mihaimasala commited on
Commit
4e90d44
·
verified ·
1 Parent(s): b6da8e1

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +692 -749
README.md CHANGED
@@ -1,750 +1,693 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- language:
4
- - ro
5
- base_model:
6
- - google/gemma-7b
7
- datasets:
8
- - OpenLLM-Ro/ro_sft_alpaca
9
- - OpenLLM-Ro/ro_sft_alpaca_gpt4
10
- - OpenLLM-Ro/ro_sft_dolly
11
- - OpenLLM-Ro/ro_sft_selfinstruct_gpt4
12
- - OpenLLM-Ro/ro_sft_norobots
13
- - OpenLLM-Ro/ro_sft_orca
14
- - OpenLLM-Ro/ro_sft_camel
15
- - OpenLLM-Ro/ro_sft_oasst
16
- - OpenLLM-Ro/ro_sft_ultrachat
17
- model-index:
18
- - name: OpenLLM-Ro/RoGemma-7b-Instruct-2024-10-09
19
- results:
20
- - task:
21
- type: text-generation
22
- dataset:
23
- name: RoMT-Bench
24
- type: RoMT-Bench
25
- metrics:
26
- - name: Score
27
- type: Score
28
- value: 5.24
29
- - task:
30
- type: text-generation
31
- dataset:
32
- name: RoCulturaBench
33
- type: RoCulturaBench
34
- metrics:
35
- - name: Score
36
- type: Score
37
- value: 3.51
38
- - task:
39
- type: text-generation
40
- dataset:
41
- name: Romanian_Academic_Benchmarks
42
- type: Romanian_Academic_Benchmarks
43
- metrics:
44
- - name: Average accuracy
45
- type: accuracy
46
- value: 50.48
47
- - task:
48
- type: text-generation
49
- dataset:
50
- name: OpenLLM-Ro/ro_arc_challenge
51
- type: OpenLLM-Ro/ro_arc_challenge
52
- metrics:
53
- - name: Average accuracy
54
- type: accuracy
55
- value: 52.01
56
- - task:
57
- type: text-generation
58
- dataset:
59
- name: OpenLLM-Ro/ro_mmlu
60
- type: OpenLLM-Ro/ro_mmlu
61
- metrics:
62
- - name: Average accuracy
63
- type: accuracy
64
- value: 52.37
65
- - task:
66
- type: text-generation
67
- dataset:
68
- name: OpenLLM-Ro/ro_winogrande
69
- type: OpenLLM-Ro/ro_winogrande
70
- metrics:
71
- - name: Average accuracy
72
- type: accuracy
73
- value: 66.97
74
- - task:
75
- type: text-generation
76
- dataset:
77
- name: OpenLLM-Ro/ro_hellaswag
78
- type: OpenLLM-Ro/ro_hellaswag
79
- metrics:
80
- - name: Average accuracy
81
- type: accuracy
82
- value: 56.34
83
- - task:
84
- type: text-generation
85
- dataset:
86
- name: OpenLLM-Ro/ro_gsm8k
87
- type: OpenLLM-Ro/ro_gsm8k
88
- metrics:
89
- - name: Average accuracy
90
- type: accuracy
91
- value: 25.98
92
- - task:
93
- type: text-generation
94
- dataset:
95
- name: OpenLLM-Ro/ro_truthfulqa
96
- type: OpenLLM-Ro/ro_truthfulqa
97
- metrics:
98
- - name: Average accuracy
99
- type: accuracy
100
- value: 49.18
101
- - task:
102
- type: text-generation
103
- dataset:
104
- name: LaRoSeDa_binary
105
- type: LaRoSeDa_binary
106
- metrics:
107
- - name: Average macro-f1
108
- type: macro-f1
109
- value: 86.96
110
- - task:
111
- type: text-generation
112
- dataset:
113
- name: LaRoSeDa_multiclass
114
- type: LaRoSeDa_multiclass
115
- metrics:
116
- - name: Average macro-f1
117
- type: macro-f1
118
- value: 56.72
119
- - task:
120
- type: text-generation
121
- dataset:
122
- name: LaRoSeDa_binary_finetuned
123
- type: LaRoSeDa_binary_finetuned
124
- metrics:
125
- - name: Average macro-f1
126
- type: macro-f1
127
- value: 98.80
128
- - task:
129
- type: text-generation
130
- dataset:
131
- name: LaRoSeDa_multiclass_finetuned
132
- type: LaRoSeDa_multiclass_finetuned
133
- metrics:
134
- - name: Average macro-f1
135
- type: macro-f1
136
- value: 85.81
137
- - task:
138
- type: text-generation
139
- dataset:
140
- name: WMT_EN-RO
141
- type: WMT_EN-RO
142
- metrics:
143
- - name: Average bleu
144
- type: bleu
145
- value: 24.45
146
- - task:
147
- type: text-generation
148
- dataset:
149
- name: WMT_RO-EN
150
- type: WMT_RO-EN
151
- metrics:
152
- - name: Average bleu
153
- type: bleu
154
- value: 14.20
155
- - task:
156
- type: text-generation
157
- dataset:
158
- name: WMT_EN-RO_finetuned
159
- type: WMT_EN-RO_finetuned
160
- metrics:
161
- - name: Average bleu
162
- type: bleu
163
- value: 25.96
164
- - task:
165
- type: text-generation
166
- dataset:
167
- name: WMT_RO-EN_finetuned
168
- type: WMT_RO-EN_finetuned
169
- metrics:
170
- - name: Average bleu
171
- type: bleu
172
- value: 39.07
173
- - task:
174
- type: text-generation
175
- dataset:
176
- name: XQuAD
177
- type: XQuAD
178
- metrics:
179
- - name: Average exact_match
180
- type: exact_match
181
- value: 26.03
182
- - task:
183
- type: text-generation
184
- dataset:
185
- name: XQuAD
186
- type: XQuAD
187
- metrics:
188
- - name: Average f1
189
- type: f1
190
- value: 41.58
191
- - task:
192
- type: text-generation
193
- dataset:
194
- name: XQuAD_finetuned
195
- type: XQuAD_finetuned
196
- metrics:
197
- - name: Average exact_match
198
- type: exact_match
199
- value: 46.72
200
- - task:
201
- type: text-generation
202
- dataset:
203
- name: XQuAD_finetuned
204
- type: XQuAD_finetuned
205
- metrics:
206
- - name: Average f1
207
- type: f1
208
- value: 60.79
209
- - task:
210
- type: text-generation
211
- dataset:
212
- name: STS
213
- type: STS
214
- metrics:
215
- - name: Average spearman
216
- type: spearman
217
- value: 73.23
218
- - task:
219
- type: text-generation
220
- dataset:
221
- name: STS
222
- type: STS
223
- metrics:
224
- - name: Average pearson
225
- type: pearson
226
- value: 71.58
227
- - task:
228
- type: text-generation
229
- dataset:
230
- name: STS_finetuned
231
- type: STS_finetuned
232
- metrics:
233
- - name: Average spearman
234
- type: spearman
235
- value: 88.42
236
- - task:
237
- type: text-generation
238
- dataset:
239
