--- license: cc-by-nc-4.0 language: - ro base_model: - google/gemma-7b --- # Model Card for Model ID RoGemma is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **instruct 7B model**. Links to other models can be found at the bottom of this page. ## Model Details ### Model Description OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants. - **Developed by:** OpenLLM-Ro - **Language(s):** Romanian - **License:** cc-by-nc-4.0 - **Finetuned from model:** [gemma-7b](https://huggingface.co/google/gemma-7b) - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel) ### Model Sources - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory - **Paper:** https://arxiv.org/abs/2406.18266 ## Intended Use ### Intended Use Cases RoGemma is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat. ### Out-of-Scope Use Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian. ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoGemma-7b-Instruct") model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoGemma-7b-Instruct") instruction = "Ce jocuri de societate pot juca cu prietenii mei?" chat = [ {"role": "user", "content": instruction}, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="") inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") outputs = model.generate(input_ids=inputs, max_new_tokens=128) print(tokenizer.decode(outputs[0])) ``` ## Academic Benchmarks
Model
Average
ARC
MMLU
Winogrande
Hellaswag
GSM8k
TruthfulQA
gemma-1.1-7b-it
41.44
40.32
47.22
55.01
47.03
9.50
49.58
RoGemma-7b-Instruct
53.42
52.44
54.44
69.36
61.96
31.06
51.23
## Downstream tasks
LaRoSeDa
WMT
Few-shot
Finetuned
Few-shot
Finetuned
Model
Binary
(Macro F1)
Multiclass
(Macro F1)
Binary
(Macro F1)
Multiclass
(Macro F1)
EN-RO
(Bleu)
RO-EN
(Bleu)
EN-RO
(Bleu)
RO-EN
(Bleu)
gemma-1.1-7b-it
87.54
51.49
83.87
85.61
17.96
27.74
25.48
36.11
RoGemma-7b-Instruct
97.87
65.71
98.43
87.18
27.91
23.08
27.99
39.51
XQuAD
STS
Few-shot
Finetuned
Few-shot
Finetuned
Model
(EM)
(F1)
(EM)
(F1)
(Spearman)
(Pearson)
(Spearman)
(Pearson)
gemma-1.1-7b-it
42.10
62.30
60.34
77.40
49.10
50.23
83.43
83.65
RoGemma-7b-Instruct
17.75
28.11
52.02
68.43
73.96
75.16
86.45
86.31
## MT-Bench
Model
Average
1st turn
2nd turn
Answers in Ro
gemma-1.1-7b-it
4.83
5.11
4.55
160/160
RoGemma-7b-Instruct
5.26
5.92
4.60
160/160
## RoCulturaBench
Model
Average
Answers in Ro
gemma-1.1-7b-it
3.38
100/100
RoGemma-7b-Instruct
3.26
100/100
## RoGemma Model Family | Model | Link | |--------------------|:--------:| |*RoGemma-7b-Instruct*| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct) | ## Citation ``` @misc{masala2024vorbecstiromanecsterecipetrain, title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions}, author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea}, year={2024}, eprint={2406.18266}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2406.18266}, } ```