
36
+ max_dynamic_patch=6,
37
+ **kwargs,
38
+ ):
39
+ super().__init__(**kwargs)
40
+
41
+ if vision_config is None:
42
+ vision_config = {'architectures': ['InternVisionModel']}
43
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
44
+
45
+ if llm_config is None:
46
+ llm_config = {'architectures': ['Qwen2ForCausalLM']}
47
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
48
+ assert 'architectures' in llm_config, "Should specify architecture in llm_config"
49
+
50
+ if isinstance(vision_config, dict):
51
+ self.vision_config = InternVisionConfig(**vision_config)
52
+ else:
53
+ self.vision_config = vision_config
54
+
55
+ if isinstance(llm_config, dict):
56
+ architecture: str = llm_config['architectures'][0]
57
+ if architecture == 'LlamaForCausalLM':
58
+ from transformers import LlamaConfig
59
+ self.llm_config = LlamaConfig(**llm_config)
60
+ elif architecture == 'Qwen2ForCausalLM':
61
+ from transformers import Qwen2Config
62
+ self.llm_config = Qwen2Config(**llm_config)
63
+ elif architecture == 'Qwen3MoeForCausalLM':
64
+ from transformers import Qwen3MoeConfig
65
+ self.llm_config = Qwen3MoeConfig(**llm_config)
66
+ elif architecture == 'Qwen3ForCausalLM':
67
+ from transformers import Qwen3Config
68
+ self.llm_config = Qwen3Config(**llm_config)
69
+ else:
70
+ raise ValueError('Unsupported architecture: {}'.format(architecture))
71
+ else:
72
+ self.llm_config = llm_config
73
+
74
+ self.use_backbone_lora = use_backbone_lora
75
+ self.use_llm_lora = use_llm_lora
76
+ self.select_layer = select_layer
77
+ self.force_image_size = force_image_size
78
+ self.downsample_ratio = downsample_ratio
79
+ self.template = template
80
+ self.dynamic_image_size = dynamic_image_size
81
+ self.use_thumbnail = use_thumbnail
82
+ self.ps_version = ps_version # pixel shuffle version
83
+ self.min_dynamic_patch = min_dynamic_patch
84
+ self.max_dynamic_patch = max_dynamic_patch
85
+ self.tie_word_embeddings = self.llm_config.tie_word_embeddings
86
+
87
+ logger.info(f'vision_select_layer: {self.select_layer}')
88
+ logger.info(f'ps_version: {self.ps_version}')
89
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
90
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
91
+
92
+ def to_dict(self):
93
+ """
94
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
95
+
96
+ Returns:
97
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
98
+ """
99
+ output = copy.deepcopy(self.__dict__)
100
+ output['vision_config'] = self.vision_config.to_dict()
101
+ output['llm_config'] = self.llm_config.to_dict()
102
+ output['model_type'] = self.__class__.model_type
103
+ output['use_backbone_lora'] = self.use_backbone_lora
104
+ output['use_llm_lora'] = self.use_llm_lora
105
+ output['select_layer'] = self.select_layer
106
+ output['force_image_size'] = self.force_image_size
107
+ output['downsample_ratio'] = self.downsample_ratio
108
+ output['template'] = self.template
109
+ output['dynamic_image_size'] = self.dynamic_image_size
110
+ output['use_thumbnail'] = self.use_thumbnail
111
+ output['ps_version'] = self.ps_version
112
+ output['min_dynamic_patch'] = self.min_dynamic_patch
113
+ output['max_dynamic_patch'] = self.max_dynamic_patch
114
+
115
+ return output
conversation.py ADDED
@@ -0,0 +1,391 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Conversation prompt templates.
3
+
4
+ We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
+ If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
+
7
+ Modified from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
8
+ """
9
+
10
+ import dataclasses
11
+ from enum import IntEnum, auto
12
+ from typing import Dict, List, Tuple, Union
13
+
14
+
15
+ class SeparatorStyle(IntEnum):
16
+ """Separator styles."""
17
+
18
+ ADD_COLON_SINGLE = auto()
19
+ ADD_COLON_TWO = auto()
20
+ ADD_COLON_SPACE_SINGLE = auto()
21
+ NO_COLON_SINGLE = auto()
22
+ NO_COLON_TWO = auto()
23
+ ADD_NEW_LINE_SINGLE = auto()
24
+ LLAMA2 = auto()
25
+ CHATGLM = auto()
26
+ CHATML = auto()
27
+ CHATINTERN = auto()
28
+ DOLLY = auto()
29
+ RWKV = auto()
30
+ PHOENIX = auto()
31
+ ROBIN = auto()
32
+ FALCON_CHAT = auto()
33
+ CHATGLM3 = auto()
34
+ INTERNVL_ZH = auto()
35
+ MPT = auto()
36
+
37
+
38
+ @dataclasses.dataclass
39
+ class Conversation:
40
+ """A class that manages prompt templates and keeps all conversation history."""
41
+
42
+ # The name of this template
43
+ name: str
44
+ # The template of the system prompt
45
+ system_template: str = '{system_message}'
46
+ # The system message
47
+ system_message: str = ''
48
+ # The names of two roles
49
+ roles: Tuple[str] = ('USER', 'ASSISTANT')
50
+ # All messages. Each item is (role, message).
51
+ messages: List[List[str]] = ()
52
+ # The number of few shot examples
53
+ offset: int = 0
54
+ # The separator style and configurations
55
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
56
+ sep: str = '\n'
57
+ sep2: str = None
58
+ # Stop criteria (the default one is EOS token)
59
+ stop_str: Union[str, List[str]] = None
60
+ # Stops generation if meeting any token in this list
61
+ stop_token_ids: List[int] = None
62
+
63
+ def get_prompt(self) -> str:
64
+ """Get the prompt for generation."""
65
+ system_prompt = self.system_template.format(system_message=self.system_message)
66
+ if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
67
+ ret = system_prompt + self.sep
68
+ for role, message in self.messages:
69
+ if message:
70
+ ret += role + ': ' + message + self.sep
71
+ else:
72
+ ret += role + ':'
73
+ return ret
74
+ elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
75
+ seps = [self.sep, self.sep2]
76
+ ret = system_prompt + seps[0]
77
+ for i, (role, message) in enumerate(self.messages):
78
+ if message:
79
+ ret += role + ': ' + message + seps[i % 2]
80
+ else:
81
+ ret += role + ':'
82
+ return ret
83
+ elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
84
+ ret = system_prompt + self.sep
85
+ for role, message in self.messages:
86
+ if message:
87
+ ret += role + ': ' + message + self.sep
88
+ else:
89
+ ret += role + ': ' # must be end with a space
90
+ return ret
91
+ elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
92
+ ret = '' if system_prompt == '' else system_prompt + self.sep
93
+ for role, message in self.messages:
94
+ if message:
95
+ ret += role + '\n' + message + self.sep
96
+ else:
97
+ ret += role + '\n'
98
+ return ret
99
+ elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
100
+ ret = system_prompt
101
+ for role, message in self.messages:
102
+ if message:
103
+ ret += role + message + self.sep
104
+ else:
105
+ ret += role
106
+ return ret
107
+ elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
108
+ seps = [self.sep, self.sep2]
109
+ ret = system_prompt
110
+ for i, (role, message) in enumerate(self.messages):
111
+ if message:
112
+ ret += role + message + seps[i % 2]
113
+ else:
114
+ ret += role
115
+ return ret
116
+ elif self.sep_style == SeparatorStyle.RWKV:
117
+ ret = system_prompt
118
+ for i, (role, message) in enumerate(self.messages):
119
+ if message:
120
+ ret += (
121
+ role
122
+ + ': '
123
+ + message.replace('\r\n', '\n').replace('\n\n', '\n')
124
+ )
125
+ ret += '\n\n'
126
+ else:
127
+ ret += role + ':'
128
+ return ret
129
+ elif self.sep_style == SeparatorStyle.LLAMA2:
130
+ seps = [self.sep, self.sep2]
131
+ if self.system_message:
132
+ ret = system_prompt
133
+ else:
134
+ ret = '[INST] '
135
+ for i, (role, message) in enumerate(self.messages):
136
+ tag = self.roles[i % 2]
137
+ if message:
138
+ if i == 0:
139
+ ret += message + ' '
140
+ else:
141
+ ret += tag + ' ' + message + seps[i % 2]
142
+ else:
143
+ ret += tag
144
+ return ret
145
+ elif self.sep_style == SeparatorStyle.CHATGLM:
146
+ # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
147
+ # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
148
+ round_add_n = 1 if self.name == 'chatglm2' else 0
149
+ if system_prompt:
150
+ ret = system_prompt + self.sep
151
+ else:
152
+ ret = ''
153
+
154
+ for i, (role, message) in enumerate(self.messages):
155
+ if i % 2 == 0:
156
+ ret += f'[Round {i//2 + round_add_n}]{self.sep}'
157
+
158
+ if message:
159
+ ret += f'{role}:{message}{self.sep}'
160
+ else:
161
+ ret += f'{role}:'
162
+ return ret
163
+ elif self.sep_style == SeparatorStyle.CHATML:
164
+ ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
165
+ for role, message in self.messages:
166
+ if message:
167
+ ret += role + '\n' + message + self.sep + '\n'
168
+ else:
169
+ ret += role + '\n'
170
+ return ret
171
+ elif self.sep_style == SeparatorStyle.CHATGLM3:
172
+ ret = ''
173
+ if self.system_message:
174
+ ret += system_prompt
175
+ for role, message in self.messages:
176
+ if message:
177
+ ret += role + '\n' + ' ' + message
178
+ else:
179
+ ret += role
180
+ return ret
181
+ elif self.sep_style == SeparatorStyle.CHATINTERN:
182
+ # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
183
+ seps = [self.sep, self.sep2]
184
+ ret = system_prompt
185
+ for i, (role, message) in enumerate(self.messages):
186
+ # if i % 2 == 0:
187
+ # ret += "<s>"
188
+ if message:
189
+ ret += role + ':' + message + seps[i % 2] + '\n'
190
+ else:
191
+ ret += role + ':'
192
+ return ret
193
+ elif self.sep_style == SeparatorStyle.DOLLY:
194
+ seps = [self.sep, self.sep2]