- name: STS_finetuned
240
- type: STS_finetuned
241
- metrics:
242
- - name: Average pearson
243
- type: pearson
244
- value: 88.45
245
- - task:
246
- type: text-generation
247
- dataset:
248
- name: RoMT-Bench
249
- type: RoMT-Bench
250
- metrics:
251
- - name: First turn
252
- type: Score
253
- value: 5.55
254
- - name: Second turn
255
- type: Score
256
- value: 4.94
257
- - task:
258
- type: text-generation
259
- dataset:
260
- name: OpenLLM-Ro/ro_arc_challenge
261
- type: OpenLLM-Ro/ro_arc_challenge
262
- metrics:
263
- - name: 0-shot
264
- type: accuracy
265
- value: 49.53
266
- - name: 1-shot
267
- type: accuracy
268
- value: 52.53
269
- - name: 3-shot
270
- type: accuracy
271
- value: 51.50
272
- - name: 5-shot
273
- type: accuracy
274
- value: 53.56
275
- - name: 10-shot
276
- type: accuracy
277
- value: 52.53
278
- - name: 25-shot
279
- type: accuracy
280
- value: 52.44
281
- - task:
282
- type: text-generation
283
- dataset:
284
- name: OpenLLM-Ro/ro_mmlu
285
- type: OpenLLM-Ro/ro_mmlu
286
- metrics:
287
- - name: 0-shot
288
- type: accuracy
289
- value: 51.81
290
- - name: 1-shot
291
- type: accuracy
292
- value: 52.45
293
- - name: 3-shot
294
- type: accuracy
295
- value: 52.52
296
- - name: 5-shot
297
- type: accuracy
298
- value: 52.70
299
- - task:
300
- type: text-generation
301
- dataset:
302
- name: OpenLLM-Ro/ro_winogrande
303
- type: OpenLLM-Ro/ro_winogrande
304
- metrics:
305
- - name: 0-shot
306
- type: accuracy
307
- value: 66.54
308
- - name: 1-shot
309
- type: accuracy
310
- value: 66.69
311
- - name: 3-shot
312
- type: accuracy
313
- value: 67.09
314
- - name: 5-shot
315
- type: accuracy
316
- value: 67.56
317
- - task:
318
- type: text-generation
319
- dataset:
320
- name: OpenLLM-Ro/ro_hellaswag
321
- type: OpenLLM-Ro/ro_hellaswag
322
- metrics:
323
- - name: 0-shot
324
- type: accuracy
325
- value: 58.80
326
- - name: 1-shot
327
- type: accuracy
328
- value: 57.04
329
- - name: 3-shot
330
- type: accuracy
331
- value: 55.85
332
- - name: 5-shot
333
- type: accuracy
334
- value: 54.15
335
- - name: 10-shot
336
- type: accuracy
337
- value: 55.88
338
- - task:
339
- type: text-generation
340
- dataset:
341
- name: OpenLLM-Ro/ro_gsm8k
342
- type: OpenLLM-Ro/ro_gsm8k
343
- metrics:
344
- - name: 1-shot
345
- type: accuracy
346
- value: 22.06
347
- - name: 3-shot
348
- type: accuracy
349
- value: 25.40
350
- - name: 5-shot
351
- type: accuracy
352
- value: 30.48
353
- - task:
354
- type: text-generation
355
- dataset:
356
- name: LaRoSeDa_binary
357
- type: LaRoSeDa_binary
358
- metrics:
359
- - name: 0-shot
360
- type: macro-f1
361
- value: 87.28
362
- - name: 1-shot
363
- type: macro-f1
364
- value: 86.40
365
- - name: 3-shot
366
- type: macro-f1
367
- value: 87.95
368
- - name: 5-shot
369
- type: macro-f1
370
- value: 86.20
371
- - task:
372
- type: text-generation
373
- dataset:
374
- name: LaRoSeDa_multiclass
375
- type: LaRoSeDa_multiclass
376
- metrics:
377
- - name: 0-shot
378
- type: macro-f1
379
- value: 38.35
380
- - name: 1-shot
381
- type: macro-f1
382
- value: 63.86
383
- - name: 3-shot
384
- type: macro-f1
385
- value: 62.03
386
- - name: 5-shot
387
- type: macro-f1
388
- value: 62.62
389
- - task:
390
- type: text-generation
391
- dataset:
392
- name: WMT_EN-RO
393
- type: WMT_EN-RO
394
- metrics:
395
- - name: 0-shot
396
- type: bleu
397
- value: 11.39
398
- - name: 1-shot
399
- type: bleu
400
- value: 28.08
401
- - name: 3-shot
402
- type: bleu
403
- value: 29.18
404
- - name: 5-shot
405
- type: bleu
406
- value: 29.13
407
- - task:
408
- type: text-generation
409
- dataset:
410
- name: WMT_RO-EN
411
- type: WMT_RO-EN
412
- metrics:
413
- - name: 0-shot
414
- type: bleu
415
- value: 1.92
416
- - name: 1-shot
417
- type: bleu
418
- value: 9.39
419
- - name: 3-shot
420
- type: bleu
421
- value: 21.81
422
- - name: 5-shot
423
- type: bleu
424
- value: 23.66
425
- - task:
426
- type: text-generation
427
- dataset:
428
- name: XQuAD_EM
429
- type: XQuAD_EM
430
- metrics:
431
- - name: 0-shot
432
- type: exact_match
433
- value: 32.77
434
- - name: 1-shot
435
- type: exact_match
436
- value: 20.25
437
- - name: 3-shot
438
- type: exact_match
439
- value: 18.49
440
- - name: 5-shot
441
- type: exact_match
442
- value: 32.60
443
- - task:
444
- type: text-generation
445
- dataset:
446
- name: XQuAD_F1
447
- type: XQuAD_F1
448
- metrics:
449
- - name: 0-shot
450
- type: f1
451
- value: 47.98
452
- - name: 1-shot
453
- type: f1
454
- value: 34.92
455
- - name: 3-shot
456
- type: f1
457
- value: 33.27
458
- - name: 5-shot
459
- type: f1
460
- value: 50.14
461
- - task:
462
- type: text-generation
463
- dataset:
464
- name: STS_Spearman
465
- type: STS_Spearman
466
- metrics:
467
- - name: 1-shot
468
- type: spearman
469
- value: 71.75
470
- - name: 3-shot
471
- type: spearman
472
- value: 71.83
473
- - name: 5-shot
474
- type: spearman
475
- value: 76.11
476
- - task:
477
- type: text-generation
478
- dataset:
479
- name: STS_Pearson
480
- type: STS_Pearson
481
- metrics:
482
- - name: 1-shot
483
- type: pearson
484
- value: 69.97
485
- - name: 3-shot
486
- type: pearson
487
- value: 69.87
488
- - name: 5-shot
489
- type: pearson
490
- value: 74.89
491
-
492
- ---
493
-
494
- # Model Card for Model ID
495
-
496
- <!-- Provide a quick summary of what the model is/does. -->
497
-
498
- This model points/is identical to [RoGemma-7b-Instruct-2024-10-09](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-2024-10-09).
