Jeronymous commited on
Commit
b222cd0
·
verified ·
1 Parent(s): 1d59112

Update README

Browse files
Files changed (1) hide show
  1. README.md +4 -176
README.md CHANGED
@@ -25,180 +25,8 @@ widget:
25
  # top_p: 1.0
26
  # top_k: null
27
  # max_new_tokens: null
 
 
 
 
28
  ---
29
-
30
- # Model Card for Lucie-7B
31
-
32
- <!-- inspired from the following template:
33
- https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1
34
- -->
35
-
36
- * [Model Description](#model-description)
37
- <!-- * [Uses](#uses) -->
38
- * [Example code in python](#example-code-in-python)
39
- * [Sentence completion](#sentence-completion)
40
- * [Load a checkpoint](#load-a-checkpoint)
41
- * [Training Details](#training-details)
42
- * [Training Data](#training-data)
43
- * [Training Procedure](#training-procedure)
44
- <!-- * [Evaluation](#evaluation) -->
45
- * [Acknowledgements](#acknowledgements)
46
- * [Contact](#contact)
47
-
48
- ## Model Description
49
-
50
- Lucie-7B is a pretrained 7B parameter causal language model built by [LINAGORA](https://labs.linagora.com/) and [OpenLLM-France](https://github.com/OpenLLM-France),
51
- available under the [Apache 2.0 license](https://www.apache.org/licenses/LICENSE-2.0).
52
-
53
- Lucie-7B was trained on 3 trillion tokens of multilingual data, including
54
- English (33.2%),
55
- French (32.4%),
56
- German (6.9%),
57
- Spanish (6.6%),
58
- Italian (3.8%),
59
- and parallel data from those languages (2.5%),
60
- as well as several programming languages (14.7%).
61
-
62
- ## Example code in python
63
-
64
- ### Sentence completion
65
-
66
- Load the model (quantized version on GPU if possible, for efficient inference):
67
- ```python
68
- import transformers
69
-
70
- model_name = "OpenLLM-France/Lucie-7B"
71
-
72
- tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
73
- model = transformers.AutoModelForCausalLM.from_pretrained(model_name,
74
- device_map="auto",
75
- load_in_4bit=True # For efficient inference, if quantization is supported by the GPU card
76
- )
77
- ```
78
-
79
- Wrap the model in a text generation pipeline, and prepare some generation parameters:
80
- ```
81
- pipeline = transformers.pipeline("text-generation", model=model, tokenizer=tokenizer)
82
-
83
- generation_kwargs = dict(
84
- num_return_sequences=1, # Number of variants to generate.
85
- return_full_text= False, # Do not include the prompt in the generated text.
86
- do_sample=True,
87
- temperature=1.0, top_p=1, top_k=None, # Sampling parameters.
88
- max_new_tokens=200, # Maximum length for the output text (in number of tokens).
89
- )
90
- ```
91
-
92
- Try 1-shot question answering:
93
- ```python
94
- prompt = """\
95
- Quelle est la capitale de l'Espagne ? Madrid\n\
96
- Quelle est la capitale de la France ?\
97
- """
98
- completions = pipeline(prompt, **generation_kwargs)
99
- for completion in completions:
100
- print(prompt + " […]" + completion['generated_text'])
101
- ```
102
- This will print something like:
103
- ```
104
- Quelle est la capitale de l'Espagne ? Madrid
105
- Quelle est la capitale de la France ? […] Paris
106
- Quelle est la capitale de l'Italie? Rome
107
- Quelle est la capitale de la Grande-Bretagne? Londres
108
- Quelle est la capitale de la Suisse? Berne
109
- Quelle est la capitale du Portugal? Lisbonne
110
- Quelle est la capitale de l'Algérie? Alger
111
- ...
112
- ```
113
-
114
- If running on GPU (`cuda` device), you will need at least 6GB of VRAM to run inference using 4bit quantization (16GB of VRAM without 4bit quantization).
115
-
116
- ### Load a checkpoint
117
-
118