195
+ ret = system_prompt
196
+ for i, (role, message) in enumerate(self.messages):
197
+ if message:
198
+ ret += role + ':\n' + message + seps[i % 2]
199
+ if i % 2 == 1:
200
+ ret += '\n\n'
201
+ else:
202
+ ret += role + ':\n'
203
+ return ret
204
+ elif self.sep_style == SeparatorStyle.PHOENIX:
205
+ ret = system_prompt
206
+ for role, message in self.messages:
207
+ if message:
208
+ ret += role + ': ' + '<s>' + message + '</s>'
209
+ else:
210
+ ret += role + ': ' + '<s>'
211
+ return ret
212
+ elif self.sep_style == SeparatorStyle.ROBIN:
213
+ ret = system_prompt + self.sep
214
+ for role, message in self.messages:
215
+ if message:
216
+ ret += role + ':\n' + message + self.sep
217
+ else:
218
+ ret += role + ':\n'
219
+ return ret
220
+ elif self.sep_style == SeparatorStyle.FALCON_CHAT:
221
+ ret = ''
222
+ if self.system_message:
223
+ ret += system_prompt + self.sep
224
+ for role, message in self.messages:
225
+ if message:
226
+ ret += role + ': ' + message + self.sep
227
+ else:
228
+ ret += role + ':'
229
+
230
+ return ret
231
+ elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
232
+ seps = [self.sep, self.sep2]
233
+ ret = self.system_message + seps[0]
234
+ for i, (role, message) in enumerate(self.messages):
235
+ if message:
236
+ ret += role + ': ' + message + seps[i % 2]
237
+ else:
238
+ ret += role + ':'
239
+ return ret
240
+ elif self.sep_style == SeparatorStyle.MPT:
241
+ ret = system_prompt + self.sep
242
+ for role, message in self.messages:
243
+ if message:
244
+ if type(message) is tuple:
245
+ message, _, _ = message
246
+ ret += role + message + self.sep
247
+ else:
248
+ ret += role
249
+ return ret
250
+ else:
251
+ raise ValueError(f'Invalid style: {self.sep_style}')
252
+
253
+ def set_system_message(self, system_message: str):
254
+ """Set the system message."""
255
+ self.system_message = system_message
256
+
257
+ def append_message(self, role: str, message: str):
258
+ """Append a new message."""
259
+ self.messages.append([role, message])
260
+
261
+ def update_last_message(self, message: str):
262
+ """Update the last output.
263
+
264
+ The last message is typically set to be None when constructing the prompt,
265
+ so we need to update it in-place after getting the response from a model.
266
+ """
267
+ self.messages[-1][1] = message
268
+
269
+ def to_gradio_chatbot(self):
270
+ """Convert the conversation to gradio chatbot format."""
271
+ ret = []
272
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
273
+ if i % 2 == 0:
274
+ ret.append([msg, None])
275
+ else:
276
+ ret[-1][-1] = msg
277
+ return ret
278
+
279
+ def to_openai_api_messages(self):
280
+ """Convert the conversation to OpenAI chat completion format."""
281
+ ret = [{'role': 'system', 'content': self.system_message}]
282
+
283
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
284
+ if i % 2 == 0:
285
+ ret.append({'role': 'user', 'content': msg})
286
+ else:
287
+ if msg is not None:
288
+ ret.append({'role': 'assistant', 'content': msg})
289
+ return ret
290
+
291
+ def copy(self):
292
+ return Conversation(
293
+ name=self.name,
294
+ system_template=self.system_template,
295
+ system_message=self.system_message,
296
+ roles=self.roles,
297
+ messages=[[x, y] for x, y in self.messages],
298
+ offset=self.offset,
299
+ sep_style=self.sep_style,
300
+ sep=self.sep,
301
+ sep2=self.sep2,
302
+ stop_str=self.stop_str,
303
+ stop_token_ids=self.stop_token_ids,
304
+ )
305
+
306
+ def dict(self):
307
+ return {
308
+ 'template_name': self.name,
309
+ 'system_message': self.system_message,
310
+ 'roles': self.roles,
311
+ 'messages': self.messages,
312
+ 'offset': self.offset,
313
+ }
314
+
315
+
316
+ # A global registry for all conversation templates
317
+ conv_templates: Dict[str, Conversation] = {}
318
+
319
+
320
+ def register_conv_template(template: Conversation, override: bool = False):
321
+ """Register a new conversation template."""
322
+ if not override:
323
+ assert (
324
+ template.name not in conv_templates
325
+ ), f'{template.name} has been registered.'
326
+
327
+ conv_templates[template.name] = template
328
+
329
+
330
+ def get_conv_template(name: str) -> Conversation:
331
+ """Get a conversation template."""
332
+ return conv_templates[name].copy()
333
+
334
+
335
+ # Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
336
+ # is that during training, the preprocessing function for the Hermes-2 template doesn't add
337
+ # <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
338
+ # Therefore, they are completely equivalent during inference.
339
+ register_conv_template(
340
+ Conversation(
341
+ name='Hermes-2',
342
+ system_template='<|im_start|>system\n{system_message}',
343
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
344
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
345
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
346
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
347
+ sep_style=SeparatorStyle.MPT,
348
+ sep='<|im_end|>',
349
+ stop_str='<|endoftext|>',
350
+ )
351
+ )
352
+
353
+
354
+ register_conv_template(
355
+ Conversation(
356
+ name='internlm2-chat',
357
+ system_template='<|im_start|>system\n{system_message}',
358
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
359
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
360
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
361
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
362
+ sep_style=SeparatorStyle.MPT,
363
+ sep='<|im_end|>',
364
+ )
365
+ )
366
+
367
+
368
+ register_conv_template(
369
+ Conversation(
370
+ name='phi3-chat',
371
+ system_template='<|system|>\n{system_message}',
372
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
373
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
374
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
375
+ roles=('<|user|>\n', '<|assistant|>\n'),
376
+ sep_style=SeparatorStyle.MPT,
377
+ sep='<|end|>',
378
+ )
379
+ )
380
+
381
+
382
+ register_conv_template(
383
+ Conversation(
384
+ name='internvl2_5',
385
+ system_template='<|im_start|>system\n{system_message}',
386
+ system_message='你是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
387
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
388
+ sep_style=SeparatorStyle.MPT,
389
+ sep='<|im_end|>\n',
390
+ )
391
+ )
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.52.1"
4
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6970db10cdcdad6ef77adc223bdaae40e01aa9832eb572d7a73d6dab3ab1e7e
3
+ size 4990253048
model-00002-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47144ec8615e73eee4d7e50f2b92cf3afc3b13a2a834c82358f28d74f9d13d5c
3
+ size 4985181784
model-00003-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d69fb65d3e9c108d558eeb50626ace0b21344d2393b95a08ea32617313b4da0
3
+ size 4985182184
model-00004-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4936b86bc62b413dd46d945675ca36d726d32a19d860657d9e13be7b06472be0
3
+ size 4985183360
model-00005-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33a81682b3fda3a52f5cf3b658c1ed746dd34f0fc903e9c4c6b28a85ccf16604
3
+ size 4985183360
model-00006-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd4bc5ad9324c57b966c8e0638f03d3abbdcc494985d23836304b41571c95fba
3
+ size 4985183360
model-00007-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:281ef277ea743720ea9ed3cf801acde9a0079b6e4a49c38da47de97254b505f6
3
+ size 4985183360
model-00008-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d78796b5aaa9f8ab175f50e5478cdccc3f341ffa462307dbf0a5c1982a831ca5
3
+ size 4985183360
model-00009-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1c255f1492829d4fd4ac13c3b9c78b9cb801bf20a763ddf71d17e3895632e5a
3
+ size 4985183360
model-00010-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06b089507d5123fd457efbd391be42775808dd22d85570af355bb71635d2dd51
3
+ size 4985183360
model-00011-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c20f67441ffae587f436f6c99aef74f2a89c00c3d80f5f2f738454f485a149f2
3
+ size 4985183360
model-00012-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd51e31ba10e2d08a38cbeb727ac19e83032c4bfb790e0d3a773b55f0f56169d
3
+ size 4985183360
model-00013-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d265876ec34108bacbec9d1d65a5c060cddd9df0b084169f77f219c162faee1
3
+ size 2158270572
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
modeling_intern_vit.py ADDED
@@ -0,0 +1,433 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ from typing import Optional, Tuple, Union
8
+
9
+ import torch
10
+ import torch.nn.functional as F
11
+ import torch.utils.checkpoint
12
+ from einops import rearrange
13
+ from timm.layers import DropPath
14
+ from torch import nn
15
+ from transformers.activations import ACT2FN
16
+ from transformers.modeling_outputs import (BaseModelOutput,
17
+ BaseModelOutputWithPooling)
18
+ from transformers.modeling_utils import PreTrainedModel
19
+ from transformers.utils import logging
20
+
21
+ from .configuration_intern_vit import InternVisionConfig
22
+
23
+ try:
24
+ from flash_attn.bert_padding import pad_input, unpad_input
25
+ from flash_attn.flash_attn_interface import \
26
+ flash_attn_varlen_qkvpacked_func
27
+ has_flash_attn = True
28
+ except:
29
+ print('FlashAttention2 is not installed.')