499
-
500
- RoGemma is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **instruct 7B model**. Links to other models can be found at the bottom of this page.
501
-
502
- ## Model Details
503
-
504
- ### Model Description
505
-
506
- <!-- Provide a longer summary of what this model is. -->
507
- OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
508
-
509
-
510
- - **Developed by:** OpenLLM-Ro
511
- <!-- - **Funded by [optional]:** [More Information Needed] -->
512
- <!-- - **Shared by [optional]:** [More Information Needed] -->
513
- <!-- - **Model type:** [More Information Needed] -->
514
- - **Language(s):** Romanian
515
- - **License:** cc-by-nc-4.0
516
- - **Finetuned from model:** [gemma-7b](https://huggingface.co/google/gemma-7b)
517
- - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel), [RoOpenAssistant](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_oasst), [RoUltraChat](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_ultrachat)
518
-
519
-
520
- ### Model Sources
521
-
522
- <!-- Provide the basic links for the model. -->
523
-
524
- - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
525
- - **Paper:** https://arxiv.org/abs/2406.18266
526
-
527
- ## Intended Use
528
-
529
- ### Intended Use Cases
530
-
531
- RoGemma is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
532
-
533
- ### Out-of-Scope Use
534
-
535
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
536
-
537
- Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
538
-
539
-
540
-
541
- ## How to Get Started with the Model
542
-
543
- Use the code below to get started with the model.
544
-
545
- ```python
546
- from transformers import AutoTokenizer, AutoModelForCausalLM
547
-
548
- tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoGemma-7b-Instruct")
549
- model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoGemma-7b-Instruct")
550
-
551
- instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
552
- chat = [
553
- {"role": "user", "content": instruction},
554
- ]
555
- prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
556
-
557
- inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
558
- outputs = model.generate(input_ids=inputs, max_new_tokens=128)
559
- print(tokenizer.decode(outputs[0]))
560
- ```
561
-
562
- ## Academic Benchmarks
563
-
564
- <table>
565
- <tbody>
566
- <tr>
567
- <td><strong>Model</strong></td>
568
- <td><strong><center>Average</center></strong></td>
569
- <td><strong><center>ARC</center></strong></td>
570
- <td><strong><center>MMLU</center></strong></td>
571
- <td><strong><center>Winogrande</center></strong></td>
572
- <td><strong><center>Hellaswag</center></strong></td>
573
- <td><strong><center>GSM8k</center></strong></td>
574
- <td><strong><center>TruthfulQA</center></strong></td>
575
- </tr>
576
- <tr>
577
- <td>gemma-1.1-7b-it</td><td><center>41.44</center></td><td><center>40.32</center></td><td><center>47.22</center></td><td><center>55.01</center></td><td><center>47.03</center></td><td><center>9.50</center></td><td><center>49.58</center></td>
578
- </tr>
579
- <tr>
580
- <td>RoGemma-7b-Instruct-2024-06-28</td><td><center><strong>53.41</strong></center></td><td><center><strong>52.44</strong></center></td><td><center>54.44</center></td><td><center><strong>69.36</strong></center></td><td><center><strong>61.96</strong></center></td><td><center>31.06</center></td><td><center><strong>51.23</strong></center></td>
581
- </tr>
582
- <tr>
583
- <td><em>RoGemma-7b-Instruct-2024-10-09</em></td><td><center><em>50.48</em></center></td><td><center><em>52.01</em></center></td><td><center><em>52.37</em></center></td><td><center><em>66.97</em></center></td><td><center><em>56.34</em></center></td><td><center><em>25.98</em></center></td><td><center><em>49.18</em></center></td>
584
- </tr>
585
- <tr>
586
- <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center>48.27</center></td><td><center>46.66</center></td><td><center><strong>54.45</strong></center></td><td><center>63.73</center></td><td><center>49.33</center></td><td><center><strong>34.98</strong></center></td><td><center>40.45</center></td>
587
- </tr>
588
- </tbody>
589
- </table>
590
-
591
-
592
- ## Downstream tasks
593
-
594
- <table>
595
- <tbody>
596
- <tr>
597
- <td></td>
598
- <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
599
- <td colspan="4"><center><strong>WMT</strong></center></td>
600
- </tr>
601
- <tr>
602
- <td></td>
603
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
604
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
605
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
606
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
607
- </tr>
608
- <tr>
609
- <td><strong>Model</strong></td>
610
- <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
611
- <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
612
- <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
613
- <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
614
- <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
615
- <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
616
- <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
617
- <td><center><strong>RO-EN<br>(Bleu)</strong></center>
618
- </tr>
619
- <tr>
620