- Checkpoints at several training steps are available under revision tags,
119
- every 5000 steps during the first 25000 steps, and then every 25000 steps.
120
-
121
- Intermediate checkpoints can be loaded using the `revision` parameter:
122
- ```python
123
- model = transformers.AutoModelForCausalLM.from_pretrained(model_name,
124
- revision="step0400000",
125
- ...
126
- )
127
- ```
128
- where `revision` can be one of: "`step0005000`", "`step0010000`", ..., "`step0025000`", "`step0050000`", "`step0075000`", ...
129
-
130
- ## Training Details
131
-
132
- ### Training Data
133
-
134
- The training dataset will be made available soon.
135
- <!-- at [OpenLLM-France/Lucie-Training-Dataset](https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset)
136
- and described in ["The Lucie Training Dataset" (2024/5)](https://arxiv.org/abs/xxxx.xxxxx). -->
137
-
138
- ### Training Procedure
139
-
140
- The training code is available at [https://github.com/OpenLLM-France/Lucie-Training](https://github.com/OpenLLM-France/Lucie-Training),
141
- and this based on [this fork of Megatron-DeepSpeed](https://github.com/OpenLLM-France/Megatron-DeepSpeed).
142
-
143
- Lucie-7B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token).
144
-
145
- It was trained on 512 H100 80GB GPUs for about <<TODO>> GPU hours on [Jean Zay supercomputer](http://www.idris.fr/eng/jean-zay/jean-zay-presentation-eng.html).
146
-
147
- #### Neural Network Architecture
148
-
149
- Lucie-7B has the same neural network architecture as Llama3.
150
- It has exactly 6 706 958 336 free parameters,
151
- with the following hyperparameters:
152
- | **Hyperparameter** | **Value** |
153
- |---------------------------|---------|
154
- | Vocabulary size (\# tokens)| 65 024|
155
- | ROPE theta | 500 000|
156
- | \# transformer blocks | 32|
157
- | \# attention heads | 32|
158
- | \# key-value heads | 8|
159
- | Hidden size | 4 096|
160
- | Feed-Forward hidden size | 12 288|
161
- | Activation | `silu`|
162
- | RMS norm epsilon | 1e-5|
163
-
164
- #### Training Hyperparameters
165
-
166
- Training hyperparameters in torch/Megatron-DeepSpeed were the following:
167
- | **Hyperparameter** | **Value** |
168
- |------------------------|------------|
169
- | Optimizer | `AdamW` |
170
- | Precision | `bfloat16` |
171
- | Initial batch size | 256 |
172
- | Final batch size | 1024 |
173
- | Batch size rampup | by steps of 64 over 10M samples |
174
- | Context length | 4096 |
175
- | Learning rate schedule | warmup + cosine annealing |
176
- | Maximum Learning rate | 3e-4 |
177
- | Final Learning rate | 3e-5 |
178
- | Weight decay | 0.1 |
179
- | Dropout | _ |
180
- | Gradient clipping | 1 |
181
- | Initializer range | 0.2 |
182
- | Tensor Parallelism (with 512 GPUs) | 4 |
183
- | Pipeline Parallelism (with 512 GPUs) | 4 |
184
- | Data Parallelism (with 512 GPUs) | 32 |
185
-
186
-
187
- ## Acknowledgements
188
-
189
- This work was performed using HPC resources from GENCI–IDRIS (Grant 2024-GC011015444).
190
-
191
- Lucie-7B was created by members of [LINAGORA](https://labs.linagora.com/) and OpenLLM-France community, including in alphabetical order:
192
- Christophe Cerisara (LORIA),
193
- Evan Dufraisse (CEA),
194
- Julie Hunter (LINAGORA),
195
- Jean-Pierre Lorré (LINAGORA),
196
- Jérôme Louradour (LINAGORA),
197
- Michel-Marie Maudet (LINAGORA),
198
- Olivier Gouvert (LINAGORA),
199
- Pierre-Carl Langlais (OpSci),
200
- Yaya Sy (LORIA).
201
-
202
- ## Contact
203
-
204
 
25
  # top_p: 1.0
26
  # top_k: null
27
  # max_new_tokens: null
28
+ training_progress:
29
+ num_steps: 753851
30
+ num_tokens: 3121742086144
31
+ context_length: 4096
32
  ---