30
+ has_flash_attn = False
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+
35
+ class FlashAttention(nn.Module):
36
+ """Implement the scaled dot product attention with softmax.
37
+ Arguments
38
+ ---------
39
+ softmax_scale: The temperature to use for the softmax attention.
40
+ (default: 1/sqrt(d_keys) where d_keys is computed at
41
+ runtime)
42
+ attention_dropout: The dropout rate to apply to the attention
43
+ (default: 0.0)
44
+ """
45
+
46
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
47
+ super().__init__()
48
+ self.softmax_scale = softmax_scale
49
+ self.dropout_p = attention_dropout
50
+
51
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
52
+ max_s=None, need_weights=False):
53
+ """Implements the multihead softmax attention.
54
+ Arguments
55
+ ---------
56
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
57
+ if unpadded: (nnz, 3, h, d)
58
+ key_padding_mask: a bool tensor of shape (B, S)
59
+ """
60
+ assert not need_weights
61
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
62
+ assert qkv.is_cuda
63
+
64
+ if cu_seqlens is None:
65
+ batch_size = qkv.shape[0]
66
+ seqlen = qkv.shape[1]
67
+ if key_padding_mask is None:
68
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
69
+ max_s = seqlen
70
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
71
+ device=qkv.device)
72
+ output = flash_attn_varlen_qkvpacked_func(
73
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
74
+ softmax_scale=self.softmax_scale, causal=causal
75
+ )
76
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
77
+ else:
78
+ nheads = qkv.shape[-2]
79
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
80
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
81
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
82
+ output_unpad = flash_attn_varlen_qkvpacked_func(
83
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
84
+ softmax_scale=self.softmax_scale, causal=causal
85
+ )
86
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
87
+ indices, batch_size, seqlen),
88
+ 'b s (h d) -> b s h d', h=nheads)
89
+ else:
90
+ assert max_s is not None
91
+ output = flash_attn_varlen_qkvpacked_func(
92
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
93
+ softmax_scale=self.softmax_scale, causal=causal
94
+ )
95
+
96
+ return output, None
97
+
98
+
99
+ class InternRMSNorm(nn.Module):
100
+ def __init__(self, hidden_size, eps=1e-6):
101
+ super().__init__()
102
+ self.weight = nn.Parameter(torch.ones(hidden_size))
103
+ self.variance_epsilon = eps
104
+
105
+ def forward(self, hidden_states):
106
+ input_dtype = hidden_states.dtype
107
+ hidden_states = hidden_states.to(torch.float32)
108
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
109
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
110
+ return self.weight * hidden_states.to(input_dtype)
111
+
112
+
113
+ try:
114
+ from apex.normalization import FusedRMSNorm
115
+
116
+ InternRMSNorm = FusedRMSNorm # noqa
117
+
118
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
119
+ except ImportError:
120
+ # using the normal InternRMSNorm
121
+ pass
122
+ except Exception:
123
+ logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
124
+ pass
125
+
126
+
127
+ NORM2FN = {
128
+ 'rms_norm': InternRMSNorm,
129
+ 'layer_norm': nn.LayerNorm,
130
+ }
131
+
132
+
133
+ class InternVisionEmbeddings(nn.Module):
134
+ def __init__(self, config: InternVisionConfig):
135
+ super().__init__()
136
+ self.config = config
137
+ self.embed_dim = config.hidden_size
138
+ self.image_size = config.image_size
139
+ self.patch_size = config.patch_size
140
+
141
+ self.class_embedding = nn.Parameter(
142
+ torch.randn(1, 1, self.embed_dim),
143
+ )
144
+
145
+ self.patch_embedding = nn.Conv2d(
146
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
147
+ )
148
+
149
+ self.num_patches = (self.image_size // self.patch_size) ** 2
150
+ self.num_positions = self.num_patches + 1
151
+
152
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
153
+
154
+ def _get_pos_embed(self, pos_embed, H, W):
155
+ target_dtype = pos_embed.dtype
156
+ pos_embed = pos_embed.float().reshape(
157
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
158
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
159
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
160
+ return pos_embed
161
+
162
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
163
+ target_dtype = self.patch_embedding.weight.dtype
164
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
165
+ batch_size, _, height, width = patch_embeds.shape
166
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
167
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
168
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
169
+ position_embedding = torch.cat([
170
+ self.position_embedding[:, :1, :],
171
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
172
+ ], dim=1)
173
+ embeddings = embeddings + position_embedding.to(target_dtype)
174
+ return embeddings
175
+
176
+
177
+ class InternAttention(nn.Module):
178
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
179
+
180
+ def __init__(self, config: InternVisionConfig):
181
+ super().__init__()
182
+ self.config = config
183
+ self.embed_dim = config.hidden_size
184
+ self.num_heads = config.num_attention_heads
185
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
186
+ if config.use_flash_attn and not has_flash_attn:
187
+ print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
188
+ self.head_dim = self.embed_dim // self.num_heads
189
+ if self.head_dim * self.num_heads != self.embed_dim:
190
+ raise ValueError(
191
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
192
+ f' {self.num_heads}).'
193
+ )
194
+
195
+ self.scale = self.head_dim ** -0.5
196
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
197
+ self.attn_drop = nn.Dropout(config.attention_dropout)
198
+ self.proj_drop = nn.Dropout(config.dropout)
199
+
200
+ self.qk_normalization = config.qk_normalization
201
+
202
+ if self.qk_normalization:
203
+ self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
204
+ self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
205
+
206
+ if self.use_flash_attn:
207
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
208
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
209
+
210
+ def _naive_attn(self, x):
211
+ B, N, C = x.shape
212
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
213
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
214
+
215
+ if self.qk_normalization:
216
+ B_, H_, N_, D_ = q.shape
217
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
218
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
219
+
220
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
221
+ attn = attn.softmax(dim=-1)
222
+ attn = self.attn_drop(attn)
223
+
224
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
225
+ x = self.proj(x)
226
+ x = self.proj_drop(x)
227
+ return x
228
+
229
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
230
+ qkv = self.qkv(x)
231
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
232
+
233
+ if self.qk_normalization:
234
+ q, k, v = qkv.unbind(2)
235
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
236
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
237
+ qkv = torch.stack([q, k, v], dim=2)
238
+
239
+ context, _ = self.inner_attn(
240
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
241
+ )
242
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
243
+ outs = self.proj_drop(outs)
244
+ return outs
245
+
246
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
247
+ x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
248
+ return x
249
+
250
+
251
+ class InternMLP(nn.Module):
252
+ def __init__(self, config: InternVisionConfig):
253
+ super().__init__()
254
+ self.config = config
255
+ self.act = ACT2FN[config.hidden_act]
256
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
257
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
258
+
259
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
260
+ hidden_states = self.fc1(hidden_states)
261
+ hidden_states = self.act(hidden_states)
262
+ hidden_states = self.fc2(hidden_states)
263
+ return hidden_states
264
+
265
+
266
+ class InternVisionEncoderLayer(nn.Module):
267
+ def __init__(self, config: InternVisionConfig, drop_path_rate: float):
268
+ super().__init__()
269
+ self.embed_dim = config.hidden_size
270
+ self.intermediate_size = config.intermediate_size
271
+ self.norm_type = config.norm_type
272
+
273
+ self.attn = InternAttention(config)
274
+ self.mlp = InternMLP(config)
275
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
276
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
277
+
278
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
279
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
280
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
281
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
282
+
283
+ def forward(
284
+ self,
285
+ hidden_states: torch.Tensor,
286
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
287
+ """
288
+ Args:
289
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
290
+ """
291
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
292
+
293
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
294
+
295
+ return hidden_states
296
+
297
+
298
+ class InternVisionEncoder(nn.Module):
299
+ """
300
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
301
+ [`InternEncoderLayer`].