- <td>gemma-1.1-7b-it</td><td><center>87.54</center></td><td><center>51.48</center></td><td><center>83.87</center></td><td><center>85.61</center></td><td><center>17.96</center></td><td><center><strong>27.74</strong></center></td><td><center>25.48</center></td><td><center>36.11</center></td>
621
- </tr>
622
- <tr>
623
- <td>RoGemma-7b-Instruct-2024-06-28</td><td><center><strong>97.86</strong></center></td><td><center><strong>65.70</strong></center></td><td><center>98.43</center></td><td><center><strong>87.17</strong></center></td><td><center><strong>27.91</strong></center></td><td><center>23.08</center></td><td><center><strong>27.99</strong></center></td><td><center><strong>39.51</strong></center></td>
624
- </tr>
625
- <tr>
626
- <td><em>RoGemma-7b-Instruct-2024-10-09</em></td><td><center><em>86.96</em></center></td><td><center><em>56.72</em></center></td><td><center><em><strong>98.80</strong></em></center></td><td><center><em>85.81</em></center></td><td><center><em>24.45</em></center></td><td><center><em>14.20</em></center></td><td><center><em>25.96</em></center></td><td><center><em>39.07</em></center></td>
627
- </tr>
628
- <tr>
629
- <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center>96.45</center></td><td><center>63.23</center></td><td><center>-</center></td><td><center>-</center></td><td><center>20.73</center></td><td><center>7.87</center></td><td><center>-</center></td><td><center>-</center></td>
630
- </tr>
631
- </tbody>
632
- </table>
633
-
634
-
635
- <table>
636
- <tbody>
637
- <tr>
638
- <td></td>
639
- <td colspan="4"><center><strong>XQuAD</strong></center></td>
640
- <td colspan="4"><center><strong>STS</strong></center></td>
641
- </tr>
642
- <tr>
643
- <td></td>
644
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
645
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
646
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
647
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
648
- </tr>
649
- <tr>
650
- <td><strong>Model</strong></td>
651
- <td><center><strong>(EM)</strong></center></td>
652
- <td><center><strong>(F1)</strong></center></td>
653
- <td><center><strong>(EM)</strong></center></td>
654
- <td><center><strong>(F1)</strong></center></td>
655
- <td><center><strong>(Spearman)</strong></center></td>
656
- <td><center><strong>(Pearson)</strong></center></td>
657
- <td><center><strong>(Spearman)</strong></center></td>
658
- <td><center><strong>(Pearson)</strong></center></td>
659
- </tr>
660
- <tr>
661
- <td>gemma-1.1-7b-it</td><td><center><strong>42.10</strong></center></td><td><center><strong>62.30</strong></center></td><td><center><strong>60.34</strong></center></td><td><center><strong>77.40</strong></center></td><td><center>49.10</center></td><td><center>50.23</center></td><td><center>83.43</center></td><td><center>83.64</center></td>
662
- </tr>
663
- <tr>
664
- <td>RoGemma-7b-Instruct-2024-06-28</td><td><center>17.75</center></td><td><center>28.11</center></td><td><center>52.02</center></td><td><center>68.43</center></td><td><center><strong>73.96</strong></center></td><td><center><strong>75.16</strong></center></td><td><center>86.45</center></td><td><center>86.31</center></td>
665
- </tr>
666
- <tr>
667
- <td><em>RoGemma-7b-Instruct-2024-10-09</em></td><td><center><em>26.03</em></center></td><td><center><em>41.58</em></center></td><td><center><em>46.72</em></center></td><td><center><em>60.79</em></center></td><td><center><em>73.23</em></center></td><td><center><em>71.58</em></center></td><td><center><em><strong>88.42</strong></em></center></td><td><center><em><strong>88.45</strong></em></center></td>
668
- </tr>
669
- <tr>
670
- <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center>19.14</center></td><td><center>38.10</center></td><td><center>-</center></td><td><center>-</center></td><td><center>69.38</center></td><td><center>69.34</center></td><td><center>-</center></td><td><center>-</center></td>
671
- </tr>
672
- </tbody>
673
- </table>
674
-
675
-
676
- ## MT-Bench
677
-
678
- <table>
679
- <tbody>
680
- <tr>
681
- <td><strong>Model</strong></td>
682
- <td><strong><center>Average</center></strong></td>
683
- <td><strong><center>1st turn</center></strong></td>
684
- <td><strong><center>2nd turn</center></strong></td>
685
- <td><strong><center>Answers in Ro</center></strong></td>
686
- </tr>
687
- <tr>
688
- <td>gemma-1.1-7b-it</td><td><center>4.83</center></td><td><center>5.11</center></td><td><center>4.55</center></td><td><center><strong>160/160</strong></center></td>
689
- </tr>
690
- <tr>
691
- <td>RoGemma-7b-Instruct-2024-06-28</td><td><center>5.26</center></td><td><center><strong>5.92</strong></center></td><td><center>4.60</center></td><td><center><strong>160/160</strong></center></td>
692
- </tr>
693
- <tr>
694
- <td><em>RoGemma-7b-Instruct-2024-10-09</em></td><td><center><em>5.24</em></center></td><td><center><em>5.55</em></center></td><td><center><em>4.94</em></center></td><td><center><em><strong>160/160</strong></em></center></td>
695
- </tr>
696
- <tr>
697
- <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center><strong>5.47</strong></center></td><td><center><strong>5.92</strong></center></td><td><center><strong>5.03</strong></center></td><td><center><strong>160/160</strong></center></td>
698
- </tr>
699
- </tbody>
700
- </table>
701
-
702
- ## RoCulturaBench
703
-
704
- <table>
705
- <tbody>
706
- <tr>
707
- <td><strong>Model</strong></td>
708
- <td><strong><center>Average</center></strong></td>
709
