Update README.md
Browse files
README.md
CHANGED
@@ -27,13 +27,14 @@ OpenLLM-Ro represents the first open-source effort to build a LLM specialized fo
|
|
27 |
- **Language(s):** Romanian
|
28 |
- **License:** cc-by-nc-4.0
|
29 |
- **Finetuned from model:** [gemma-7b](https://huggingface.co/google/gemma-7b)
|
|
|
30 |
|
31 |
|
32 |
### Model Sources
|
33 |
|
34 |
<!-- Provide the basic links for the model. -->
|
35 |
|
36 |
-
- **Repository:** https://github.com/OpenLLM-Ro/
|
37 |
- **Paper:** https://arxiv.org/abs/2406.18266
|
38 |
|
39 |
## Intended Use
|
@@ -71,28 +72,138 @@ outputs = model.generate(input_ids=inputs, max_new_tokens=128)
|
|
71 |
print(tokenizer.decode(outputs[0]))
|
72 |
```
|
73 |
|
74 |
-
## Benchmarks
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
|
82 |
## MT-Bench
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
## RoCulturaBench
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
|
98 |
## RoGemma Model Family
|
|
|
27 |
- **Language(s):** Romanian
|
28 |
- **License:** cc-by-nc-4.0
|
29 |
- **Finetuned from model:** [gemma-7b](https://huggingface.co/google/gemma-7b)
|
30 |
+
- **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel)
|
31 |
|
32 |
|
33 |
### Model Sources
|
34 |
|
35 |
<!-- Provide the basic links for the model. -->
|
36 |
|
37 |
+
- **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
|
38 |
- **Paper:** https://arxiv.org/abs/2406.18266
|
39 |
|
40 |
## Intended Use
|
|
|
72 |
print(tokenizer.decode(outputs[0]))
|
73 |
```
|
74 |
|
75 |
+
## Academic Benchmarks
|
76 |
+
|
77 |
+
<table>
|
78 |
+
<tbody>
|
79 |
+
<tr>
|
80 |
+
<td><strong>Model</strong></td>
|
81 |
+
<td><strong><center>Average</center></strong></td>
|
82 |
+
<td><strong><center>ARC</center></strong></td>
|
83 |
+
<td><strong><center>MMLU</center></strong></td>
|
84 |
+
<td><strong><center>Winogrande</center></strong></td>
|
85 |
+
<td><strong><center>Hellaswag</center></strong></td>
|
86 |
+
<td><strong><center>GSM8k</center></strong></td>
|
87 |
+
<td><strong><center>TruthfulQA</center></strong></td>
|
88 |
+
</tr>
|
89 |
+
<tr>
|
90 |
+
<td>gemma-1.1-7b-it</td><td><center>41.44</center></td><td><center>40.32</center></td><td><center>47.22</center></td><td><center>55.01</center></td><td><center>47.03</center></td><td><center>9.50</center></td><td><center>49.58</center></td>
|
91 |
+
</tr>
|
92 |
+
<tr>
|
93 |
+
<td><em>RoGemma-7b-Instruct</em></td><td><center><em><strong>53.42</strong></em></center></td><td><center><em><strong>52.44</strong></em></center></td><td><center><em><strong>54.44</strong></em></center></td><td><center><em><strong>69.36</strong></em></center></td><td><center><em><strong>61.96</strong></em></center></td><td><center><em><strong>31.06</strong></em></center></td><td><center><em><strong>51.23</strong></em></center></td>
|
94 |
+
</tr>
|
95 |
+
</tbody>
|
96 |
+
</table>
|
97 |
+
|
98 |
+
## Downstream tasks
|
99 |
+
|
100 |
+
<table>
|
101 |
+
<tbody>
|
102 |
+
<tr>
|
103 |
+
<td></td>
|
104 |
+
<td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
|
105 |
+
<td colspan="4"><center><strong>WMT</strong></center></td>
|
106 |
+
</tr>
|
107 |
+
<tr>
|
108 |
+
<td></td>
|
109 |
+
<td colspan="2"><center><strong>Few-shot</strong></center></td>
|
110 |
+
<td colspan="2"><center><strong>Finetuned</strong></center></td>
|
111 |
+
<td colspan="2"><center><strong>Few-shot</strong></center></td>
|
112 |
+
<td colspan="2"><center><strong>Finetuned</strong></center></td>
|
113 |
+
</tr>
|
114 |
+
<tr>
|
115 |
+
<td><strong>Model</strong></td>
|
116 |
+
<td><center><strong>Binary<br>(Macro F1)</strong></center></td>
|
117 |
+
<td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
|
118 |
+
<td><center><strong>Binary<br>(Macro F1)</strong></center></td>
|
119 |
+
<td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
|
120 |
+
<td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
|
121 |
+
<td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
|
122 |
+
<td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
|
123 |
+
<td><center><strong>RO-EN<br>(Bleu)</strong></center>
|
124 |
+
</tr>
|
125 |
+
<tr>
|
126 |
+
<td>gemma-1.1-7b-it</td><td><center>87.54</center></td><td><center>51.49</center></td><td><center>83.87</center></td><td><center>85.61</center></td><td><center>17.96</center></td><td><center><strong>27.74</strong></center></td><td><center>25.48</center></td><td><center>36.11</center></td>