302
+
303
+ Args:
304
+ config (`InternConfig`):
305
+ The corresponding vision configuration for the `InternEncoder`.
306
+ """
307
+
308
+ def __init__(self, config: InternVisionConfig):
309
+ super().__init__()
310
+ self.config = config
311
+ # stochastic depth decay rule
312
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
313
+ self.layers = nn.ModuleList([
314
+ InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
315
+ self.gradient_checkpointing = True
316
+
317
+ def forward(
318
+ self,
319
+ inputs_embeds,
320
+ output_hidden_states: Optional[bool] = None,
321
+ return_dict: Optional[bool] = None,
322
+ ) -> Union[Tuple, BaseModelOutput]:
323
+ r"""
324
+ Args:
325
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
326
+ Embedded representation of the inputs. Should be float, not int tokens.
327
+ output_hidden_states (`bool`, *optional*):
328
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
329
+ for more detail.
330
+ return_dict (`bool`, *optional*):
331
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
332
+ """
333
+ output_hidden_states = (
334
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
335
+ )
336
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
337
+
338
+ encoder_states = () if output_hidden_states else None
339
+ hidden_states = inputs_embeds
340
+
341
+ for idx, encoder_layer in enumerate(self.layers):
342
+ if output_hidden_states:
343
+ encoder_states = encoder_states + (hidden_states,)
344
+ if self.gradient_checkpointing and self.training:
345
+ layer_outputs = torch.utils.checkpoint.checkpoint(
346
+ encoder_layer,
347
+ hidden_states)
348
+ else:
349
+ layer_outputs = encoder_layer(
350
+ hidden_states,
351
+ )
352
+ hidden_states = layer_outputs
353
+
354
+ if output_hidden_states:
355
+ encoder_states = encoder_states + (hidden_states,)
356
+
357
+ if not return_dict:
358
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
359
+ return BaseModelOutput(
360
+ last_hidden_state=hidden_states, hidden_states=encoder_states
361
+ )
362
+
363
+
364
+ class InternVisionModel(PreTrainedModel):
365
+ main_input_name = 'pixel_values'
366
+ _supports_flash_attn_2 = True
367
+ supports_gradient_checkpointing = True
368
+ config_class = InternVisionConfig
369
+ _no_split_modules = ['InternVisionEncoderLayer']
370
+ # support transformers 4.51.+
371
+ _tp_plan = ''
372
+
373
+ def __init__(self, config: InternVisionConfig):
374
+ super().__init__(config)
375
+ self.config = config
376
+
377
+ self.embeddings = InternVisionEmbeddings(config)
378
+ self.encoder = InternVisionEncoder(config)
379
+
380
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
381
+ pos_emb = self.embeddings.position_embedding
382
+ _, num_positions, embed_dim = pos_emb.shape
383
+ cls_emb = pos_emb[:, :1, :]
384
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
385
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
386
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
387
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
388
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
389
+ self.embeddings.image_size = new_size
390
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
391
+
392
+ def get_input_embeddings(self):
393
+ return self.embeddings
394
+
395
+ def forward(
396
+ self,
397
+ pixel_values: Optional[torch.FloatTensor] = None,
398
+ output_hidden_states: Optional[bool] = None,
399
+ return_dict: Optional[bool] = None,
400
+ pixel_embeds: Optional[torch.FloatTensor] = None,
401
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
402
+ output_hidden_states = (
403
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
404
+ )
405
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
406
+
407
+ if pixel_values is None and pixel_embeds is None:
408
+ raise ValueError('You have to specify pixel_values or pixel_embeds')
409
+
410
+ if pixel_embeds is not None:
411
+ hidden_states = pixel_embeds
412
+ else:
413
+ if len(pixel_values.shape) == 4:
414
+ hidden_states = self.embeddings(pixel_values)
415
+ else:
416
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
417
+ encoder_outputs = self.encoder(
418
+ inputs_embeds=hidden_states,
419
+ output_hidden_states=output_hidden_states,
420
+ return_dict=return_dict,
421
+ )
422
+ last_hidden_state = encoder_outputs.last_hidden_state
423
+ pooled_output = last_hidden_state[:, 0, :]
424
+
425
+ if not return_dict:
426
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
427
+
428
+ return BaseModelOutputWithPooling(
429
+ last_hidden_state=last_hidden_state,
430
+ pooler_output=pooled_output,
431
+ hidden_states=encoder_outputs.hidden_states,
432
+ attentions=encoder_outputs.attentions,
433
+ )
modeling_internvl_chat.py ADDED
@@ -0,0 +1,720 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import warnings
8
+ from typing import List, Optional, Tuple, Union
9
+ import random
10
+ import torch.utils.checkpoint
11
+ import transformers
12
+ from torch import nn
13
+ from torch.nn import CrossEntropyLoss
14
+ from transformers import GenerationConfig
15
+ from transformers.modeling_outputs import CausalLMOutputWithPast
16
+ from transformers.modeling_utils import PreTrainedModel
17
+ from transformers.utils import logging
18
+ from transformers import LlamaForCausalLM, Qwen2ForCausalLM, Qwen3ForCausalLM, Qwen3MoeForCausalLM
19
+
20
+ from .configuration_internvl_chat import InternVLChatConfig
21
+ from .conversation import get_conv_template
22
+ from .modeling_intern_vit import InternVisionModel, has_flash_attn
23
+
24
+ logger = logging.get_logger(__name__)
25
+
26
+
27
+ def version_cmp(v1, v2, op='eq'):
28
+ import operator
29
+
30
+ from packaging import version
31
+ op_func = getattr(operator, op)
32
+ return op_func(version.parse(v1), version.parse(v2))
33
+
34
+ import torch.utils.checkpoint as cp
35
+
36
+ class Gating(nn.Module):
37
+ def __init__(self, hidden_size=2048, expansion_factor=4, dropout=0.1, use_checkpoint=True):
38
+ super().__init__()
39
+ self.use_checkpoint = use_checkpoint
40
+ mid_dim = hidden_size * expansion_factor
41
+
42
+ def mlp_block(in_dim, out_dim):
43
+ return nn.Sequential(
44
+ nn.Linear(in_dim, out_dim),
45
+ nn.GELU(),
46
+ nn.Dropout(dropout),
47
+ nn.Linear(out_dim, in_dim),
48
+ nn.Dropout(dropout),
49
+ nn.LayerNorm(in_dim),
50
+ )
51
+
52
+ self.block1 = mlp_block(hidden_size, mid_dim)
53
+ self.block2 = mlp_block(hidden_size, mid_dim)
54
+ self.block3 = mlp_block(hidden_size, mid_dim)
55
+ self.block4 = mlp_block(hidden_size, mid_dim)
56
+
57
+ self.gate = nn.Sequential(
58
+ nn.LayerNorm(hidden_size),
59
+ nn.Linear(hidden_size, 2) # 2 experts
60
+ )
61
+
62
+ def forward(self, x):
63
+ if self.use_checkpoint:
64
+ x = x + cp.checkpoint(self.block1, x)
65
+ x = x + cp.checkpoint(self.block2, x)
66
+ x = x + cp.checkpoint(self.block3, x)
67
+ x = x + cp.checkpoint(self.block4, x)
68
+ else:
69
+ x = x + self.block1(x)
70
+ x = x + self.block2(x)
71
+ x = x + self.block3(x)
72
+ x = x + self.block4(x)
73
+
74
+ logits = self.gate(x) # shape: [B, 2]
75
+ probs = torch.softmax(logits, dim=-1) # 每个 token 的 expert 选择概率
76
+ return probs
77
+
78
+
79
+ class CrossAttentionPooling(nn.Module):
80
+ def __init__(self, dim, num_heads=16):
81
+ super().__init__()
82
+ self.query_token = nn.Parameter(torch.randn(1, dim)) # [1, D]
83
+
84
