Update README
Browse files
README.md
CHANGED
@@ -25,180 +25,8 @@ widget:
|
|
25 |
# top_p: 1.0
|
26 |
# top_k: null
|
27 |
# max_new_tokens: null
|
|
|
|
|
|
|
|
|
28 |
---
|
29 |
-
|
30 |
-
# Model Card for Lucie-7B
|
31 |
-
|
32 |
-
<!-- inspired from the following template:
|
33 |
-
https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1
|
34 |
-
-->
|
35 |
-
|
36 |
-
* [Model Description](#model-description)
|
37 |
-
<!-- * [Uses](#uses) -->
|
38 |
-
* [Example code in python](#example-code-in-python)
|
39 |
-
* [Sentence completion](#sentence-completion)
|
40 |
-
* [Load a checkpoint](#load-a-checkpoint)
|
41 |
-
* [Training Details](#training-details)
|
42 |
-
* [Training Data](#training-data)
|
43 |
-
* [Training Procedure](#training-procedure)
|
44 |
-
<!-- * [Evaluation](#evaluation) -->
|
45 |
-
* [Acknowledgements](#acknowledgements)
|
46 |
-
* [Contact](#contact)
|
47 |
-
|
48 |
-
## Model Description
|
49 |
-
|
50 |
-
Lucie-7B is a pretrained 7B parameter causal language model built by [LINAGORA](https://labs.linagora.com/) and [OpenLLM-France](https://github.com/OpenLLM-France),
|
51 |
-
available under the [Apache 2.0 license](https://www.apache.org/licenses/LICENSE-2.0).
|
52 |
-
|
53 |
-
Lucie-7B was trained on 3 trillion tokens of multilingual data, including
|
54 |
-
English (33.2%),
|
55 |
-
French (32.4%),
|
56 |
-
German (6.9%),
|
57 |
-
Spanish (6.6%),
|
58 |
-
Italian (3.8%),
|
59 |
-
and parallel data from those languages (2.5%),
|
60 |
-
as well as several programming languages (14.7%).
|
61 |
-
|
62 |
-
## Example code in python
|
63 |
-
|
64 |
-
### Sentence completion
|
65 |
-
|
66 |
-
Load the model (quantized version on GPU if possible, for efficient inference):
|
67 |
-
```python
|
68 |
-
import transformers
|
69 |
-
|
70 |
-
model_name = "OpenLLM-France/Lucie-7B"
|
71 |
-
|
72 |
-
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
73 |
-
model = transformers.AutoModelForCausalLM.from_pretrained(model_name,
|
74 |
-
device_map="auto",
|
75 |
-
load_in_4bit=True # For efficient inference, if quantization is supported by the GPU card
|
76 |
-
)
|
77 |
-
```
|
78 |
-
|
79 |
-
Wrap the model in a text generation pipeline, and prepare some generation parameters:
|
80 |
-
```
|
81 |
-
pipeline = transformers.pipeline("text-generation", model=model, tokenizer=tokenizer)
|
82 |
-
|
83 |
-
generation_kwargs = dict(
|
84 |
-
num_return_sequences=1, # Number of variants to generate.
|
85 |
-
return_full_text= False, # Do not include the prompt in the generated text.
|
86 |
-
do_sample=True,
|
87 |
-
temperature=1.0, top_p=1, top_k=None, # Sampling parameters.
|
88 |
-
max_new_tokens=200, # Maximum length for the output text (in number of tokens).
|
89 |
-
)
|
90 |
-
```
|
91 |
-
|
92 |
-
Try 1-shot question answering:
|
93 |
-
```python
|
94 |
-
prompt = """\
|
95 |
-
Quelle est la capitale de l'Espagne ? Madrid\n\
|
96 |
-
Quelle est la capitale de la France ?\
|
97 |
-
"""
|
98 |
-
completions = pipeline(prompt, **generation_kwargs)
|
99 |
-
for completion in completions:
|
100 |
-
print(prompt + " […]" + completion['generated_text'])
|
101 |
-
```
|
102 |
-
This will print something like:
|
103 |
-
```
|
104 |
-
Quelle est la capitale de l'Espagne ? Madrid
|
105 |
-
Quelle est la capitale de la France ? […] Paris
|
106 |
-
Quelle est la capitale de l'Italie? Rome
|
107 |
-
Quelle est la capitale de la Grande-Bretagne? Londres
|
108 |
-
Quelle est la capitale de la Suisse? Berne
|
109 |
-
Quelle est la capitale du Portugal? Lisbonne
|
110 |
-
Quelle est la capitale de l'Algérie? Alger
|
111 |
-
...
|
112 |
-
```
|
113 |
-
|
114 |
-
If running on GPU (`cuda` device), you will need at least 6GB of VRAM to run inference using 4bit quantization (16GB of VRAM without 4bit quantization).
|
115 |
-
|
116 |
-
### Load a checkpoint
|
117 |
-
|
118 |
-
Checkpoints at several training steps are available under revision tags,
|
119 |
-
every 5000 steps during the first 25000 steps, and then every 25000 steps.
|
120 |
-
|
121 |
-
Intermediate checkpoints can be loaded using the `revision` parameter:
|
122 |
-
```python
|
123 |
-
model = transformers.AutoModelForCausalLM.from_pretrained(model_name,
|
124 |
-
revision="step0400000",
|
125 |
-
...
|
126 |
-
)
|
127 |
-
```
|
128 |
-
where `revision` can be one of: "`step0005000`", "`step0010000`", ..., "`step0025000`", "`step0050000`", "`step0075000`", ...
|
129 |
-
|
130 |
-
## Training Details
|
131 |
-
|
132 |
-
### Training Data
|
133 |
-
|
134 |
-
The training dataset will be made available soon.
|
135 |
-
<!-- at [OpenLLM-France/Lucie-Training-Dataset](https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset)
|
136 |
-
and described in ["The Lucie Training Dataset" (2024/5)](https://arxiv.org/abs/xxxx.xxxxx). -->
|
137 |
-
|
138 |
-
### Training Procedure
|
139 |
-
|
140 |
-
The training code is available at [https://github.com/OpenLLM-France/Lucie-Training](https://github.com/OpenLLM-France/Lucie-Training),
|
141 |
-
and this based on [this fork of Megatron-DeepSpeed](https://github.com/OpenLLM-France/Megatron-DeepSpeed).
|
142 |
-
|
143 |
-
Lucie-7B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token).
|
144 |
-
|
145 |
-
It was trained on 512 H100 80GB GPUs for about <<TODO>> GPU hours on [Jean Zay supercomputer](http://www.idris.fr/eng/jean-zay/jean-zay-presentation-eng.html).
|
146 |
-
|
147 |
-
#### Neural Network Architecture
|
148 |
-
|
149 |
-
Lucie-7B has the same neural network architecture as Llama3.
|
150 |
-
It has exactly 6 706 958 336 free parameters,
|
151 |
-
with the following hyperparameters:
|
152 |
-
| **Hyperparameter** | **Value** |
|
153 |
-
|---------------------------|---------|
|
154 |
-
| Vocabulary size (\# tokens)| 65 024|
|
155 |
-
| ROPE theta | 500 000|
|
156 |
-
| \# transformer blocks | 32|
|
157 |
-
| \# attention heads | 32|
|
158 |
-
| \# key-value heads | 8|
|
159 |
-
| Hidden size | 4 096|
|
160 |
-
| Feed-Forward hidden size | 12 288|
|
161 |
-
| Activation | `silu`|
|
162 |
-
| RMS norm epsilon | 1e-5|
|
163 |
-
|
164 |
-
#### Training Hyperparameters
|
165 |
-
|
166 |
-
Training hyperparameters in torch/Megatron-DeepSpeed were the following:
|
167 |
-
| **Hyperparameter** | **Value** |
|
168 |
-
|------------------------|------------|
|
169 |
-
| Optimizer | `AdamW` |
|
170 |
-
| Precision | `bfloat16` |
|
171 |
-
| Initial batch size | 256 |
|
172 |
-
| Final batch size | 1024 |
|
173 |
-
| Batch size rampup | by steps of 64 over 10M samples |
|
174 |
-
| Context length | 4096 |
|
175 |
-
| Learning rate schedule | warmup + cosine annealing |
|
176 |
-
| Maximum Learning rate | 3e-4 |
|
177 |
-
| Final Learning rate | 3e-5 |
|
178 |
-
| Weight decay | 0.1 |
|
179 |
-
| Dropout | _ |
|
180 |
-
| Gradient clipping | 1 |
|
181 |
-
| Initializer range | 0.2 |
|
182 |
-
| Tensor Parallelism (with 512 GPUs) | 4 |
|
183 |
-
| Pipeline Parallelism (with 512 GPUs) | 4 |
|
184 |
-
| Data Parallelism (with 512 GPUs) | 32 |
|
185 |
-
|
186 |
-
|
187 |
-
## Acknowledgements
|
188 |
-
|
189 |
-
This work was performed using HPC resources from GENCI–IDRIS (Grant 2024-GC011015444).
|
190 |
-
|
191 |
-
Lucie-7B was created by members of [LINAGORA](https://labs.linagora.com/) and OpenLLM-France community, including in alphabetical order:
|
192 |
-
Christophe Cerisara (LORIA),
|
193 |
-
Evan Dufraisse (CEA),
|
194 |
-
Julie Hunter (LINAGORA),
|
195 |
-
Jean-Pierre Lorré (LINAGORA),
|
196 |
-
Jérôme Louradour (LINAGORA),
|
197 |
-
Michel-Marie Maudet (LINAGORA),
|
198 |
-
Olivier Gouvert (LINAGORA),
|
199 |
-
Pierre-Carl Langlais (OpSci),
|
200 |
-
Yaya Sy (LORIA).
|
201 |
-
|
202 |
-
## Contact
|
203 |
-
|
204 |
|
|
25 |
# top_p: 1.0
|
26 |
# top_k: null
|
27 |
# max_new_tokens: null
|
28 |
+
training_progress:
|
29 |
+
num_steps: 753851
|
30 |
+
num_tokens: 3121742086144
|
31 |
+
context_length: 4096
|
32 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|