- <td><strong><center>Answers in Ro</center></strong></td>
710
- </tr>
711
- <tr>
712
- <td>gemma-1.1-7b-it</td><td><center>3.38</center></td><td><center><strong>100/100</strong></center></td>
713
- </tr>
714
- <tr>
715
- <td>RoGemma-7b-Instruct-2024-06-28</td><td><center>3.26</center></td><td><center><strong>100/100</strong></center></td>
716
- </tr>
717
- <tr>
718
- <td><em>RoGemma-7b-Instruct-2024-10-09</em></td><td><center><em>3.51</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
719
- </tr>
720
- <tr>
721
- <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center><strong>3.94</strong></center></td><td><center><strong>100/100</strong></center></td>
722
- </tr>
723
- </tbody>
724
- </table>
725
-
726
- ## RoGemma Model Family
727
-
728
- | Model | Link |
729
- |--------------------|:--------:|
730
- |RoGemma-7b-Instruct-2024-06-28| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-2024-06-28) |
731
- |*RoGemma-7b-Instruct-2024-10-09*| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-2024-10-09) |
732
- |RoGemma-7b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-DPO-2024-10-09) |
733
-
734
-
735
- ## Citation
736
-
737
- ```
738
- @misc{masala2024vorbecstiromanecsterecipetrain,
739
- title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
740
- author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
741
- year={2024},
742
- eprint={2406.18266},
743
- archivePrefix={arXiv},
744
- primaryClass={cs.CL},
745
- url={https://arxiv.org/abs/2406.18266},
746
- }
747
- ```
748
- <!-- **APA:**
749
-
750
  [More Information Needed] -->
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ language:
4
+ - ro
5
+ base_model:
6
+ - google/gemma-7b
7
+ datasets:
8
+ - OpenLLM-Ro/ro_sft_alpaca
9
+ - OpenLLM-Ro/ro_sft_alpaca_gpt4
10
+ - OpenLLM-Ro/ro_sft_dolly
11
+ - OpenLLM-Ro/ro_sft_selfinstruct_gpt4
12
+ - OpenLLM-Ro/ro_sft_norobots
13
+ - OpenLLM-Ro/ro_sft_orca
14
+ - OpenLLM-Ro/ro_sft_camel
15
+ - OpenLLM-Ro/ro_sft_oasst
16
+ - OpenLLM-Ro/ro_sft_ultrachat
17
+ - OpenLLM-Ro/ro_sft_magpie_mt
18
+ - OpenLLM-Ro/ro_sft_magpie_reasoning
19
+ model-index:
20
+ - name: OpenLLM-Ro/RoGemma-7b-Instruct-2025-04-23
21
+ results:
22
+ - task:
23
+ type: text-generation
24
+ dataset:
25
+ name: RoMT-Bench
26
+ type: RoMT-Bench
27
+ metrics:
28
+ - name: Score
29
+ type: Score
30
+ value: 6.28
31
+ - task:
32
+ type: text-generation
33
+ dataset:
34
+ name: RoCulturaBench
35
+ type: RoCulturaBench
36
+ metrics:
37
+ - name: Score
38
+ type: Score
39
+ value: 3.65
40
+ - task:
41
+ type: text-generation
42
+ dataset:
43
+ name: Romanian_Academic_Benchmarks
44
+ type: Romanian_Academic_Benchmarks
45
+ metrics:
46
+ - name: Average accuracy
47
+ type: accuracy
48
+ value: 50.52
49
+ - task:
50
+ type: text-generation
51
+ dataset:
52
+ name: OpenLLM-Ro/ro_arc_challenge
53
+ type: OpenLLM-Ro/ro_arc_challenge
54
+ metrics:
55
+ - name: Average accuracy
56
+ type: accuracy
57
+ value: 47.70
58
+ - task:
59
+ type: text-generation
60
+ dataset:
61
+ name: OpenLLM-Ro/ro_mmlu
62
+ type: OpenLLM-Ro/ro_mmlu
63
+ metrics:
64
+ - name: Average accuracy
65
+ type: accuracy
66
+ value: 51.66
67
+ - task:
68
+ type: text-generation
69
+ dataset:
70
+ name: OpenLLM-Ro/ro_winogrande
71
+ type: OpenLLM-Ro/ro_winogrande
72
+ metrics:
73
+ - name: Average accuracy
74
+ type: accuracy
75
+ value: 66.32
76
+ - task:
77
+ type: text-generation
78
+ dataset:
79
+ name: OpenLLM-Ro/ro_hellaswag
80
+ type: OpenLLM-Ro/ro_hellaswag
81
+ metrics:
82
+ - name: Average accuracy
83
+ type: accuracy
84
+ value: 53.59
85
+ - task:
86
+ type: text-generation
87
+ dataset:
88
+ name: OpenLLM-Ro/ro_gsm8k
89
+ type: OpenLLM-Ro/ro_gsm8k
90
+ metrics:
91
+ - name: Average accuracy
92
+ type: accuracy
93
+ value: 36.04
94
+ - task:
95
+ type: text-generation
96
+ dataset:
97
+ name: OpenLLM-Ro/ro_truthfulqa
98
+ type: OpenLLM-Ro/ro_truthfulqa
99
+ metrics:
100
+ - name: Average accuracy
101
+ type: accuracy
102
+ value: 47.81
103
+ - task:
104
+ type: text-generation
105
+ dataset:
106
+ name: LaRoSeDa_binary
107
+ type: LaRoSeDa_binary
108
+ metrics:
109
+ - name: Average macro-f1
110
+ type: macro-f1
111
+ value: 95.44
112
+ - task:
113
+ type: text-generation
114
+ dataset:
115
+ name: LaRoSeDa_multiclass
116
+ type: LaRoSeDa_multiclass
117
+ metrics:
118
+ - name: Average macro-f1
119
+ type: macro-f1
120
+ value: 59.24
121
+ - task:
122
+ type: text-generation
123
+ dataset:
124
+ name: WMT_EN-RO
125
+ type: WMT_EN-RO
126
+ metrics:
127
+ - name: Average bleu
128
+ type: bleu
129
+ value: 25.17
130
+ - task:
131
+ type: text-generation
132
+ dataset:
133
+ name: WMT_RO-EN
134
+ type: WMT_RO-EN
135
+ metrics:
136
+ - name: Average bleu
137
+ type: bleu
138
+ value: 21.17
139
+ - task:
140
+ type: text-generation
141
+ dataset:
142
+ name: XQuAD
143
+ type: XQuAD
144
+ metrics:
145
+ - name: Average exact_match
146
+ type: exact_match
147
+ value: 15.88
148
+ - task:
149
+ type: text-generation
150
+ dataset:
151
+ name: XQuAD
152
+ type: XQuAD
153
+ metrics:
154
+ - name: Average f1
155
+ type: f1
156
+ value: 29.16
157
+ - task:
158
+ type: text-generation
159
+ dataset:
160
+ name: STS
161
+ type: STS
162
+ metrics:
163
+ - name: Average spearman
164
+ type: spearman
165
+ value: 75.90
166
+ - task:
167
+ type: text-generation
168
+ dataset:
169
+ name: STS
170
+ type: STS
171
+ metrics:
172
+ - name: Average pearson
173