+ self.attn1 = nn.MultiheadAttention(embed_dim=dim, num_heads=num_heads, batch_first=True)
85
+ self.norm1 = nn.LayerNorm(dim)
86
+
87
+ self.attn2 = nn.MultiheadAttention(embed_dim=dim, num_heads=num_heads, batch_first=True)
88
+ self.norm2 = nn.LayerNorm(dim)
89
+
90
+ self.attn3 = nn.MultiheadAttention(embed_dim=dim, num_heads=num_heads, batch_first=True)
91
+ self.norm3 = nn.LayerNorm(dim)
92
+
93
+ self.attn4 = nn.MultiheadAttention(embed_dim=dim, num_heads=num_heads, batch_first=True)
94
+ self.norm4 = nn.LayerNorm(dim)
95
+
96
+ def forward(self, batched_tokens: list[torch.Tensor]):
97
+ """
98
+ batched_tokens: List of Tensors of shape [Ti, D], length = B
99
+ """
100
+ B = len(batched_tokens)
101
+ D = batched_tokens[0].shape[-1]
102
+ device = batched_tokens[0].device
103
+
104
+ # 1. Padding
105
+ max_len = max(t.shape[0] for t in batched_tokens)
106
+ dtype = self.query_token.dtype
107
+ padded = torch.zeros(B, max_len, D, dtype=dtype, device=device)
108
+ padding_mask = torch.ones(B, max_len, dtype=torch.bool, device=device)
109
+
110
+ for i, t in enumerate(batched_tokens):
111
+ L = t.shape[0]
112
+ padded[i, :L] = t
113
+ padding_mask[i, :L] = False
114
+
115
+ # 2. Query token: [B, 1, D]
116
+ query = self.query_token.unsqueeze(0).expand(B, -1, -1) # learnable token for each sample
117
+
118
+ # 3. First attention
119
+ out1, _ = self.attn1(query, padded, padded, key_padding_mask=padding_mask) # [B, 1, D]
120
+ out1 = self.norm1(out1)
121
+
122
+ # 4. Second attention
123
+ out2, _ = self.attn2(out1, padded, padded, key_padding_mask=padding_mask) # [B, 1, D]
124
+ out2 = self.norm2(out2)
125
+
126
+ out3, _ = self.attn2(out2, padded, padded, key_padding_mask=padding_mask) # [B, 1, D]
127
+ out3 = self.norm2(out3)
128
+
129
+ out4, _ = self.attn2(out3, padded, padded, key_padding_mask=padding_mask) # [B, 1, D]
130
+ out4 = self.norm2(out4)
131
+
132
+ return out4.squeeze(1)
133
+
134
+ class InternVLChatModel(PreTrainedModel):
135
+ config_class = InternVLChatConfig
136
+ main_input_name = 'pixel_values'
137
+ base_model_prefix = 'language_model'
138
+ _supports_flash_attn_2 = True
139
+ supports_gradient_checkpointing = True
140
+ _no_split_modules = [
141
+ "InternVisionModel",
142
+ "Qwen3MoeDecoderLayer",
143
+ ]
144
+
145
+ # support transformers 4.51.+
146
+ _tp_plan = ''
147
+
148
+ def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
149
+ super().__init__(config)
150
+
151
+ assert version_cmp(transformers.__version__, '4.37.0', 'ge')
152
+ image_size = config.force_image_size or config.vision_config.image_size
153
+ patch_size = config.vision_config.patch_size
154
+ self.patch_size = patch_size
155
+ self.select_layer = config.select_layer
156
+ self.template = config.template
157
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
158
+ self.downsample_ratio = config.downsample_ratio
159
+ self.ps_version = config.ps_version
160
+ use_flash_attn = use_flash_attn if has_flash_attn else False
161
+ config.vision_config.use_flash_attn = True if use_flash_attn else False
162
+ config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
163
+
164
+ logger.info(f'num_image_token: {self.num_image_token}')
165
+ logger.info(f'ps_version: {self.ps_version}')
166
+ if vision_model is not None:
167
+ self.vision_model = vision_model
168
+ else:
169
+ self.vision_model = InternVisionModel(config.vision_config)
170
+ if language_model is not None:
171
+ self.language_model = language_model
172
+ else:
173
+ architecture: str = config.llm_config.architectures[0]
174
+ if architecture == 'LlamaForCausalLM':
175
+ self.language_model = LlamaForCausalLM(config.llm_config)
176
+ elif architecture == 'Qwen2ForCausalLM':
177
+ self.language_model = Qwen2ForCausalLM(config.llm_config)
178
+ elif architecture == 'Qwen3MoeForCausalLM':
179
+ self.language_model = Qwen3MoeForCausalLM(config.llm_config)
180
+ elif architecture == 'Qwen3ForCausalLM':
181
+ self.language_model = Qwen3ForCausalLM(config.llm_config)
182
+ else:
183
+ raise NotImplementedError(f'{architecture} is not implemented.')
184
+
185
+ vit_hidden_size = config.vision_config.hidden_size
186
+ llm_hidden_size = config.llm_config.hidden_size
187
+
188
+ self.mlp1 = nn.Sequential(
189
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
190
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
191
+ nn.GELU(),
192
+ nn.Linear(llm_hidden_size, llm_hidden_size)
193
+ )
194
+
195
+ self.mlp2 = nn.Sequential(
196
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 4),
197
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 4, llm_hidden_size * 2),
198
+ nn.GELU(),
199
+ nn.Dropout(0.1),
200
+ nn.Linear(llm_hidden_size * 2, llm_hidden_size * 2),
201
+ nn.GELU(),
202
+ nn.Dropout(0.1),
203
+ nn.Linear(llm_hidden_size * 2, llm_hidden_size)
204
+ )
205
+
206
+ self.pooling_before_gating = CrossAttentionPooling(dim=vit_hidden_size)
207
+ self.gating = Gating(hidden_size=vit_hidden_size)
208
+
209
+ self.flash_mode = getattr(config, "flash_mode", False)
210
+ if self.flash_mode:
211
+ self.flash_relative_threshold = config.flash_relative_threshold
212
+ self.flash_absolute_threshold = config.flash_absolute_threshold
213
+
214
+ self.img_context_token_id = None
215
+ self.conv_template = get_conv_template(self.template)
216
+ self.system_message = self.conv_template.system_message
217
+
218
+
219
+ def compress_visual_tokens_in_sentence(
220
+ self,
221
+ input_embeds: torch.Tensor,
222
+ input_ids: torch.Tensor,
223
+ mask_idx: torch.Tensor,
224
+ img_context_token_id: int,
225
+ gate_result,
226
+ ) -> tuple:
227
+
228
+ N, C = input_embeds.shape
229
+
230
+ input_ids = input_ids.squeeze(0) # (N,)
231
+ selected = (input_ids == img_context_token_id)
232
+ padded = torch.cat([torch.tensor([0], device=selected.device), selected.int(), torch.tensor([0], device=selected.device)])
233
+ diff = torch.diff(padded)
234
+
235
+ starts = (diff == 1).nonzero(as_tuple=True)[0]
236
+ ends = (diff == -1).nonzero(as_tuple=True)[0]
237
+ lengths = ends - starts
238
+
239
+ keep_mask = torch.ones(N, dtype=torch.bool, device=input_embeds.device)
240
+
241
+ delete_flags = torch.zeros(N, dtype=torch.int32, device=input_embeds.device)
242
+
243
+ p = random.uniform(0, 1)
244
+
245
+ total_blocks = 0
246
+ block_counts = []
247
+ for l in lengths.tolist():
248
+ if l % 256 != 0:
249
+ raise ValueError(f"l % 256 != 0, l = {l}")
250
+ num_blocks = l // 256
251
+ block_counts.append(num_blocks)
252
+ total_blocks += num_blocks
253
+
254
+ flag_idx = 0
255
+ for s, e, l, num_blocks in zip(starts.tolist(), ends.tolist(), lengths.tolist(), block_counts):
256
+ for i in range(num_blocks):
257
+ block_start = s + i * 256
258
+ block_end = block_start + 256
259
+
260
+ compress = gate_result[flag_idx]
261
+ flag_idx += 1
262
+
263
+ if compress:
264
+ keep_mask[block_start + 64 : block_end] = False
265
+ delete_flags[block_start + 64 : block_end] = 1
266
+
267
+ cumulative_deletes = torch.cumsum(delete_flags, dim=0)
268
+ cumulative_deletes = torch.cat([cumulative_deletes, cumulative_deletes[-1:].clone()], dim=0)
269
+
270
+
271
+ mask_idx = mask_idx.squeeze(0)
272
+ updated_mask_idx = mask_idx - cumulative_deletes[mask_idx.to(cumulative_deletes.device)].to(mask_idx.device)
273
+ updated_mask_idx = updated_mask_idx.unsqueeze(0)
274
+
275
