--- license: cc-by-nc-4.0 language: - ro base_model: - google/gemma-7b --- # Model Card for Model ID RoGemma is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **instruct 7B model**. Links to other models can be found at the bottom of this page. ## Model Details ### Model Description OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants. - **Developed by:** OpenLLM-Ro - **Language(s):** Romanian - **License:** cc-by-nc-4.0 - **Finetuned from model:** [gemma-7b](https://huggingface.co/google/gemma-7b) - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel) ### Model Sources - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory - **Paper:** https://arxiv.org/abs/2406.18266 ## Intended Use ### Intended Use Cases RoGemma is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat. ### Out-of-Scope Use Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian. ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoGemma-7b-Instruct") model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoGemma-7b-Instruct") instruction = "Ce jocuri de societate pot juca cu prietenii mei?" chat = [ {"role": "user", "content": instruction}, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="") inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") outputs = model.generate(input_ids=inputs, max_new_tokens=128) print(tokenizer.decode(outputs[0])) ``` ## Academic Benchmarks
Model | |||||||
gemma-1.1-7b-it | |||||||
RoGemma-7b-Instruct |
Model | (Macro F1) |
(Macro F1) |
(Macro F1) |
(Macro F1) |
(Bleu) |
(Bleu) |
(Bleu) |
(Bleu) |
gemma-1.1-7b-it | ||||||||
RoGemma-7b-Instruct |
Model | ||||||||
gemma-1.1-7b-it | ||||||||
RoGemma-7b-Instruct |
Model | ||||
gemma-1.1-7b-it | ||||
RoGemma-7b-Instruct |
Model | ||
gemma-1.1-7b-it | ||
RoGemma-7b-Instruct |