|
127 |
+
</tr>
|
128 |
+
<tr>
|
129 |
+
<td><em>RoGemma-7b-Instruct</em></td><td><center><em><strong>97.87</strong></em></center></td><td><center><em><strong>65.71</strong></em></center></td><td><center><em><strong>98.43</strong></em></center></td><td><center><em><strong>87.18</strong></em></center></td><td><center><em><strong>27.91</strong></em></center></td><td><center><em>23.08</em></center></td><td><center><em><strong>27.99</strong></em></center></td><td><center><em><strong>39.51</strong></em></center></td>
|
130 |
+
</tr>
|
131 |
+
</tbody>
|
132 |
+
</table>
|
133 |
+
|
134 |
+
|
135 |
+
<table>
|
136 |
+
<tbody>
|
137 |
+
<tr>
|
138 |
+
<td></td>
|
139 |
+
<td colspan="4"><center><strong>XQuAD</strong></center></td>
|
140 |
+
<td colspan="4"><center><strong>STS</strong></center></td>
|
141 |
+
</tr>
|
142 |
+
<tr>
|
143 |
+
<td></td>
|
144 |
+
<td colspan="2"><center><strong>Few-shot</strong></center></td>
|
145 |
+
<td colspan="2"><center><strong>Finetuned</strong></center></td>
|
146 |
+
<td colspan="2"><center><strong>Few-shot</strong></center></td>
|
147 |
+
<td colspan="2"><center><strong>Finetuned</strong></center></td>
|
148 |
+
</tr>
|
149 |
+
<tr>
|
150 |
+
<td><strong>Model</strong></td>
|
151 |
+
<td><center><strong>(EM)</strong></center></td>
|
152 |
+
<td><center><strong>(F1)</strong></center></td>
|
153 |
+
<td><center><strong>(EM)</strong></center></td>
|
154 |
+
<td><center><strong>(F1)</strong></center></td>
|
155 |
+
<td><center><strong>(Spearman)</strong></center></td>
|
156 |
+
<td><center><strong>(Pearson)</strong></center></td>
|
157 |
+
<td><center><strong>(Spearman)</strong></center></td>
|
158 |
+
<td><center><strong>(Pearson)</strong></center></td>
|
159 |
+
</tr>
|
160 |
+
<tr>
|
161 |
+
<td>gemma-1.1-7b-it</td><td><center><strong>42.10</strong></center></td><td><center><strong>62.30</strong></center></td><td><center><strong>60.34</strong></center></td><td><center><strong>77.40</strong></center></td><td><center>49.10</center></td><td><center>50.23</center></td><td><center>83.43</center></td><td><center>83.65</center></td>
|
162 |
+
</tr>
|
163 |
+
<tr>
|
164 |
+
<td><em>RoGemma-7b-Instruct</em></td><td><center><em>17.75</em></center></td><td><center><em>28.11</em></center></td><td><center><em>52.02</em></center></td><td><center><em>68.43</em></center></td><td><center><em><strong>73.96</strong></em></center></td><td><center><em><strong>75.16</strong></em></center></td><td><center><em><strong>86.45</strong></em></center></td><td><center><em><strong>86.31</strong></em></center></td>
|
165 |
+
</tr>
|
166 |
+
</tbody>
|
167 |
+
</table>
|
168 |
|
169 |
|
170 |
## MT-Bench
|
171 |
|
172 |
+
<table>
|
173 |
+
<tbody>
|
174 |
+
<tr>
|
175 |
+
<td><strong>Model</strong></td>
|
176 |
+
<td><strong><center>Average</center></strong></td>
|
177 |
+
<td><strong><center>1st turn</center></strong></td>
|
178 |
+
<td><strong><center>2nd turn</center></strong></td>
|
179 |
+
<td><strong><center>Answers in Ro</center></strong></td>
|
180 |
+
</tr>
|
181 |
+
<tr>
|
182 |
+
<td>gemma-1.1-7b-it</td><td><center>4.83</center></td><td><center>5.11</center></td><td><center>4.55</center></td><td><center><strong>160/160</strong></center></td>
|
183 |
+
</tr>
|
184 |
+
<tr>
|
185 |
+
<td><em>RoGemma-7b-Instruct</em></td><td><center><em><strong>5.26</strong></em></center></td><td><center><em><strong>5.92</strong></em></center></td><td><center><em><strong>4.60</strong></em></center></td><td><center><em><strong>160/160</strong></em></center></td>
|
186 |
+
</tr>
|
187 |
+
</tbody>
|
188 |
+
</table>
|
189 |
|
190 |
## RoCulturaBench
|
191 |
|
192 |
+
<table>
|
193 |
+
<tbody>
|
194 |
+
<tr>
|
195 |
+
<td><strong>Model</strong></td>
|
196 |
+
<td><strong><center>Average</center></strong></td>
|
197 |
+
<td><strong><center>Answers in Ro</center></strong></td>
|
198 |
+
</tr>
|
199 |
+
<tr>
|
200 |
+
<td>gemma-1.1-7b-it</td><td><center><strong>3.38</strong></center></td><td><center><strong>100/100</strong></center></td>
|
201 |
+
</tr>
|
202 |
+
<tr>
|
203 |
+
<td><em>RoGemma-7b-Instruct</em></td><td><center><em>3.26</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
|
204 |
+
</tr>
|
205 |
+
</tbody>
|
206 |
+
</table>
|
207 |
|
208 |
|
209 |
## RoGemma Model Family
|