+ new_input_embeds = input_embeds[keep_mask.to(input_embeds.device), :]
276
+ new_input_ids = input_ids[keep_mask.to(input_ids.device)]
277
+
278
+ return new_input_embeds, new_input_ids, updated_mask_idx, keep_mask
279
+
280
+ def get_image_num_per_sample(
281
+ self,
282
+ input_ids: torch.Tensor,
283
+ ):
284
+ input_ids = input_ids.squeeze(0) # (N,)
285
+ selected = (input_ids == self.img_context_token_id)
286
+ padded = torch.cat([torch.tensor([0], device=selected.device), selected.int(), torch.tensor([0], device=selected.device)])
287
+ diff = torch.diff(padded)
288
+
289
+ starts = (diff == 1).nonzero(as_tuple=True)[0]
290
+ ends = (diff == -1).nonzero(as_tuple=True)[0]
291
+ lengths = ends - starts
292
+
293
+ return lengths
294
+ def forward(
295
+ self,
296
+ pixel_values: torch.FloatTensor,
297
+ input_ids: torch.LongTensor = None,
298
+ attention_mask: Optional[torch.Tensor] = None,
299
+ position_ids: Optional[torch.LongTensor] = None,
300
+ image_flags: Optional[torch.LongTensor] = None,
301
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
302
+ labels: Optional[torch.LongTensor] = None,
303
+ use_cache: Optional[bool] = None,
304
+ output_attentions: Optional[bool] = None,
305
+ output_hidden_states: Optional[bool] = None,
306
+ return_dict: Optional[bool] = None,
307
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
308
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
309
+
310
+ image_flags = image_flags.squeeze(-1)
311
+ input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
312
+
313
+ vit_embeds = self.extract_feature(pixel_values)
314
+ vit_embeds = vit_embeds[image_flags == 1]
315
+ vit_batch_size = pixel_values.shape[0]
316
+
317
+ B, N, C = input_embeds.shape
318
+ input_embeds = input_embeds.reshape(B * N, C)
319
+
320
+ # if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
321
+ # print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
322
+
323
+ input_ids = input_ids.reshape(B * N)
324
+ selected = (input_ids == self.img_context_token_id)
325
+ try:
326
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
327
+ except Exception as e:
328
+ vit_embeds = vit_embeds.reshape(-1, C)
329
+ print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
330
+ f'vit_embeds.shape={vit_embeds.shape}')
331
+ n_token = min(selected.sum(), vit_embeds.size(0))
332
+ input_embeds[selected][:n_token] = input_embeds[selected][:n_token] * 0.0 + vit_embeds[:n_token]
333
+
334
+ input_embeds = input_embeds.reshape(B, N, C)
335
+
336
+ outputs = self.language_model(
337
+ inputs_embeds=input_embeds,
338
+ attention_mask=attention_mask,
339
+ position_ids=position_ids,
340
+ past_key_values=past_key_values,
341
+ use_cache=use_cache,
342
+ output_attentions=output_attentions,
343
+ output_hidden_states=output_hidden_states,
344
+ return_dict=return_dict,
345
+ )
346
+ logits = outputs.logits
347
+
348
+ loss = None
349
+ if labels is not None:
350
+ # Shift so that tokens < n predict n
351
+ shift_logits = logits[..., :-1, :].contiguous()
352
+ shift_labels = labels[..., 1:].contiguous()
353
+ # Flatten the tokens
354
+ loss_fct = CrossEntropyLoss()
355
+ shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
356
+ shift_labels = shift_labels.view(-1)
357
+ # Enable model parallelism
358
+ shift_labels = shift_labels.to(shift_logits.device)
359
+ loss = loss_fct(shift_logits, shift_labels)
360
+
361
+ if not return_dict:
362
+ output = (logits,) + outputs[1:]
363
+ return (loss,) + output if loss is not None else output
364
+
365
+ return CausalLMOutputWithPast(
366
+ loss=loss,
367
+ logits=logits,
368
+ past_key_values=outputs.past_key_values,
369
+ hidden_states=outputs.hidden_states,
370
+ attentions=outputs.attentions,
371
+ )
372
+
373
+ def pixel_shuffle(self, x, scale_factor=0.5):
374
+ n, w, h, c = x.size()
375
+ # N, W, H, C --> N, W, H * scale, C // scale
376
+ x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
377
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
378
+ x = x.permute(0, 2, 1, 3).contiguous()
379
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
380
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
381
+ int(c / (scale_factor * scale_factor)))
382
+ if self.ps_version == 'v1':
383
+ warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
384
+ 'which results in a transposed image.')
385
+ else:
386
+ x = x.permute(0, 2, 1, 3).contiguous()
387
+ return x
388
+
389
+ def split_and_merge(self, features: torch.Tensor, split_sizes: torch.Tensor):
390
+ """
391
+ features: Tensor of shape [T, 1024, 1024]
392
+ split_sizes: 1D Tensor like [3, 3, 4] — 每个样本 tile 数
393
+
394
+ returns: List of Tensors of shape [tile_i * 1024, 1024]
395
+ """
396
+ # 拆分 features → 每个样本一个 tile list
397
+ tile_splits = torch.split(features, split_sizes, dim=0)
398
+
399
+ # 合并前两维:tile * 1024 × 1024
400
+ merged = [x.reshape(-1, x.shape[-1]) for x in tile_splits]
401
+
402
+ return merged
403
+
404
+ def extract_feature_flash(self, pixel_values, lengths):
405
+
406
+ with torch.no_grad():
407
+ vit_embeds_1024 = self.vision_model(
408
+ pixel_values=pixel_values,
409
+ output_hidden_states=False,
410
+ return_dict=True).last_hidden_state
411
+
412
+ vit_embeds_1024 = vit_embeds_1024[:, 1:, :]
413
+ h = w = int(vit_embeds_1024.shape[1] ** 0.5)
414
+ vit_embeds_1024 = vit_embeds_1024.reshape(vit_embeds_1024.shape[0], h, w, -1)
415
+
416
+ # begin moe
417
+ lengths = [int(x) for x in lengths.tolist()]
418
+ vit_embeds_1024_split_and_merge = self.split_and_merge(vit_embeds_1024, lengths)
419
+
420
+ gate = self.pooling_before_gating(vit_embeds_1024_split_and_merge)
421
+ gate = self.gating(gate)
422
+
423
+ vit_embeds_256 = vit_embeds_1024.clone()
424
+
425
+ with torch.no_grad():
426
+ vit_embeds_64 = self.pixel_shuffle(vit_embeds_1024, scale_factor=self.downsample_ratio ** 2)
427
+ vit_embeds_64 = vit_embeds_64.reshape(vit_embeds_64.shape[0], -1, vit_embeds_64.shape[-1])
428
+ vit_embeds_64 = self.mlp2(vit_embeds_64)
429
+
430
+ vit_embeds_256 = self.pixel_shuffle(vit_embeds_256, scale_factor=self.downsample_ratio)
431
+ vit_embeds_256= vit_embeds_256.reshape(vit_embeds_256.shape[0], -1, vit_embeds_256.shape[-1])
432
+ vit_embeds_256 = self.mlp1(vit_embeds_256)
433
+
434
+ return vit_embeds_64, vit_embeds_256, gate
435
+
436
+ def extract_feature(self, pixel_values):
437
+ if self.select_layer == -1:
438
+ vit_embeds = self.vision_model(
439
+ pixel_values=pixel_values,
440
+ output_hidden_states=False,
441
+ return_dict=True).last_hidden_state
442
+ else:
443
+ vit_embeds = self.vision_model(
444
+ pixel_values=pixel_values,
445
+ output_hidden_states=True,
446
+ return_dict=True).hidden_states[self.select_layer]
447
+ vit_embeds = vit_embeds[:, 1:, :]
448
+
449
+ h = w = int(vit_embeds.shape[1] ** 0.5)
450
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
451
+ vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
452
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
453
+ vit_embeds = self.mlp1(vit_embeds)
454
+ return vit_embeds
455
+
456
+ def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
457
+ history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
458
+ IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
459
+ if history is not None or return_history:
460
+ print('Now multi-turn chat is not supported in batch_chat.')
