mihaimasala commited on
Commit
e711307
·
verified ·
1 Parent(s): eda3674

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +127 -16
README.md CHANGED
@@ -27,13 +27,14 @@ OpenLLM-Ro represents the first open-source effort to build a LLM specialized fo
27
  - **Language(s):** Romanian
28
  - **License:** cc-by-nc-4.0
29
  - **Finetuned from model:** [gemma-7b](https://huggingface.co/google/gemma-7b)
 
30
 
31
 
32
  ### Model Sources
33
 
34
  <!-- Provide the basic links for the model. -->
35
 
36
- - **Repository:** https://github.com/OpenLLM-Ro/llama-recipes
37
  - **Paper:** https://arxiv.org/abs/2406.18266
38
 
39
  ## Intended Use
@@ -71,28 +72,138 @@ outputs = model.generate(input_ids=inputs, max_new_tokens=128)
71
  print(tokenizer.decode(outputs[0]))
72
  ```
73
 
74
- ## Benchmarks
75
-
76
- | Model | Average | ARC | MMLU |Winogrande|HellaSwag | GSM8k |TruthfulQA|
77
- |--------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
78
- | google/gemma-1.1-7b-it| 41.39 | 40.05 | 47.12 | 54.62 | 47.10 | 9.73 | 49.75 |
79
- | *RoGemma-7b-Instruct* | ***53.65*** | ***52.77*** | ***54.69*** | ***69.10*** | ***61.97*** | ***31.97*** | ***51.43*** |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
 
81
 
82
  ## MT-Bench
83
 
84
- | Model | Average | 1st turn | 2nd turn | Answers in Ro |
85
- |--------------------|:--------:|:--------:|:--------:|:--------:|
86
- | google/gemma-1.1-7b-it | 4.63 | 5.18 | 4.08 | **160 / 160**|
87
- | *RoGemma-7b-Instruct*| ***4.83***|***5.56***| ***4.10*** |**160 / 160**|
 
 
 
 
 
 
 
 
 
 
 
 
 
88
 
89
  ## RoCulturaBench
90
 
91
- | Model | Score | Answers in Ro|
92
- |--------------------|:--------:|:--------:|
93
- | google/gemma-1.1-7b-it | **3.22** | **100 / 100** |
94
- | *RoGemma-7b-Instruct*| *3.47*| ***100 / 100*** |
95
-
 
 
 
 
 
 
 
 
 
 
96
 
97
 
98
  ## RoGemma Model Family
 
27
  - **Language(s):** Romanian
28
  - **License:** cc-by-nc-4.0
29
  - **Finetuned from model:** [gemma-7b](https://huggingface.co/google/gemma-7b)
30
+ - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel)
31
 
32
 
33
  ### Model Sources
34
 
35
  <!-- Provide the basic links for the model. -->
36
 
37
+ - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
38
  - **Paper:** https://arxiv.org/abs/2406.18266
39
 
40
  ## Intended Use
 
72
  print(tokenizer.decode(outputs[0]))
73
  ```
74
 
75
+ ## Academic Benchmarks
76
+
77
+ <table>
78
+ <tbody>
79
+ <tr>
80
+ <td><strong>Model</strong></td>
81
+ <td><strong><center>Average</center></strong></td>
82
+ <td><strong><center>ARC</center></strong></td>
83
+ <td><strong><center>MMLU</center></strong></td>
84
+ <td><strong><center>Winogrande</center></strong></td>
85
+ <td><strong><center>Hellaswag</center></strong></td>
86
+ <td><strong><center>GSM8k</center></strong></td>
87
+ <td><strong><center>TruthfulQA</center></strong></td>
88
+ </tr>
89
+ <tr>
90
+ <td>gemma-1.1-7b-it</td><td><center>41.44</center></td><td><center>40.32</center></td><td><center>47.22</center></td><td><center>55.01</center></td><td><center>47.03</center></td><td><center>9.50</center></td><td><center>49.58</center></td>
91
+ </tr>
92
+ <tr>
93
+ <td><em>RoGemma-7b-Instruct</em></td><td><center><em><strong>53.42</strong></em></center></td><td><center><em><strong>52.44</strong></em></center></td><td><center><em><strong>54.44</strong></em></center></td><td><center><em><strong>69.36</strong></em></center></td><td><center><em><strong>61.96</strong></em></center></td><td><center><em><strong>31.06</strong></em></center></td><td><center><em><strong>51.23</strong></em></center></td>
94
+ </tr>
95
+ </tbody>
96
+ </table>
97
+
98
+ ## Downstream tasks
99
+
100
+ <table>
101
+ <tbody>
102
+ <tr>
103
+ <td></td>
104
+ <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
105
+ <td colspan="4"><center><strong>WMT</strong></center></td>
106
+ </tr>
107
+ <tr>
108
+ <td></td>
109
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
110
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
111
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
112
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
113
+ </tr>
114
+ <tr>
115
+ <td><strong>Model</strong></td>
116
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
117
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
118
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
119
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
120
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
121
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
122
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
123
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center>
124
+ </tr>
125
+ <tr>
126
+ <td>gemma-1.1-7b-it</td><td><center>87.54</center></td><td><center>51.49</center></td><td><center>83.87</center></td><td><center>85.61</center></td><td><center>17.96</center></td><td><center><strong>27.74</strong></center></td><td><center>25.48</center></td><td><center>36.11</center></td>
127
+ </tr>
128
+ <tr>
129
+ <td><em>RoGemma-7b-Instruct</em></td><td><center><em><strong>97.87</strong></em></center></td><td><center><em><strong>65.71</strong></em></center></td><td><center><em><strong>98.43</strong></em></center></td><td><center><em><strong>87.18</strong></em></center></td><td><center><em><strong>27.91</strong></em></center></td><td><center><em>23.08</em></center></td><td><center><em><strong>27.99</strong></em></center></td><td><center><em><strong>39.51</strong></em></center></td>
130
+ </tr>
131
+ </tbody>
132
+ </table>
133
+
134
+
135
+ <table>
136
+ <tbody>
137
+ <tr>
138
+ <td></td>
139
+ <td colspan="4"><center><strong>XQuAD</strong></center></td>
140
+ <td colspan="4"><center><strong>STS</strong></center></td>
141
+ </tr>
142
+ <tr>
143
+ <td></td>
144
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
145
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
146
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
147
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
148
+ </tr>
149
+ <tr>
150
+ <td><strong>Model</strong></td>
151
+ <td><center><strong>(EM)</strong></center></td>
152
+ <td><center><strong>(F1)</strong></center></td>
153
+ <td><center><strong>(EM)</strong></center></td>
154
+ <td><center><strong>(F1)</strong></center></td>
155
+ <td><center><strong>(Spearman)</strong></center></td>
156
+ <td><center><strong>(Pearson)</strong></center></td>
157
+ <td><center><strong>(Spearman)</strong></center></td>
158
+ <td><center><strong>(Pearson)</strong></center></td>
159
+ </tr>
160
+ <tr>
161
+ <td>gemma-1.1-7b-it</td><td><center><strong>42.10</strong></center></td><td><center><strong>62.30</strong></center></td><td><center><strong>60.34</strong></center></td><td><center><strong>77.40</strong></center></td><td><center>49.10</center></td><td><center>50.23</center></td><td><center>83.43</center></td><td><center>83.65</center></td>
162
+ </tr>
163
+ <tr>
164
+ <td><em>RoGemma-7b-Instruct</em></td><td><center><em>17.75</em></center></td><td><center><em>28.11</em></center></td><td><center><em>52.02</em></center></td><td><center><em>68.43</em></center></td><td><center><em><strong>73.96</strong></em></center></td><td><center><em><strong>75.16</strong></em></center></td><td><center><em><strong>86.45</strong></em></center></td><td><center><em><strong>86.31</strong></em></center></td>
165
+ </tr>
166
+ </tbody>
167
+ </table>
168
 
169
 
170
  ## MT-Bench
171
 
172
+ <table>
173
+ <tbody>
174
+ <tr>
175
+ <td><strong>Model</strong></td>
176
+ <td><strong><center>Average</center></strong></td>
177
+ <td><strong><center>1st turn</center></strong></td>
178
+ <td><strong><center>2nd turn</center></strong></td>
179
+ <td><strong><center>Answers in Ro</center></strong></td>
180
+ </tr>
181
+ <tr>
182
+ <td>gemma-1.1-7b-it</td><td><center>4.83</center></td><td><center>5.11</center></td><td><center>4.55</center></td><td><center><strong>160/160</strong></center></td>
183
+ </tr>
184
+ <tr>
185
+ <td><em>RoGemma-7b-Instruct</em></td><td><center><em><strong>5.26</strong></em></center></td><td><center><em><strong>5.92</strong></em></center></td><td><center><em><strong>4.60</strong></em></center></td><td><center><em><strong>160/160</strong></em></center></td>
186
+ </tr>
187
+ </tbody>
188
+ </table>
189
 
190
  ## RoCulturaBench
191
 
192
+ <table>
193
+ <tbody>
194
+ <tr>
195
+ <td><strong>Model</strong></td>
196
+ <td><strong><center>Average</center></strong></td>
197
+ <td><strong><center>Answers in Ro</center></strong></td>
198
+ </tr>
199
+ <tr>
200
+ <td>gemma-1.1-7b-it</td><td><center><strong>3.38</strong></center></td><td><center><strong>100/100</strong></center></td>
201
+ </tr>
202
+ <tr>
203
+ <td><em>RoGemma-7b-Instruct</em></td><td><center><em>3.26</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
204
+ </tr>
205
+ </tbody>
206
+ </table>
207
 
208
 
209
  ## RoGemma Model Family