+ type: pearson
174
+ value: 75.16
175
+ - task:
176
+ type: text-generation
177
+ dataset:
178
+ name: RoMT-Bench
179
+ type: RoMT-Bench
180
+ metrics:
181
+ - name: First turn
182
+ type: Score
183
+ value: 6.97
184
+ - name: Second turn
185
+ type: Score
186
+ value: 5.58
187
+ - task:
188
+ type: text-generation
189
+ dataset:
190
+ name: OpenLLM-Ro/ro_arc_challenge
191
+ type: OpenLLM-Ro/ro_arc_challenge
192
+ metrics:
193
+ - name: 0-shot
194
+ type: accuracy
195
+ value: 46.19
196
+ - name: 1-shot
197
+ type: accuracy
198
+ value: 46.53
199
+ - name: 3-shot
200
+ type: accuracy
201
+ value: 46.02
202
+ - name: 5-shot
203
+ type: accuracy
204
+ value: 48.33
205
+ - name: 10-shot
206
+ type: accuracy
207
+ value: 49.27
208
+ - name: 25-shot
209
+ type: accuracy
210
+ value: 49.87
211
+ - task:
212
+ type: text-generation
213
+ dataset:
214
+ name: OpenLLM-Ro/ro_mmlu
215
+ type: OpenLLM-Ro/ro_mmlu
216
+ metrics:
217
+ - name: 0-shot
218
+ type: accuracy
219
+ value: 51.13
220
+ - name: 1-shot
221
+ type: accuracy
222
+ value: 50.94
223
+ - name: 3-shot
224
+ type: accuracy
225
+ value: 52.67
226
+ - name: 5-shot
227
+ type: accuracy
228
+ value: 51.90
229
+ - task:
230
+ type: text-generation
231
+ dataset:
232
+ name: OpenLLM-Ro/ro_winogrande
233
+ type: OpenLLM-Ro/ro_winogrande
234
+ metrics:
235
+ - name: 0-shot
236
+ type: accuracy
237
+ value: 67.40
238
+ - name: 1-shot
239
+ type: accuracy
240
+ value: 65.04
241
+ - name: 3-shot
242
+ type: accuracy
243
+ value: 65.67
244
+ - name: 5-shot
245
+ type: accuracy
246
+ value: 67.17
247
+ - task:
248
+ type: text-generation
249
+ dataset:
250
+ name: OpenLLM-Ro/ro_hellaswag
251
+ type: OpenLLM-Ro/ro_hellaswag
252
+ metrics:
253
+ - name: 0-shot
254
+ type: accuracy
255
+ value: 58.03
256
+ - name: 1-shot
257
+ type: accuracy
258
+ value: 56.63
259
+ - name: 3-shot
260
+ type: accuracy
261
+ value: 52.47
262
+ - name: 5-shot
263
+ type: accuracy
264
+ value: 48.63
265
+ - name: 10-shot
266
+ type: accuracy
267
+ value: 52.18
268
+ - task:
269
+ type: text-generation
270
+ dataset:
271
+ name: OpenLLM-Ro/ro_gsm8k
272
+ type: OpenLLM-Ro/ro_gsm8k
273
+ metrics:
274
+ - name: 1-shot
275
+ type: accuracy
276
+ value: 24.11
277
+ - name: 3-shot
278
+ type: accuracy
279
+ value: 37.76
280
+ - name: 5-shot
281
+ type: accuracy
282
+ value: 46.25
283
+ - task:
284
+ type: text-generation
285
+ dataset:
286
+ name: LaRoSeDa_binary
287
+ type: LaRoSeDa_binary
288
+ metrics:
289
+ - name: 0-shot
290
+ type: macro-f1
291
+ value: 96.33
292
+ - name: 1-shot
293
+ type: macro-f1
294
+ value: 94.62
295
+ - name: 3-shot
296
+ type: macro-f1
297
+ value: 95.06
298
+ - name: 5-shot
299
+ type: macro-f1
300
+ value: 95.76
301
+ - task:
302
+ type: text-generation
303
+ dataset:
304
+ name: LaRoSeDa_multiclass
305
+ type: LaRoSeDa_multiclass
306
+ metrics:
307
+ - name: 0-shot
308
+ type: macro-f1
309
+ value: 43.65
310
+ - name: 1-shot
311
+ type: macro-f1
312
+ value: 64.30
313
+ - name: 3-shot
314
+ type: macro-f1
315
+ value: 64.22
316
+ - name: 5-shot
317
+ type: macro-f1
318
+ value: 64.81
319
+ - task:
320
+ type: text-generation
321
+ dataset:
322
+ name: WMT_EN-RO
323
+ type: WMT_EN-RO
324
+ metrics:
325
+ - name: 0-shot
326
+ type: bleu
327
+ value: 13.30
328
+ - name: 1-shot
329
+ type: bleu
330
+ value: 28.59
331
+ - name: 3-shot
332
+ type: bleu
333
+ value: 29.48
334
+ - name: 5-shot
335
+ type: bleu
336
+ value: 29.31
337
+ - task:
338
+ type: text-generation
339
+ dataset:
340
+ name: WMT_RO-EN
341
+ type: WMT_RO-EN
342
+ metrics:
343
+ - name: 0-shot
344
+ type: bleu
345
+ value: 1.11
346
+ - name: 1-shot
347
+ type: bleu
348
+ value: 18.97
349
+ - name: 3-shot
350
+ type: bleu
351
+ value: 31.99
352
+ - name: 5-shot
353
+ type: bleu
354
+ value: 32.60
355
+ - task:
356
+ type: text-generation
357
+ dataset:
358
+ name: XQuAD_EM
359
+ type: XQuAD_EM
360
+ metrics:
361
+ - name: 0-shot
362
+ type: exact_match
363
+ value: 17.31
364
+ - name: 1-shot
365
+ type: exact_match
366
+ value: 12.44
367
+ - name: 3-shot
368
+ type: exact_match
369
+ value: 13.11
370
+ - name: 5-shot
371
+ type: exact_match
372
+ value: 20.67
373
+ - task:
374
+ type: text-generation
375
+ dataset:
376
+ name: XQuAD_F1
377
+ type: XQuAD_F1
378
+ metrics:
379
+ - name: 0-shot
380
+ type: f1
381
+ value: 29.90
382
+ - name: 1-shot
383
+ type: f1
384
+ value: 24.24
385
+ - name: 3-shot
386
+ type: f1
387
+ value: 25.64
388
+ - name: 5-shot
389
+ type: f1
390
+ value: 36.86
391
+ - task:
392
+ type: text-generation
393
+ dataset:
394
+ name: STS_Spearman
395
+ type: STS_Spearman
396
+ metrics:
397
+ - name: 1-shot
398
+ type: spearman
399
+ value: 76.50
400
+ - name: 3-shot
401
+ type: spearman
402
+ value: 73.63
403
+ - name: 5-shot
404
+ type: spearman
405
+ value: 77.58
406
+ - task:
407
+ type: text-generation
408
+ dataset:
409
+ name: STS_Pearson
410
+ type: STS_Pearson
411
+ metrics:
412
+ - name: 1-shot
413
+ type: pearson
414
+ value: 75.15
415
+ - name: 3-shot
416
+ type: pearson
417
+ value: 72.69
418
+ - name: 5-shot
419
+ type: pearson
420
+ value: 77.63
421
+
422
+ ---
423
+
424
+ # Model Card for Model ID
425
+
426
+ <!-- Provide a quick summary of what the model is/does. -->
427
+
428
+ RoGemma is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **instruct 7B model**. Links to other models can be found at the bottom of this page.
429
+
430
+ ## Model Details
431
+
432
+ ### Model Description
433
+
434
+ <!-- Provide a longer summary of what this model is. -->
435
+ OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
436
+
437
+
438
+ - **Developed by:** OpenLLM-Ro
439
+ <!-- - **Funded by [optional]:** [More Information Needed] -->
440
+ <!-- - **Shared by [optional]:** [More Information Needed] -->
441
+ <!-- - **Model type:** [More Information Needed] -->
442
+ - **Language(s):** Romanian
443
+ - **License:** cc-by-nc-4.0
444
+ - **Finetuned from model:** [gemma-7b](https://huggingface.co/google/gemma-7b)
445
+ - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel), [RoOpenAssistant](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_oasst), [RoUltraChat](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_ultrachat), [RoMagpiePro](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_magpie_mt), [RoMagpieReasoning](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_magpie_reasoning)
446
+
447
+
448
+ ### Model Sources
449
+
450
+ <!-- Provide the basic links for the model. -->
451
+
452
+ - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
453
+ - **Paper:** https://arxiv.org/abs/2406.18266
454
+
455
+ ## Intended Use
456
+
457
+ ### Intended Use Cases
458
+
459
+ RoGemma is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
460
+
461
+ ### Out-of-Scope Use
462
+
463
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
464
+
465
+ Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
466
+
467
+
468
+
469
+ ## How to Get Started with the Model
470
+
471
+ Use the code below to get started with the model.
472
+
473
+ ```python
474
+ from transformers import AutoTokenizer, AutoModelForCausalLM
475
+
476
+ tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoGemma-7b-Instruct-2025-04-23")
477
+ model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoGemma-7b-Instruct-2025-04-23")
478
+
479
+ instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
480
+ chat = [
481
+ {"role": "user", "content": instruction},
482
+ ]
483
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
484
+
485
+ inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
486
+ outputs = model.generate(input_ids=inputs, max_new_tokens=128)
487
+ print(tokenizer.decode(outputs[0]))
488
+ ```
489
+
490
+ ## Academic Benchmarks
491
+
492
+ <table>
493
+ <tbody>
494
+ <tr>
495
+ <td><strong>Model</strong></td>
496
+ <td><strong><center>Average</center></strong></td>
497
+ <td><strong><center>ARC</center></strong></td>
498
+ <td><strong><center>MMLU</center></strong></td>
499
+ <td><strong><center>Winogrande</center></strong></td>
500
+ <td><strong><center>Hellaswag</center></strong></td>
501
+ <td><strong><center>GSM8k</center></strong></td>
502
+ <td><strong><center>TruthfulQA</center></strong></td>
503
+ </tr>
504
+ <tr>
505
+ <td>gemma-1.1-7b-it</td><td><center>41.44</center></td><td><center>40.32</center></td><td><center>47.22</center></td><td><center>55.01</center></td><td><center>47.03</center></td><td><center>9.50</center></td><td><center>49.58</center></td>
506
+ </tr>
507
+ <tr>
508
+ <td>RoGemma-7b-Instruct-2024-06-28</td><td><center><strong>53.41</strong></center></td><td><center><strong>52.44</strong></center></td><td><center>54.44</center></td><td><center><strong>69.36</strong></center></td><td><center><strong>61.96</strong></center></td><td><center>31.06</center></td><td><center><strong>51.23</strong></center></td>
509
+ </tr>
510
+ <tr>
511
+ <td>RoGemma-7b-Instruct-2024-10-09</td><td><center>50.48</center></td><td><center>52.01</center></td><td><center>52.37</center></td><td><center>66.97</center></td><td><center>56.34</center></td><td><center>25.98</center></td><td><center>49.18</center></td>
512
+ </tr>
513
+ <tr>
514
+ <td><em>RoGemma-7b-Instruct-2025-04-23</em></td><td><center><em>50.52</em></center></td><td><center><em>47.70</em></center></td><td><center><em>51.66</em></center></td><td><center><em>66.32</em></center></td><td><center><em>53.59</em></center></td><td><center><em><strong>36.04</strong></em></center></td><td><center><em>47.81</em></center></td>
515
+ </tr>
516
+ <tr>
517
+ <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center>48.27</center></td><td><center>46.66</center></td><td><center><strong>54.45</strong></center></td><td><center>63.73</center></td><td><center>49.33</center></td><td><center>34.98</center></td><td><center>40.45</center></td>
518
+ </tr>
519
+ </tbody>
520
+ </table>
521
+
522
+ ## Downstream tasks
523
+
524
+ <table>
525
+ <tbody>
526
+ <tr>
527
+ <td></td>
528
+ <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
529
+ <td colspan="4"><center><strong>WMT</strong></center></td>
530
+ </tr>
531
+ <tr>
532
+ <td></td>
533
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
534
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
535
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
536
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
537
+ </tr>
538
+ <tr>
539
+ <td><strong>Model</strong></td>
540
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
541
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
542
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
543
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
544
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
545
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
546
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
547
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center>
548
+ </tr>
549
+ <tr>
550
+ <td>gemma-1.1-7b-it</td><td><center>87.54</center></td><td><center>51.48</center></td><td><center>83.87</center></td><td><center>85.61</center></td><td><center>17.96</center></td><td><center><strong>27.74</strong></center></td><td><center>25.48</center></td><td><center>36.11</center></td>
551
+ </tr>
552
+ <tr>
553
+ <td>RoGemma-7b-Instruct-2024-06-28</td><td><center><strong>97.86</strong></center></td><td><center><strong>65.70</strong></center></td><td><center>98.43</center></td><td><center><strong>87.17</strong></center></td><td><center><strong>27.91</strong></center></td><td><center>23.08</center></td><td><center><strong>27.99</strong></center></td><td><center><strong>39.51</strong></center></td>
554
+ </tr>
555
+ <tr>
556
+ <td>RoGemma-7b-Instruct-2024-10-09</td><td><center>86.96</center></td><td><center>56.72</center></td><td><center><strong>98.80</strong></center></td><td><center>85.81</center></td><td><center>24.45</center></td><td><center>14.20</center></td><td><center>25.96</center></td><td><center>39.07</center></td>
557
+ </tr>
558
+ <tr>
559
+ <td><em>RoGemma-7b-Instruct-2025-04-23</em></td><td><center><em>95.44</em></center></td><td><center><em>59.24</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>25.17</em></center></td><td><center><em>21.17</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
560
+ </tr>
561
+ <tr>
562
+ <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center>96.45</center></td><td><center>63.23</center></td><td><center>-</center></td><td><center>-</center></td><td><center>20.73</center></td><td><center>7.87</center></td><td><center>-</center></td><td><center>-</center></td>
563
+ </tr>
564
+ </tbody>
565
+ </table>
566
+
567
+
568
+ <table>
569
+ <tbody>
570
+ <tr>
571
+ <td></td>
572
+ <td colspan="4"><center><strong>XQuAD</strong></center></td>
573
+ <td colspan="4"><center><strong>STS</strong></center></td>
574
+ </tr>
575
+ <tr>
576
+ <td></td>
577
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
578
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
579
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
580
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
581
+ </tr>
582
+ <tr>
583
+ <td><strong>Model</strong></td>
584
+ <td><center><strong>(EM)</strong></center></td>
585
+ <td><center><strong>(F1)</strong></center></td>
586
+ <td><center><strong>(EM)</strong></center></td>
587
+ <td><center><strong>(F1)</strong></center></td>
588
+ <td><center><strong>(Spearman)</strong></center></td>
589
+ <td><center><strong>(Pearson)</strong></center></td>
590
+ <td><center><strong>(Spearman)</strong></center></td>
591
+ <td><center><strong>(Pearson)</strong></center></td>
592
+ </tr>
593
+ <tr>
594
+ <td>gemma-1.1-7b-it</td><td><center><strong>42.10</strong></center></td><td><center><strong>62.30</strong></center></td><td><center><strong>60.34</strong></center></td><td><center><strong>77.40</strong></center></td><td><center>49.10</center></td><td><center>50.23</center></td><td><center>83.43</center></td><td><center>83.64</center></td>
595
+ </tr>
596
+ <tr>
597
+ <td>RoGemma-7b-Instruct-2024-06-28</td><td><center>17.75</center></td><td><center>28.11</center></td><td><center>52.02</center></td><td><center>68.43</center></td><td><center>73.96</center></td><td><center><strong>75.16</strong></center></td><td><center>86.45</center></td><td><center>86.31</center></td>
598
+ </tr>
599
+ <tr>
600
+ <td>RoGemma-7b-Instruct-2024-10-09</td><td><center>26.03</center></td><td><center>41.58</center></td><td><center>46.72</center></td><td><center>60.79</center></td><td><center>73.23</center></td><td><center>71.58</center></td><td><center><strong>88.42</strong></center></td><td><center><strong>88.45</strong></center></td>
601
+ </tr>
602
+ <tr>
603
+ <td><em>RoGemma-7b-Instruct-2025-04-23</em></td><td><center><em>15.88</em></center></td><td><center><em>29.16</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em><strong>75.90</strong></em></center></td><td><center><em><strong>75.16</strong></em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
604
+ </tr>
605
+ <tr>
606
+ <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center>19.14</center></td><td><center>38.10</center></td><td><center>-</center></td><td><center>-</center></td><td><center>69.38</center></td><td><center>69.34</center></td><td><center>-</center></td><td><center>-</center></td>
607
+ </tr>
608
+ </tbody>
609
+ </table>
610
+
611
+
612
+ ## MT-Bench
613
+
614
+ <table>
615
+ <tbody>
616
+ <tr>
617
+ <td><strong>Model</strong></td>
618
+ <td><strong><center>Average</center></strong></td>
619
+ <td><strong><center>1st turn</center></strong></td>
620
+ <td><strong><center>2nd turn</center></strong></td>
621
+ <td><strong><center>Answers in Ro</center></strong></td>
622
+ </tr>
623
+ <tr>
624
+ <td>gemma-1.1-7b-it</td><td><center>4.83</center></td><td><center>5.11</center></td><td><center>4.55</center></td><td><center><strong>160/160</strong></center></td>
625
+ </tr>
626
+ <tr>
627
+ <td>RoGemma-7b-Instruct-2024-06-28</td><td><center>5.26</center></td><td><center>5.92</center></td><td><center>4.60</center></td><td><center><strong>160/160</strong></center></td>
628
+ </tr>
629
+ <tr>
630
+ <td>RoGemma-7b-Instruct-2024-10-09</td><td><center>5.24</center></td><td><center>5.55</center></td><td><center>4.94</center></td><td><center><strong>160/160</strong></center></td>
631
+ </tr>
632
+ <tr>
633
+ <td><em>RoGemma-7b-Instruct-2025-04-23</em></td><td><center><em><strong>6.28</strong></em></center></td><td><center><em><strong>6.97</strong></em></center></td><td><center><em><strong>5.58</strong></em></center></td><td><center><em><strong>160/160</strong></em></center></td>
634
+ </tr>
635
+ <tr>
636
+ <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center>5.47</center></td><td><center>5.92</center></td><td><center>5.03</center></td><td><center><strong>160/160</strong></center></td>
637
+ </tr>
638
+ </tbody>
639
+ </table>
640
+
641
+ ## RoCulturaBench
642
+
643
+ <table>
644
+ <tbody>
645
+ <tr>
646
+ <td><strong>Model</strong></td>
647
+ <td><strong><center>Average</center></strong></td>
648
+ <td><strong><center>Answers in Ro</center></strong></td>
649
+ </tr>
650
+ <tr>
651
+ <td>gemma-1.1-7b-it</td><td><center>3.38</center></td><td><center><strong>100/100</strong></center></td>
652
+ </tr>
653
+ <tr>
654
+ <td>RoGemma-7b-Instruct-2024-06-28</td><td><center>3.26</center></td><td><center><strong>100/100</strong></center></td>
655
+ </tr>
656
+ <tr>
657
+ <td>RoGemma-7b-Instruct-2024-10-09</td><td><center>3.51</center></td><td><center><strong>100/100</strong></center></td>
658
+ </tr>
659
+ <tr>
660
+ <td><em>RoGemma-7b-Instruct-2025-04-23</em></td><td><center><em>3.65</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
661
+ </tr>
662
+ <tr>
663
+ <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center><strong>3.94</strong></center></td><td><center><strong>100/100</strong></center></td>
664
+ </tr>
665
+ </tbody>
666
+ </table>
667
+
668
+ ## RoGemma Model Family
669
+
670
+ | Model | Link |
671
+ |--------------------|:--------:|
672
+ |RoGemma-7b-Instruct-2024-06-28| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-2024-06-28) |
673
+ |RoGemma-7b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-2024-10-09) |
674
+ |*RoGemma-7b-Instruct-2025-04-23*| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-2025-04-23) |
675
+ |RoGemma-7b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-DPO-2024-10-09) |
676
+
677
+
678
+ ## Citation
679
+
680
+ ```
681
+ @misc{masala2024vorbecstiromanecsterecipetrain,
682
+ title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
683
+ author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
684
+ year={2024},
685
+ eprint={2406.18266},
686
+ archivePrefix={arXiv},
687
+ primaryClass={cs.CL},
688
+ url={https://arxiv.org/abs/2406.18266},
689
+ }
690
+ ```
691
+ <!-- **APA:**
692
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
693
  [More Information Needed] -->