461
+ raise NotImplementedError
462
+
463
+ if image_counts is not None:
464
+ num_patches_list = image_counts
465
+ print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
466
+
467
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
468
+ self.img_context_token_id = img_context_token_id
469
+
470
+ if verbose and pixel_values is not None:
471
+ image_bs = pixel_values.shape[0]
472
+ print(f'dynamic ViT batch size: {image_bs}')
473
+
474
+ queries = []
475
+ for idx, num_patches in enumerate(num_patches_list):
476
+ question = questions[idx]
477
+ if pixel_values is not None and '<image>' not in question:
478
+ question = '<image>\n' + question
479
+ template = get_conv_template(self.template)
480
+ template.system_message = self.system_message
481
+ template.append_message(template.roles[0], question)
482
+ template.append_message(template.roles[1], None)
483
+ query = template.get_prompt()
484
+
485
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
486
+ query = query.replace('<image>', image_tokens, 1)
487
+ queries.append(query)
488
+
489
+ tokenizer.padding_side = 'left'
490
+ model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
491
+ input_ids = model_inputs['input_ids'].to(self.device)
492
+ attention_mask = model_inputs['attention_mask'].to(self.device)
493
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
494
+ generation_config['eos_token_id'] = eos_token_id
495
+ generation_output = self.generate(
496
+ pixel_values=pixel_values,
497
+ input_ids=input_ids,
498
+ attention_mask=attention_mask,
499
+ **generation_config
500
+ )
501
+ responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
502
+ responses = [response.split(template.sep.strip())[0].strip() for response in responses]
503
+ return responses
504
+
505
+ def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
506
+ num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
507
+ verbose=False):
508
+
509
+ if history is None and pixel_values is not None and '<image>' not in question:
510
+ question = '<image>\n' + question
511
+
512
+ if num_patches_list is None:
513
+ num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
514
+ assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
515
+
516
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
517
+ self.img_context_token_id = img_context_token_id
518
+
519
+ template = get_conv_template(self.template)
520
+ template.system_message = self.system_message
521
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
522
+
523
+ history = [] if history is None else history
524
+ for (old_question, old_answer) in history:
525
+ template.append_message(template.roles[0], old_question)
526
+ template.append_message(template.roles[1], old_answer)
527
+ template.append_message(template.roles[0], question)
528
+ template.append_message(template.roles[1], None)
529
+ query = template.get_prompt()
530
+
531
+ if verbose and pixel_values is not None:
532
+ image_bs = pixel_values.shape[0]
533
+ print(f'dynamic ViT batch size: {image_bs}')
534
+
535
+ for num_patches in num_patches_list:
536
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
537
+ query = query.replace('<image>', image_tokens, 1)
538
+
539
+ model_inputs = tokenizer(query, return_tensors='pt')
540
+ input_ids = model_inputs['input_ids'].to(self.device)
541
+ attention_mask = model_inputs['attention_mask'].to(self.device)
542
+ generation_config['eos_token_id'] = eos_token_id
543
+ generation_output = self.generate(
544
+ pixel_values=pixel_values,
545
+ input_ids=input_ids,
546
+ attention_mask=attention_mask,
547
+ **generation_config
548
+ )
549
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
550
+ response = response.split(template.sep.strip())[0].strip()
551
+ history.append((question, response))
552
+ if return_history:
553
+ return response, history
554
+ else:
555
+ query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
556
+ query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
557
+ if verbose:
558
+ print(query_to_print, response)
559
+ return response
560
+
561
+ @torch.no_grad()
562
+ def generate_flash(
563
+ self,
564
+ pixel_values: Optional[torch.FloatTensor] = None,
565
+ input_ids: Optional[torch.FloatTensor] = None,
566
+ attention_mask: Optional[torch.LongTensor] = None,
567
+ visual_features: Optional[torch.FloatTensor] = None,
568
+ generation_config: Optional[GenerationConfig] = None,
569
+ output_hidden_states: Optional[bool] = None,
570
+ **generate_kwargs,
571
+ ) -> torch.LongTensor:
572
+
573
+ assert self.img_context_token_id is not None
574
+ if pixel_values is not None:
575
+ if visual_features is not None:
576
+ vit_embeds = visual_features
577
+ else:
578
+ lengths = self.get_image_num_per_sample(input_ids) / 256
579
+
580
+ lengths_sum = torch.ones(int(lengths.sum().item()), dtype=torch.int64)
581
+ lengths = lengths_sum.repeat_interleave(1)
582
+ vit_embeds_64, vit_embeds_256, gate_result = self.extract_feature_flash(pixel_values, lengths)
583
+
584
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
585
+ B, N, C = input_embeds.shape
586
+ input_embeds = input_embeds.reshape(B * N, C)
587
+
588
+ input_ids = input_ids.reshape(B * N)
589
+
590
+ relative_threshold_value = torch.quantile(gate_result[:, 0].to(torch.float32), self.flash_relative_threshold)
591
+ gate_result = (gate_result[:, 0] > relative_threshold_value) & (gate_result[:, 0] >= self.flash_absolute_threshold)
592
+
593
+ selected_embeds = []
594
+ for i in range(gate_result.size(0)):
595
+ if gate_result [i]:
596
+ selected_embeds.append(vit_embeds_64[i])
597
+ else:
598
+ selected_embeds.append(vit_embeds_256[i])
599
+
600
+ vit_embeds = torch.cat(selected_embeds, dim=0)
601
+
602
+ assert torch.all(attention_mask == 1)
603
+ input_embeds, input_ids, attention_mask, keep_mask = self.compress_visual_tokens_in_sentence(
604
+ input_embeds=input_embeds,
605
+ input_ids=input_ids,
606
+ mask_idx=attention_mask,
607
+ img_context_token_id=self.img_context_token_id,
608
+ gate_result=gate_result,
609
+ )
610
+
611
+ attention_mask = torch.ones(1, input_embeds.shape[0]).to(input_embeds.device)
612
+
613
+ selected = (input_ids == self.img_context_token_id)
614
+ assert selected.sum() != 0
615
+ input_embeds[selected] = vit_embeds.to(input_embeds.device)
616
+
617
+ input_embeds = input_embeds.reshape(B, -1, C)
618
+ else:
619
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
620
+
621
+ outputs = self.language_model.generate(
622
+ inputs_embeds=input_embeds,
623
+ attention_mask=attention_mask,
624
+ generation_config=generation_config,
625
+ output_hidden_states=output_hidden_states,
626
+ use_cache=True,
627
+ **generate_kwargs,
628
+ )
629
+
630
+ return outputs
631
+
632
+ @torch.no_grad()
633
+ def generate_normal(
634
+ self,
635
+ pixel_values: Optional[torch.FloatTensor] = None,
636
+ input_ids: Optional[torch.FloatTensor] = None,
637
+ attention_mask: Optional[torch.LongTensor] = None,
638
+ visual_features: Optional[torch.FloatTensor] = None,
639
+ generation_config: Optional[GenerationConfig] = None,
640
+ output_hidden_states: Optional[bool] = None,
641
+ **generate_kwargs,
642
+ ) -> torch.LongTensor:
643
+
644
+ assert self.img_context_token_id is not None
645
+ if pixel_values is not None:
646
+ if visual_features is not None:
647
+ vit_embeds = visual_features
648
+ else:
649
+ vit_embeds = self.extract_feature(pixel_values)
650
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
651
+ B, N, C = input_embeds.shape
652
+ input_embeds = input_embeds.reshape(B * N, C)
653
+
654
+ input_ids = input_ids.reshape(B * N)
655
+ selected = (input_ids == self.img_context_token_id)
656
+ assert selected.sum() != 0
657
+ input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
658
+
659
+ input_embeds = input_embeds.reshape(B, N, C)
660
+ else:
661
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
662
+
663
+ outputs = self.language_model.generate(
664
+ inputs_embeds=input_embeds,
665
+ attention_mask=attention_mask,
666
+ generation_config=generation_config,
667
+ output_hidden_states=output_hidden_states,
668
+ use_cache=True,
669
+ **generate_kwargs,
670
+ )
671
+
672
+ return outputs
673
+
674
+ def generate(
675
+ self,
676
+ pixel_values: Optional[torch.FloatTensor] = None,
677
+ input_ids: Optional[torch.FloatTensor] = None,
678
+ attention_mask: Optional[torch.LongTensor] = None,
679
+ visual_features: Optional[torch.FloatTensor] = None,
680
+ generation_config: Optional[GenerationConfig] = None,
681
+ output_hidden_states: Optional[bool] = None,
682
+ **generate_kwargs,
683
+ ) -> torch.LongTensor:
684
+
685
+ if getattr(self, "flash_mode", False):
686
+ return self.generate_flash(
687
+ pixel_values=pixel_values,
688
+ input_ids=input_ids,
689
+ attention_mask=attention_mask,
690
+ visual_features=visual_features,
691
+ generation_config=generation_config,
692
+ output_hidden_states=output_hidden_states,
693
+ **generate_kwargs,
694
+ )
695
+ else:
696
+ return self.generate_normal(
697
+ pixel_values=pixel_values,
698
+ input_ids=input_ids,
699
+ attention_mask=attention_mask,
700
+ visual_features=visual_features,
701
+ generation_config=generation_config,
702
+ output_hidden_states=output_hidden_states,
703
+ **generate_kwargs,
704
+ )
705
+
706
+ @property
707
+ def lm_head(self):
708
+ return self.language_model.get_output_embeddings()
709
+
710
+ def get_output_embeddings(self):
711
+ return self.language_model.get_output_embeddings()
712
+
713
+ def get_input_embeddings(self):
714
+ return self.language_model.get_input_embeddings()
715
+
716
+ def set_input_embeddings(self, value):
717
+ return self.language_model.set_input_embeddings(value)
718
+
719
+ def set_output_embeddings(self, value):
720
+ return self.language_model.set_output_embeddings(value)
preprocessor_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": null,
3
+ "crop_to_patches": false,
4
+ "data_format": "channels_first",
5
+ "default_to_square": true,
6
+ "device": null,
7
+ "do_center_crop": null,
8
+ "do_convert_rgb": true,
9
+ "do_normalize": true,
10
+ "do_rescale": true,
11
+ "do_resize": true,
12
+ "image_mean": [
13
+ 0.485,
14
+ 0.456,
15
+ 0.406
16
+ ],
17
+ "image_processor_type": "GotOcr2ImageProcessorFast",
18
+ "image_std": [
19
+ 0.229,
20
+ 0.224,
21
+ 0.225
22
+ ],
23
+ "input_data_format": null,
24
+ "max_patches": 12,
25
+ "min_patches": 1,
26
+ "processor_class": "InternVLProcessor",
27
+ "resample": 3,
28
+ "rescale_factor": 0.00392156862745098,
29
+ "return_tensors": null,
30
+ "size": {
31
+ "height": 448,
32
+ "width": 448
33
+ }
34
+ }
processor_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "image_seq_length": 256,
3
+ "processor_class": "InternVLProcessor"
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>",
16
+ "<img>",
17
+ "</img>",
18
+ "<IMG_CONTEXT>",
19
+ "<quad>",
20
+ "</quad>",
21
+ "<ref>",
22
+ "</ref>",
23
+ "<box>",
24
+ "</box>"
25
+ ],
26
+ "eos_token": {
27
+ "content": "<|im_end|>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ },
33
+ "pad_token": {
34
+ "content": "<|endoftext|>",
35
+ "lstrip": false,
36
+ "normalized": false,
37
+ "rstrip": false,
38
+ "single_word": false
39
+ }
40
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6581c44164d273d4222df982905a7e0450dcf3a4a7ebe98f9ec53e4de05beffe
3
+ size 11424300
tokenizer_config.json ADDED
@@ -0,0 +1,322 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "151643": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "151644": {
15
+ "content": "<|im_start|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "151645": {
23
+ "content": "<|im_end|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "151646": {
31
+ "content": "<|object_ref_start|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "151647": {
39
+ "content": "<|object_ref_end|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "151648": {
47
+ "content": "<|box_start|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "151649": {
55
+ "content": "<|box_end|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "151650": {
63
+ "content": "<|quad_start|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "151651": {
71
+ "content": "<|quad_end|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "151652": {
79
+ "content": "<|vision_start|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "151653": {
87
+ "content": "<|vision_end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "151654": {
95
+ "content": "<|vision_pad|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "151655": {
103
+ "content": "<|image_pad|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "151656": {
111
+ "content": "<|video_pad|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "151657": {
119
+ "content": "<tool_call>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "151658": {
127
+ "content": "</tool_call>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "151659": {
135
+ "content": "<|fim_prefix|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "151660": {
143
+ "content": "<|fim_middle|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "151661": {
151
+ "content": "<|fim_suffix|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "151662": {
159
+ "content": "<|fim_pad|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "151663": {
167
+ "content": "<|repo_name|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "151664": {
175
+ "content": "<|file_sep|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "151665": {
183
+ "content": "<tool_response>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": false
189
+ },
190
+ "151666": {
191
+ "content": "</tool_response>",
192
+ "lstrip": false,
193
+ "normalized": false,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": false
197
+ },
198
+ "151667": {
199
+ "content": "<think>",
200
+ "lstrip": false,
201
+ "normalized": false,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": false
205
+ },
206
+ "151668": {
207
+ "content": "</think>",
208
+ "lstrip": false,
209
+ "normalized": false,
210
+ "rstrip": false,
211
+ "single_word": false,
212
+ "special": false
213
+ },
214
+ "151669": {
215
+ "content": "<img>",
216
+ "lstrip": false,
217
+ "normalized": false,
218
+ "rstrip": false,
219
+ "single_word": false,
220
+ "special": true
221
+ },
222
+ "151670": {
223
+ "content": "</img>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": false,
227
+ "single_word": false,
228
+ "special": true
229
+ },
230
+ "151671": {
231
+ "content": "<IMG_CONTEXT>",
232
+ "lstrip": false,
233
+ "normalized": false,
234
+ "rstrip": false,
235
+ "single_word": false,
236
+ "special": true
237
+ },
238
+ "151672": {
239
+ "content": "<quad>",
240
+ "lstrip": false,
241
+ "normalized": false,
242
+ "rstrip": false,
243
+ "single_word": false,
244
+ "special": true
245
+ },
246
+ "151673": {
247
+ "content": "</quad>",
248
+ "lstrip": false,
249
+ "normalized": false,
250
+ "rstrip": false,
251
+ "single_word": false,
252
+ "special": true
253
+ },
254
+ "151674": {
255
+ "content": "<ref>",
256
+ "lstrip": false,
257
+ "normalized": false,
258
+ "rstrip": false,
259
+ "single_word": false,
260
+ "special": true
261
+ },
262
+ "151675": {
263
+ "content": "</ref>",
264
+ "lstrip": false,
265
+ "normalized": false,
266
+ "rstrip": false,
267
+ "single_word": false,
268
+ "special": true
269
+ },
270
+ "151676": {
271
+ "content": "<box>",
272
+ "lstrip": false,
273
+ "normalized": false,
274
+ "rstrip": false,
275
+ "single_word": false,
276
+ "special": true
277
+ },
278
+ "151677": {
279
+ "content": "</box>",
280
+ "lstrip": false,
281
+ "normalized": false,
282
+ "rstrip": false,
283
+ "single_word": false,
284
+ "special": true
285
+ }
286
+ },
287
+ "additional_special_tokens": [
288
+ "<|im_start|>",
289
+ "<|im_end|>",
290
+ "<|object_ref_start|>",
291
+ "<|object_ref_end|>",
292
+ "<|box_start|>",
293
+ "<|box_end|>",
294
+ "<|quad_start|>",
295
+ "<|quad_end|>",
296
+ "<|vision_start|>",
297
+ "<|vision_end|>",
298
+ "<|vision_pad|>",
299
+ "<|image_pad|>",
300
+ "<|video_pad|>",
301
+ "<img>",
302
+ "</img>",
303
+ "<IMG_CONTEXT>",
304
+ "<quad>",
305
+ "</quad>",
306
+ "<ref>",
307
+ "</ref>",
308
+ "<box>",
309
+ "</box>"
310
+ ],
311
+ "bos_token": null,
312
+ "clean_up_tokenization_spaces": false,
313
+ "eos_token": "<|im_end|>",
314
+ "errors": "replace",
315
+ "extra_special_tokens": {},
316
+ "model_max_length": 14588,
317
+ "pad_token": "<|endoftext|>",
318
+ "processor_class": "InternVLProcessor",
319
+ "split_special_tokens": false,
320
+ "tokenizer_class": "Qwen2Tokenizer",
321
+ "unk_token": null
322
+ }
video_preprocessor_config.json ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_valid_kwargs_names": [
3
+ "do_convert_rgb",
4
+ "do_resize",
5
+ "size",
6
+ "size_divisor",
7
+ "default_to_square",
8
+ "resample",
9
+ "do_rescale",
10
+ "rescale_factor",
11
+ "do_normalize",
12
+ "image_mean",
13
+ "image_std",
14
+ "do_pad",
15
+ "do_center_crop",
16
+ "crop_size",
17
+ "data_format",
18
+ "input_data_format",
19
+ "device"
20
+ ],
21
+ "crop_size": null,
22
+ "data_format": "channels_first",
23
+ "default_to_square": true,
24
+ "device": null,
25
+ "do_center_crop": null,
26
+ "do_convert_rgb": true,
27
+ "do_normalize": true,
28
+ "do_pad": null,
29
+ "do_rescale": true,
30
+ "do_resize": true,
31
+ "image_mean": [
32
+ 0.48145466,
33
+ 0.4578275,
34
+ 0.40821073
35
+ ],
36
+ "image_std": [
37
+ 0.26862954,
38
+ 0.26130258,
39
+ 0.27577711
40
+ ],
41
+ "input_data_format": null,
42
+ "model_valid_processing_keys": [
43
+ "do_convert_rgb",
44
+ "do_resize",
45
+ "size",
46
+ "size_divisor",
47
+ "default_to_square",
48
+ "resample",
49
+ "do_rescale",
50
+ "rescale_factor",
51
+ "do_normalize",
52
+ "image_mean",
53
+ "image_std",
54
+ "do_pad",
55
+ "do_center_crop",
56
+ "crop_size",
57
+ "data_format",
58
+ "input_data_format",
59
+ "device"
60
+ ],
61
+ "processor_class": "InternVLProcessor",
62
+ "resample": 3,
63
+ "rescale_factor": 0.00392156862745098,
64
+ "size": {
65
+ "height": 384,
66
+ "width": 384
67
+ },
68
+ "size_divisor": null,
69
+ "video_processor_type": "InternVLVideoProcessor"
70
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff