mihaimasala commited on
Commit
ae4bd5b
·
verified ·
1 Parent(s): 26b89ce

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +694 -692
README.md CHANGED
@@ -1,693 +1,695 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- language:
4
- - ro
5
- base_model:
6
- - google/gemma-7b
7
- datasets:
8
- - OpenLLM-Ro/ro_sft_alpaca
9
- - OpenLLM-Ro/ro_sft_alpaca_gpt4
10
- - OpenLLM-Ro/ro_sft_dolly
11
- - OpenLLM-Ro/ro_sft_selfinstruct_gpt4
12
- - OpenLLM-Ro/ro_sft_norobots
13
- - OpenLLM-Ro/ro_sft_orca
14
- - OpenLLM-Ro/ro_sft_camel
15
- - OpenLLM-Ro/ro_sft_oasst
16
- - OpenLLM-Ro/ro_sft_ultrachat
17
- - OpenLLM-Ro/ro_sft_magpie_mt
18
- - OpenLLM-Ro/ro_sft_magpie_reasoning
19
- model-index:
20
- - name: OpenLLM-Ro/RoGemma-7b-Instruct-2025-04-23
21
- results:
22
- - task:
23
- type: text-generation
24
- dataset:
25
- name: RoMT-Bench
26
- type: RoMT-Bench
27
- metrics:
28
- - name: Score
29
- type: Score
30
- value: 6.28
31
- - task:
32
- type: text-generation
33
- dataset:
34
- name: RoCulturaBench
35
- type: RoCulturaBench
36
- metrics:
37
- - name: Score
38
- type: Score
39
- value: 3.65
40
- - task:
41
- type: text-generation
42
- dataset:
43
- name: Romanian_Academic_Benchmarks
44
- type: Romanian_Academic_Benchmarks
45
- metrics:
46
- - name: Average accuracy
47
- type: accuracy
48
- value: 50.52
49
- - task:
50
- type: text-generation
51
- dataset:
52
- name: OpenLLM-Ro/ro_arc_challenge
53
- type: OpenLLM-Ro/ro_arc_challenge
54
- metrics:
55
- - name: Average accuracy
56
- type: accuracy
57
- value: 47.70
58
- - task:
59
- type: text-generation
60
- dataset:
61
- name: OpenLLM-Ro/ro_mmlu
62
- type: OpenLLM-Ro/ro_mmlu
63
- metrics:
64
- - name: Average accuracy
65
- type: accuracy
66
- value: 51.66
67
- - task:
68
- type: text-generation
69
- dataset:
70
- name: OpenLLM-Ro/ro_winogrande
71
- type: OpenLLM-Ro/ro_winogrande
72
- metrics:
73
- - name: Average accuracy
74
- type: accuracy
75
- value: 66.32
76
- - task:
77
- type: text-generation
78
- dataset:
79
- name: OpenLLM-Ro/ro_hellaswag
80
- type: OpenLLM-Ro/ro_hellaswag
81
- metrics:
82
- - name: Average accuracy
83
- type: accuracy
84
- value: 53.59
85
- - task:
86
- type: text-generation
87
- dataset:
88
- name: OpenLLM-Ro/ro_gsm8k
89
- type: OpenLLM-Ro/ro_gsm8k
90
- metrics:
91
- - name: Average accuracy
92
- type: accuracy
93
- value: 36.04
94
- - task:
95
- type: text-generation
96
- dataset:
97
- name: OpenLLM-Ro/ro_truthfulqa
98
- type: OpenLLM-Ro/ro_truthfulqa
99
- metrics:
100
- - name: Average accuracy
101
- type: accuracy
102
- value: 47.81
103
- - task:
104
- type: text-generation
105
- dataset:
106
- name: LaRoSeDa_binary
107
- type: LaRoSeDa_binary
108
- metrics:
109
- - name: Average macro-f1
110
- type: macro-f1
111
- value: 95.44
112
- - task:
113
- type: text-generation
114
- dataset:
115
- name: LaRoSeDa_multiclass
116
- type: LaRoSeDa_multiclass
117
- metrics:
118
- - name: Average macro-f1
119
- type: macro-f1
120
- value: 59.24
121
- - task:
122
- type: text-generation
123
- dataset:
124
- name: WMT_EN-RO
125
- type: WMT_EN-RO
126
- metrics:
127
- - name: Average bleu
128
- type: bleu
129
- value: 25.17
130
- - task:
131
- type: text-generation
132
- dataset:
133
- name: WMT_RO-EN
134
- type: WMT_RO-EN
135
- metrics:
136
- - name: Average bleu
137
- type: bleu
138
- value: 21.17
139
- - task:
140
- type: text-generation
141
- dataset:
142
- name: XQuAD
143
- type: XQuAD
144
- metrics:
145
- - name: Average exact_match
146
- type: exact_match
147
- value: 15.88
148
- - task:
149
- type: text-generation
150
- dataset:
151
- name: XQuAD
152
- type: XQuAD
153
- metrics:
154
- - name: Average f1
155
- type: f1
156
- value: 29.16
157
- - task:
158
- type: text-generation
159
- dataset:
160
- name: STS
161
- type: STS
162
- metrics:
163
- - name: Average spearman
164
- type: spearman
165
- value: 75.90
166
- - task:
167
- type: text-generation
168
- dataset:
169
- name: STS
170
- type: STS
171
- metrics:
172
- - name: Average pearson
173
- type: pearson
174
- value: 75.16
175
- - task:
176
- type: text-generation
177
- dataset:
178
- name: RoMT-Bench
179
- type: RoMT-Bench
180
- metrics:
181
- - name: First turn
182
- type: Score
183
- value: 6.97
184
- - name: Second turn
185
- type: Score
186
- value: 5.58
187
- - task:
188
- type: text-generation
189
- dataset:
190
- name: OpenLLM-Ro/ro_arc_challenge
191
- type: OpenLLM-Ro/ro_arc_challenge
192
- metrics:
193
- - name: 0-shot
194
- type: accuracy
195
- value: 46.19
196
- - name: 1-shot
197
- type: accuracy
198
- value: 46.53
199
- - name: 3-shot
200
- type: accuracy
201
- value: 46.02
202
- - name: 5-shot
203
- type: accuracy
204
- value: 48.33
205
- - name: 10-shot
206
- type: accuracy
207
- value: 49.27
208
- - name: 25-shot
209
- type: accuracy
210
- value: 49.87
211
- - task:
212
- type: text-generation
213
- dataset:
214
- name: OpenLLM-Ro/ro_mmlu
215
- type: OpenLLM-Ro/ro_mmlu
216
- metrics:
217
- - name: 0-shot
218
- type: accuracy
219
- value: 51.13
220
- - name: 1-shot
221
- type: accuracy
222
- value: 50.94
223
- - name: 3-shot
224
- type: accuracy
225
- value: 52.67
226
- - name: 5-shot
227
- type: accuracy
228
- value: 51.90
229
- - task:
230
- type: text-generation
231
- dataset:
232
- name: OpenLLM-Ro/ro_winogrande
233
- type: OpenLLM-Ro/ro_winogrande
234
- metrics:
235
- - name: 0-shot
236
- type: accuracy
237
- value: 67.40
238
- - name: 1-shot
239
- type: accuracy
240
- value: 65.04
241
- - name: 3-shot
242
- type: accuracy
243
- value: 65.67
244
- - name: 5-shot
245
- type: accuracy
246
- value: 67.17
247
- - task:
248
- type: text-generation
249
- dataset:
250
- name: OpenLLM-Ro/ro_hellaswag
251
- type: OpenLLM-Ro/ro_hellaswag
252
- metrics:
253
- - name: 0-shot
254
- type: accuracy
255
- value: 58.03
256
- - name: 1-shot
257
- type: accuracy
258
- value: 56.63
259
- - name: 3-shot
260
- type: accuracy
261
- value: 52.47
262
- - name: 5-shot
263
- type: accuracy
264
- value: 48.63
265
- - name: 10-shot
266
- type: accuracy
267
- value: 52.18
268
- - task:
269
- type: text-generation
270
- dataset:
271
- name: OpenLLM-Ro/ro_gsm8k
272
- type: OpenLLM-Ro/ro_gsm8k
273
- metrics:
274
- - name: 1-shot
275
- type: accuracy
276
- value: 24.11
277
- - name: 3-shot
278
- type: accuracy
279
- value: 37.76
280
- - name: 5-shot
281
- type: accuracy
282
- value: 46.25
283
- - task:
284
- type: text-generation
285
- dataset:
286
- name: LaRoSeDa_binary
287
- type: LaRoSeDa_binary
288
- metrics:
289
- - name: 0-shot
290
- type: macro-f1
291
- value: 96.33
292
- - name: 1-shot
293
- type: macro-f1
294
- value: 94.62
295
- - name: 3-shot
296
- type: macro-f1
297
- value: 95.06
298
- - name: 5-shot
299
- type: macro-f1
300
- value: 95.76
301
- - task:
302
- type: text-generation
303
- dataset:
304
- name: LaRoSeDa_multiclass
305
- type: LaRoSeDa_multiclass
306
- metrics:
307
- - name: 0-shot
308
- type: macro-f1
309
- value: 43.65
310
- - name: 1-shot
311
- type: macro-f1
312
- value: 64.30
313
- - name: 3-shot
314
- type: macro-f1
315
- value: 64.22
316
- - name: 5-shot
317
- type: macro-f1
318
- value: 64.81
319
- - task:
320
- type: text-generation
321
- dataset:
322
- name: WMT_EN-RO
323
- type: WMT_EN-RO
324
- metrics:
325
- - name: 0-shot
326
- type: bleu
327
- value: 13.30
328
- - name: 1-shot
329
- type: bleu
330
- value: 28.59
331
- - name: 3-shot
332
- type: bleu
333
- value: 29.48
334
- - name: 5-shot
335
- type: bleu
336
- value: 29.31
337
- - task:
338
- type: text-generation
339
- dataset:
340
- name: WMT_RO-EN
341
- type: WMT_RO-EN
342
- metrics:
343
- - name: 0-shot
344
- type: bleu
345
- value: 1.11
346
- - name: 1-shot
347
- type: bleu
348
- value: 18.97
349
- - name: 3-shot
350
- type: bleu
351
- value: 31.99
352
- - name: 5-shot
353
- type: bleu
354
- value: 32.60
355
- - task:
356
- type: text-generation
357
- dataset:
358
- name: XQuAD_EM
359
- type: XQuAD_EM
360
- metrics:
361
- - name: 0-shot
362
- type: exact_match
363
- value: 17.31
364
- - name: 1-shot
365
- type: exact_match
366
- value: 12.44
367
- - name: 3-shot
368
- type: exact_match
369
- value: 13.11
370
- - name: 5-shot
371
- type: exact_match
372
- value: 20.67
373
- - task:
374
- type: text-generation
375
- dataset:
376
- name: XQuAD_F1
377
- type: XQuAD_F1
378
- metrics:
379
- - name: 0-shot
380
- type: f1
381
- value: 29.90
382
- - name: 1-shot
383
- type: f1
384
- value: 24.24
385
- - name: 3-shot
386
- type: f1
387
- value: 25.64
388
- - name: 5-shot
389
- type: f1
390
- value: 36.86
391
- - task:
392
- type: text-generation
393
- dataset:
394
- name: STS_Spearman
395
- type: STS_Spearman
396
- metrics:
397
- - name: 1-shot
398
- type: spearman
399
- value: 76.50
400
- - name: 3-shot
401
- type: spearman
402
- value: 73.63
403
- - name: 5-shot
404
- type: spearman
405
- value: 77.58
406
- - task:
407
- type: text-generation
408
- dataset:
409
- name: STS_Pearson
410
- type: STS_Pearson
411
- metrics:
412
- - name: 1-shot
413
- type: pearson
414
- value: 75.15
415
- - name: 3-shot
416
- type: pearson
417
- value: 72.69
418
- - name: 5-shot
419
- type: pearson
420
- value: 77.63
421
-
422
- ---
423
-
424
- # Model Card for Model ID
425
-
426
- <!-- Provide a quick summary of what the model is/does. -->
427
-
428
- RoGemma is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **instruct 7B model**. Links to other models can be found at the bottom of this page.
429
-
430
- ## Model Details
431
-
432
- ### Model Description
433
-
434
- <!-- Provide a longer summary of what this model is. -->
435
- OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
436
-
437
-
438
- - **Developed by:** OpenLLM-Ro
439
- <!-- - **Funded by [optional]:** [More Information Needed] -->
440
- <!-- - **Shared by [optional]:** [More Information Needed] -->
441
- <!-- - **Model type:** [More Information Needed] -->
442
- - **Language(s):** Romanian
443
- - **License:** cc-by-nc-4.0
444
- - **Finetuned from model:** [gemma-7b](https://huggingface.co/google/gemma-7b)
445
- - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel), [RoOpenAssistant](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_oasst), [RoUltraChat](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_ultrachat), [RoMagpiePro](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_magpie_mt), [RoMagpieReasoning](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_magpie_reasoning)
446
-
447
-
448
- ### Model Sources
449
-
450
- <!-- Provide the basic links for the model. -->
451
-
452
- - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
453
- - **Paper:** https://arxiv.org/abs/2406.18266
454
-
455
- ## Intended Use
456
-
457
- ### Intended Use Cases
458
-
459
- RoGemma is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
460
-
461
- ### Out-of-Scope Use
462
-
463
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
464
-
465
- Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
466
-
467
-
468
-
469
- ## How to Get Started with the Model
470
-
471
- Use the code below to get started with the model.
472
-
473
- ```python
474
- from transformers import AutoTokenizer, AutoModelForCausalLM
475
-
476
- tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoGemma-7b-Instruct-2025-04-23")
477
- model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoGemma-7b-Instruct-2025-04-23")
478
-
479
- instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
480
- chat = [
481
- {"role": "user", "content": instruction},
482
- ]
483
- prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
484
-
485
- inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
486
- outputs = model.generate(input_ids=inputs, max_new_tokens=128)
487
- print(tokenizer.decode(outputs[0]))
488
- ```
489
-
490
- ## Academic Benchmarks
491
-
492
- <table>
493
- <tbody>
494
- <tr>
495
- <td><strong>Model</strong></td>
496
- <td><strong><center>Average</center></strong></td>
497
- <td><strong><center>ARC</center></strong></td>
498
- <td><strong><center>MMLU</center></strong></td>
499
- <td><strong><center>Winogrande</center></strong></td>
500
- <td><strong><center>Hellaswag</center></strong></td>
501
- <td><strong><center>GSM8k</center></strong></td>
502
- <td><strong><center>TruthfulQA</center></strong></td>
503
- </tr>
504
- <tr>
505
- <td>gemma-1.1-7b-it</td><td><center>41.44</center></td><td><center>40.32</center></td><td><center>47.22</center></td><td><center>55.01</center></td><td><center>47.03</center></td><td><center>9.50</center></td><td><center>49.58</center></td>
506
- </tr>
507
- <tr>
508
- <td>RoGemma-7b-Instruct-2024-06-28</td><td><center><strong>53.41</strong></center></td><td><center><strong>52.44</strong></center></td><td><center>54.44</center></td><td><center><strong>69.36</strong></center></td><td><center><strong>61.96</strong></center></td><td><center>31.06</center></td><td><center><strong>51.23</strong></center></td>
509
- </tr>
510
- <tr>
511
- <td>RoGemma-7b-Instruct-2024-10-09</td><td><center>50.48</center></td><td><center>52.01</center></td><td><center>52.37</center></td><td><center>66.97</center></td><td><center>56.34</center></td><td><center>25.98</center></td><td><center>49.18</center></td>
512
- </tr>
513
- <tr>
514
- <td><em>RoGemma-7b-Instruct-2025-04-23</em></td><td><center><em>50.52</em></center></td><td><center><em>47.70</em></center></td><td><center><em>51.66</em></center></td><td><center><em>66.32</em></center></td><td><center><em>53.59</em></center></td><td><center><em><strong>36.04</strong></em></center></td><td><center><em>47.81</em></center></td>
515
- </tr>
516
- <tr>
517
- <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center>48.27</center></td><td><center>46.66</center></td><td><center><strong>54.45</strong></center></td><td><center>63.73</center></td><td><center>49.33</center></td><td><center>34.98</center></td><td><center>40.45</center></td>
518
- </tr>
519
- </tbody>
520
- </table>
521
-
522
- ## Downstream tasks
523
-
524
- <table>
525
- <tbody>
526
- <tr>
527
- <td></td>
528
- <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
529
- <td colspan="4"><center><strong>WMT</strong></center></td>
530
- </tr>
531
- <tr>
532
- <td></td>
533
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
534
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
535
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
536
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
537
- </tr>
538
- <tr>
539
- <td><strong>Model</strong></td>
540
- <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
541
- <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
542
- <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
543
- <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
544
- <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
545
- <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
546
- <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
547
- <td><center><strong>RO-EN<br>(Bleu)</strong></center>
548
- </tr>
549
- <tr>
550
- <td>gemma-1.1-7b-it</td><td><center>87.54</center></td><td><center>51.48</center></td><td><center>83.87</center></td><td><center>85.61</center></td><td><center>17.96</center></td><td><center><strong>27.74</strong></center></td><td><center>25.48</center></td><td><center>36.11</center></td>
551
- </tr>
552
- <tr>
553
- <td>RoGemma-7b-Instruct-2024-06-28</td><td><center><strong>97.86</strong></center></td><td><center><strong>65.70</strong></center></td><td><center>98.43</center></td><td><center><strong>87.17</strong></center></td><td><center><strong>27.91</strong></center></td><td><center>23.08</center></td><td><center><strong>27.99</strong></center></td><td><center><strong>39.51</strong></center></td>
554
- </tr>
555
- <tr>
556
- <td>RoGemma-7b-Instruct-2024-10-09</td><td><center>86.96</center></td><td><center>56.72</center></td><td><center><strong>98.80</strong></center></td><td><center>85.81</center></td><td><center>24.45</center></td><td><center>14.20</center></td><td><center>25.96</center></td><td><center>39.07</center></td>
557
- </tr>
558
- <tr>
559
- <td><em>RoGemma-7b-Instruct-2025-04-23</em></td><td><center><em>95.44</em></center></td><td><center><em>59.24</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>25.17</em></center></td><td><center><em>21.17</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
560
- </tr>
561
- <tr>
562
- <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center>96.45</center></td><td><center>63.23</center></td><td><center>-</center></td><td><center>-</center></td><td><center>20.73</center></td><td><center>7.87</center></td><td><center>-</center></td><td><center>-</center></td>
563
- </tr>
564
- </tbody>
565
- </table>
566
-
567
-
568
- <table>
569
- <tbody>
570
- <tr>
571
- <td></td>
572
- <td colspan="4"><center><strong>XQuAD</strong></center></td>
573
- <td colspan="4"><center><strong>STS</strong></center></td>
574
- </tr>
575
- <tr>
576
- <td></td>
577
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
578
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
579
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
580
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
581
- </tr>
582
- <tr>
583
- <td><strong>Model</strong></td>
584
- <td><center><strong>(EM)</strong></center></td>
585
- <td><center><strong>(F1)</strong></center></td>
586
- <td><center><strong>(EM)</strong></center></td>
587
- <td><center><strong>(F1)</strong></center></td>
588
- <td><center><strong>(Spearman)</strong></center></td>
589
- <td><center><strong>(Pearson)</strong></center></td>
590
- <td><center><strong>(Spearman)</strong></center></td>
591
- <td><center><strong>(Pearson)</strong></center></td>
592
- </tr>
593
- <tr>
594
- <td>gemma-1.1-7b-it</td><td><center><strong>42.10</strong></center></td><td><center><strong>62.30</strong></center></td><td><center><strong>60.34</strong></center></td><td><center><strong>77.40</strong></center></td><td><center>49.10</center></td><td><center>50.23</center></td><td><center>83.43</center></td><td><center>83.64</center></td>
595
- </tr>
596
- <tr>
597
- <td>RoGemma-7b-Instruct-2024-06-28</td><td><center>17.75</center></td><td><center>28.11</center></td><td><center>52.02</center></td><td><center>68.43</center></td><td><center>73.96</center></td><td><center><strong>75.16</strong></center></td><td><center>86.45</center></td><td><center>86.31</center></td>
598
- </tr>
599
- <tr>
600
- <td>RoGemma-7b-Instruct-2024-10-09</td><td><center>26.03</center></td><td><center>41.58</center></td><td><center>46.72</center></td><td><center>60.79</center></td><td><center>73.23</center></td><td><center>71.58</center></td><td><center><strong>88.42</strong></center></td><td><center><strong>88.45</strong></center></td>
601
- </tr>
602
- <tr>
603
- <td><em>RoGemma-7b-Instruct-2025-04-23</em></td><td><center><em>15.88</em></center></td><td><center><em>29.16</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em><strong>75.90</strong></em></center></td><td><center><em><strong>75.16</strong></em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
604
- </tr>
605
- <tr>
606
- <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center>19.14</center></td><td><center>38.10</center></td><td><center>-</center></td><td><center>-</center></td><td><center>69.38</center></td><td><center>69.34</center></td><td><center>-</center></td><td><center>-</center></td>
607
- </tr>
608
- </tbody>
609
- </table>
610
-
611
-
612
- ## MT-Bench
613
-
614
- <table>
615
- <tbody>
616
- <tr>
617
- <td><strong>Model</strong></td>
618
- <td><strong><center>Average</center></strong></td>
619
- <td><strong><center>1st turn</center></strong></td>
620
- <td><strong><center>2nd turn</center></strong></td>
621
- <td><strong><center>Answers in Ro</center></strong></td>
622
- </tr>
623
- <tr>
624
- <td>gemma-1.1-7b-it</td><td><center>4.83</center></td><td><center>5.11</center></td><td><center>4.55</center></td><td><center><strong>160/160</strong></center></td>
625
- </tr>
626
- <tr>
627
- <td>RoGemma-7b-Instruct-2024-06-28</td><td><center>5.26</center></td><td><center>5.92</center></td><td><center>4.60</center></td><td><center><strong>160/160</strong></center></td>
628
- </tr>
629
- <tr>
630
- <td>RoGemma-7b-Instruct-2024-10-09</td><td><center>5.24</center></td><td><center>5.55</center></td><td><center>4.94</center></td><td><center><strong>160/160</strong></center></td>
631
- </tr>
632
- <tr>
633
- <td><em>RoGemma-7b-Instruct-2025-04-23</em></td><td><center><em><strong>6.28</strong></em></center></td><td><center><em><strong>6.97</strong></em></center></td><td><center><em><strong>5.58</strong></em></center></td><td><center><em><strong>160/160</strong></em></center></td>
634
- </tr>
635
- <tr>
636
- <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center>5.47</center></td><td><center>5.92</center></td><td><center>5.03</center></td><td><center><strong>160/160</strong></center></td>
637
- </tr>
638
- </tbody>
639
- </table>
640
-
641
- ## RoCulturaBench
642
-
643
- <table>
644
- <tbody>
645
- <tr>
646
- <td><strong>Model</strong></td>
647
- <td><strong><center>Average</center></strong></td>
648
- <td><strong><center>Answers in Ro</center></strong></td>
649
- </tr>
650
- <tr>
651
- <td>gemma-1.1-7b-it</td><td><center>3.38</center></td><td><center><strong>100/100</strong></center></td>
652
- </tr>
653
- <tr>
654
- <td>RoGemma-7b-Instruct-2024-06-28</td><td><center>3.26</center></td><td><center><strong>100/100</strong></center></td>
655
- </tr>
656
- <tr>
657
- <td>RoGemma-7b-Instruct-2024-10-09</td><td><center>3.51</center></td><td><center><strong>100/100</strong></center></td>
658
- </tr>
659
- <tr>
660
- <td><em>RoGemma-7b-Instruct-2025-04-23</em></td><td><center><em>3.65</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
661
- </tr>
662
- <tr>
663
- <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center><strong>3.94</strong></center></td><td><center><strong>100/100</strong></center></td>
664
- </tr>
665
- </tbody>
666
- </table>
667
-
668
- ## RoGemma Model Family
669
-
670
- | Model | Link |
671
- |--------------------|:--------:|
672
- |RoGemma-7b-Instruct-2024-06-28| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-2024-06-28) |
673
- |RoGemma-7b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-2024-10-09) |
674
- |*RoGemma-7b-Instruct-2025-04-23*| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-2025-04-23) |
675
- |RoGemma-7b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-DPO-2024-10-09) |
676
-
677
-
678
- ## Citation
679
-
680
- ```
681
- @misc{masala2024vorbecstiromanecsterecipetrain,
682
- title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
683
- author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
684
- year={2024},
685
- eprint={2406.18266},
686
- archivePrefix={arXiv},
687
- primaryClass={cs.CL},
688
- url={https://arxiv.org/abs/2406.18266},
689
- }
690
- ```
691
- <!-- **APA:**
692
-
 
 
693
  [More Information Needed] -->
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ language:
4
+ - ro
5
+ base_model:
6
+ - google/gemma-7b
7
+ datasets:
8
+ - OpenLLM-Ro/ro_sft_alpaca
9
+ - OpenLLM-Ro/ro_sft_alpaca_gpt4
10
+ - OpenLLM-Ro/ro_sft_dolly
11
+ - OpenLLM-Ro/ro_sft_selfinstruct_gpt4
12
+ - OpenLLM-Ro/ro_sft_norobots
13
+ - OpenLLM-Ro/ro_sft_orca
14
+ - OpenLLM-Ro/ro_sft_camel
15
+ - OpenLLM-Ro/ro_sft_oasst
16
+ - OpenLLM-Ro/ro_sft_ultrachat
17
+ - OpenLLM-Ro/ro_sft_magpie_mt
18
+ - OpenLLM-Ro/ro_sft_magpie_reasoning
19
+ model-index:
20
+ - name: OpenLLM-Ro/RoGemma-7b-Instruct-2025-04-23
21
+ results:
22
+ - task:
23
+ type: text-generation
24
+ dataset:
25
+ name: RoMT-Bench
26
+ type: RoMT-Bench
27
+ metrics:
28
+ - name: Score
29
+ type: Score
30
+ value: 6.28
31
+ - task:
32
+ type: text-generation
33
+ dataset:
34
+ name: RoCulturaBench
35
+ type: RoCulturaBench
36
+ metrics:
37
+ - name: Score
38
+ type: Score
39
+ value: 3.65
40
+ - task:
41
+ type: text-generation
42
+ dataset:
43
+ name: Romanian_Academic_Benchmarks
44
+ type: Romanian_Academic_Benchmarks
45
+ metrics:
46
+ - name: Average accuracy
47
+ type: accuracy
48
+ value: 50.52
49
+ - task:
50
+ type: text-generation
51
+ dataset:
52
+ name: OpenLLM-Ro/ro_arc_challenge
53
+ type: OpenLLM-Ro/ro_arc_challenge
54
+ metrics:
55
+ - name: Average accuracy
56
+ type: accuracy
57
+ value: 47.70
58
+ - task:
59
+ type: text-generation
60
+ dataset:
61
+ name: OpenLLM-Ro/ro_mmlu
62
+ type: OpenLLM-Ro/ro_mmlu
63
+ metrics:
64
+ - name: Average accuracy
65
+ type: accuracy
66
+ value: 51.66
67
+ - task:
68
+ type: text-generation
69
+ dataset:
70
+ name: OpenLLM-Ro/ro_winogrande
71
+ type: OpenLLM-Ro/ro_winogrande
72
+ metrics:
73
+ - name: Average accuracy
74
+ type: accuracy
75
+ value: 66.32
76
+ - task:
77
+ type: text-generation
78
+ dataset:
79
+ name: OpenLLM-Ro/ro_hellaswag
80
+ type: OpenLLM-Ro/ro_hellaswag
81
+ metrics:
82
+ - name: Average accuracy
83
+ type: accuracy
84
+ value: 53.59
85
+ - task:
86
+ type: text-generation
87
+ dataset:
88
+ name: OpenLLM-Ro/ro_gsm8k
89
+ type: OpenLLM-Ro/ro_gsm8k
90
+ metrics:
91
+ - name: Average accuracy
92
+ type: accuracy
93
+ value: 36.04
94
+ - task:
95
+ type: text-generation
96
+ dataset:
97
+ name: OpenLLM-Ro/ro_truthfulqa
98
+ type: OpenLLM-Ro/ro_truthfulqa
99
+ metrics:
100
+ - name: Average accuracy
101
+ type: accuracy
102
+ value: 47.81
103
+ - task:
104
+ type: text-generation
105
+ dataset:
106
+ name: LaRoSeDa_binary
107
+ type: LaRoSeDa_binary
108
+ metrics:
109
+ - name: Average macro-f1
110
+ type: macro-f1
111
+ value: 95.44
112
+ - task:
113
+ type: text-generation
114
+ dataset:
115
+ name: LaRoSeDa_multiclass
116
+ type: LaRoSeDa_multiclass
117
+ metrics:
118
+ - name: Average macro-f1
119
+ type: macro-f1
120
+ value: 59.24
121
+ - task:
122
+ type: text-generation
123
+ dataset:
124
+ name: WMT_EN-RO
125
+ type: WMT_EN-RO
126
+ metrics:
127
+ - name: Average bleu
128
+ type: bleu
129
+ value: 25.17
130
+ - task:
131
+ type: text-generation
132
+ dataset:
133
+ name: WMT_RO-EN
134
+ type: WMT_RO-EN
135
+ metrics:
136
+ - name: Average bleu
137
+ type: bleu
138
+ value: 21.17
139
+ - task:
140
+ type: text-generation
141
+ dataset:
142
+ name: XQuAD
143
+ type: XQuAD
144
+ metrics:
145
+ - name: Average exact_match
146
+ type: exact_match
147
+ value: 15.88
148
+ - task:
149
+ type: text-generation
150
+ dataset:
151
+ name: XQuAD
152
+ type: XQuAD
153
+ metrics:
154
+ - name: Average f1
155
+ type: f1
156
+ value: 29.16
157
+ - task:
158
+ type: text-generation
159
+ dataset:
160
+ name: STS
161
+ type: STS
162
+ metrics:
163
+ - name: Average spearman
164
+ type: spearman
165
+ value: 75.90
166
+ - task:
167
+ type: text-generation
168
+ dataset:
169
+ name: STS
170
+ type: STS
171
+ metrics:
172
+ - name: Average pearson
173
+ type: pearson
174
+ value: 75.16
175
+ - task:
176
+ type: text-generation
177
+ dataset:
178
+ name: RoMT-Bench
179
+ type: RoMT-Bench
180
+ metrics:
181
+ - name: First turn
182
+ type: Score
183
+ value: 6.97
184
+ - name: Second turn
185
+ type: Score
186
+ value: 5.58
187
+ - task:
188
+ type: text-generation
189
+ dataset:
190
+ name: OpenLLM-Ro/ro_arc_challenge
191
+ type: OpenLLM-Ro/ro_arc_challenge
192
+ metrics:
193
+ - name: 0-shot
194
+ type: accuracy
195
+ value: 46.19
196
+ - name: 1-shot
197
+ type: accuracy
198
+ value: 46.53
199
+ - name: 3-shot
200
+ type: accuracy
201
+ value: 46.02
202
+ - name: 5-shot
203
+ type: accuracy
204
+ value: 48.33
205
+ - name: 10-shot
206
+ type: accuracy
207
+ value: 49.27
208
+ - name: 25-shot
209
+ type: accuracy
210
+ value: 49.87
211
+ - task:
212
+ type: text-generation
213
+ dataset:
214
+ name: OpenLLM-Ro/ro_mmlu
215
+ type: OpenLLM-Ro/ro_mmlu
216
+ metrics:
217
+ - name: 0-shot
218
+ type: accuracy
219
+ value: 51.13
220
+ - name: 1-shot
221
+ type: accuracy
222
+ value: 50.94
223
+ - name: 3-shot
224
+ type: accuracy
225
+ value: 52.67
226
+ - name: 5-shot
227
+ type: accuracy
228
+ value: 51.90
229
+ - task:
230
+ type: text-generation
231
+ dataset:
232
+ name: OpenLLM-Ro/ro_winogrande
233
+ type: OpenLLM-Ro/ro_winogrande
234
+ metrics:
235
+ - name: 0-shot
236
+ type: accuracy
237
+ value: 67.40
238
+ - name: 1-shot
239
+ type: accuracy
240
+ value: 65.04
241
+ - name: 3-shot
242
+ type: accuracy
243
+ value: 65.67
244
+ - name: 5-shot
245
+ type: accuracy
246
+ value: 67.17
247
+ - task:
248
+ type: text-generation
249
+ dataset:
250
+ name: OpenLLM-Ro/ro_hellaswag
251
+ type: OpenLLM-Ro/ro_hellaswag
252
+ metrics:
253
+ - name: 0-shot
254
+ type: accuracy
255
+ value: 58.03
256
+ - name: 1-shot
257
+ type: accuracy
258
+ value: 56.63
259
+ - name: 3-shot
260
+ type: accuracy
261
+ value: 52.47
262
+ - name: 5-shot
263
+ type: accuracy
264
+ value: 48.63
265
+ - name: 10-shot
266
+ type: accuracy
267
+ value: 52.18
268
+ - task:
269
+ type: text-generation
270
+ dataset:
271
+ name: OpenLLM-Ro/ro_gsm8k
272
+ type: OpenLLM-Ro/ro_gsm8k
273
+ metrics:
274
+ - name: 1-shot
275
+ type: accuracy
276
+ value: 24.11
277
+ - name: 3-shot
278
+ type: accuracy
279
+ value: 37.76
280
+ - name: 5-shot
281
+ type: accuracy
282
+ value: 46.25
283
+ - task:
284
+ type: text-generation
285
+ dataset:
286
+ name: LaRoSeDa_binary
287
+ type: LaRoSeDa_binary
288
+ metrics:
289
+ - name: 0-shot
290
+ type: macro-f1
291
+ value: 96.33
292
+ - name: 1-shot
293
+ type: macro-f1
294
+ value: 94.62
295
+ - name: 3-shot
296
+ type: macro-f1
297
+ value: 95.06
298
+ - name: 5-shot
299
+ type: macro-f1
300
+ value: 95.76
301
+ - task:
302
+ type: text-generation
303
+ dataset:
304
+ name: LaRoSeDa_multiclass
305
+ type: LaRoSeDa_multiclass
306
+ metrics:
307
+ - name: 0-shot
308
+ type: macro-f1
309
+ value: 43.65
310
+ - name: 1-shot
311
+ type: macro-f1
312
+ value: 64.30
313
+ - name: 3-shot
314
+ type: macro-f1
315
+ value: 64.22
316
+ - name: 5-shot
317
+ type: macro-f1
318
+ value: 64.81
319
+ - task:
320
+ type: text-generation
321
+ dataset:
322
+ name: WMT_EN-RO
323
+ type: WMT_EN-RO
324
+ metrics:
325
+ - name: 0-shot
326
+ type: bleu
327
+ value: 13.30
328
+ - name: 1-shot
329
+ type: bleu
330
+ value: 28.59
331
+ - name: 3-shot
332
+ type: bleu
333
+ value: 29.48
334
+ - name: 5-shot
335
+ type: bleu
336
+ value: 29.31
337
+ - task:
338
+ type: text-generation
339
+ dataset:
340
+ name: WMT_RO-EN
341
+ type: WMT_RO-EN
342
+ metrics:
343
+ - name: 0-shot
344
+ type: bleu
345
+ value: 1.11
346
+ - name: 1-shot
347
+ type: bleu
348
+ value: 18.97
349
+ - name: 3-shot
350
+ type: bleu
351
+ value: 31.99
352
+ - name: 5-shot
353
+ type: bleu
354
+ value: 32.60
355
+ - task:
356
+ type: text-generation
357
+ dataset:
358
+ name: XQuAD_EM
359
+ type: XQuAD_EM
360
+ metrics:
361
+ - name: 0-shot
362
+ type: exact_match
363
+ value: 17.31
364
+ - name: 1-shot
365
+ type: exact_match
366
+ value: 12.44
367
+ - name: 3-shot
368
+ type: exact_match
369
+ value: 13.11
370
+ - name: 5-shot
371
+ type: exact_match
372
+ value: 20.67
373
+ - task:
374
+ type: text-generation
375
+ dataset:
376
+ name: XQuAD_F1
377
+ type: XQuAD_F1
378
+ metrics:
379
+ - name: 0-shot
380
+ type: f1
381
+ value: 29.90
382
+ - name: 1-shot
383
+ type: f1
384
+ value: 24.24
385
+ - name: 3-shot
386
+ type: f1
387
+ value: 25.64
388
+ - name: 5-shot
389
+ type: f1
390
+ value: 36.86
391
+ - task:
392
+ type: text-generation
393
+ dataset:
394
+ name: STS_Spearman
395
+ type: STS_Spearman
396
+ metrics:
397
+ - name: 1-shot
398
+ type: spearman
399
+ value: 76.50
400
+ - name: 3-shot
401
+ type: spearman
402
+ value: 73.63
403
+ - name: 5-shot
404
+ type: spearman
405
+ value: 77.58
406
+ - task:
407
+ type: text-generation
408
+ dataset:
409
+ name: STS_Pearson
410
+ type: STS_Pearson
411
+ metrics:
412
+ - name: 1-shot
413
+ type: pearson
414
+ value: 75.15
415
+ - name: 3-shot
416
+ type: pearson
417
+ value: 72.69
418
+ - name: 5-shot
419
+ type: pearson
420
+ value: 77.63
421
+
422
+ ---
423
+
424
+ # Model Card for Model ID
425
+
426
+ This model points/is identical to [RoGemma-7b-Instruct-2025-04-23](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-2025-04-23).
427
+
428
+ <!-- Provide a quick summary of what the model is/does. -->
429
+
430
+ RoGemma is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **instruct 7B model**. Links to other models can be found at the bottom of this page.
431
+
432
+ ## Model Details
433
+
434
+ ### Model Description
435
+
436
+ <!-- Provide a longer summary of what this model is. -->
437
+ OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
438
+
439
+
440
+ - **Developed by:** OpenLLM-Ro
441
+ <!-- - **Funded by [optional]:** [More Information Needed] -->
442
+ <!-- - **Shared by [optional]:** [More Information Needed] -->
443
+ <!-- - **Model type:** [More Information Needed] -->
444
+ - **Language(s):** Romanian
445
+ - **License:** cc-by-nc-4.0
446
+ - **Finetuned from model:** [gemma-7b](https://huggingface.co/google/gemma-7b)
447
+ - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel), [RoOpenAssistant](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_oasst), [RoUltraChat](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_ultrachat), [RoMagpiePro](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_magpie_mt), [RoMagpieReasoning](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_magpie_reasoning)
448
+
449
+
450
+ ### Model Sources
451
+
452
+ <!-- Provide the basic links for the model. -->
453
+
454
+ - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
455
+ - **Paper:** https://arxiv.org/abs/2406.18266
456
+
457
+ ## Intended Use
458
+
459
+ ### Intended Use Cases
460
+
461
+ RoGemma is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
462
+
463
+ ### Out-of-Scope Use
464
+
465
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
466
+
467
+ Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
468
+
469
+
470
+
471
+ ## How to Get Started with the Model
472
+
473
+ Use the code below to get started with the model.
474
+
475
+ ```python
476
+ from transformers import AutoTokenizer, AutoModelForCausalLM
477
+
478
+ tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoGemma-7b-Instruct")
479
+ model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoGemma-7b-Instruct")
480
+
481
+ instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
482
+ chat = [
483
+ {"role": "user", "content": instruction},
484
+ ]
485
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
486
+
487
+ inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
488
+ outputs = model.generate(input_ids=inputs, max_new_tokens=128)
489
+ print(tokenizer.decode(outputs[0]))
490
+ ```
491
+
492
+ ## Academic Benchmarks
493
+
494
+ <table>
495
+ <tbody>
496
+ <tr>
497
+ <td><strong>Model</strong></td>
498
+ <td><strong><center>Average</center></strong></td>
499
+ <td><strong><center>ARC</center></strong></td>
500
+ <td><strong><center>MMLU</center></strong></td>
501
+ <td><strong><center>Winogrande</center></strong></td>
502
+ <td><strong><center>Hellaswag</center></strong></td>
503
+ <td><strong><center>GSM8k</center></strong></td>
504
+ <td><strong><center>TruthfulQA</center></strong></td>
505
+ </tr>
506
+ <tr>
507
+ <td>gemma-1.1-7b-it</td><td><center>41.44</center></td><td><center>40.32</center></td><td><center>47.22</center></td><td><center>55.01</center></td><td><center>47.03</center></td><td><center>9.50</center></td><td><center>49.58</center></td>
508
+ </tr>
509
+ <tr>
510
+ <td>RoGemma-7b-Instruct-2024-06-28</td><td><center><strong>53.41</strong></center></td><td><center><strong>52.44</strong></center></td><td><center>54.44</center></td><td><center><strong>69.36</strong></center></td><td><center><strong>61.96</strong></center></td><td><center>31.06</center></td><td><center><strong>51.23</strong></center></td>
511
+ </tr>
512
+ <tr>
513
+ <td>RoGemma-7b-Instruct-2024-10-09</td><td><center>50.48</center></td><td><center>52.01</center></td><td><center>52.37</center></td><td><center>66.97</center></td><td><center>56.34</center></td><td><center>25.98</center></td><td><center>49.18</center></td>
514
+ </tr>
515
+ <tr>
516
+ <td><em>RoGemma-7b-Instruct-2025-04-23</em></td><td><center><em>50.52</em></center></td><td><center><em>47.70</em></center></td><td><center><em>51.66</em></center></td><td><center><em>66.32</em></center></td><td><center><em>53.59</em></center></td><td><center><em><strong>36.04</strong></em></center></td><td><center><em>47.81</em></center></td>
517
+ </tr>
518
+ <tr>
519
+ <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center>48.27</center></td><td><center>46.66</center></td><td><center><strong>54.45</strong></center></td><td><center>63.73</center></td><td><center>49.33</center></td><td><center>34.98</center></td><td><center>40.45</center></td>
520
+ </tr>
521
+ </tbody>
522
+ </table>
523
+
524
+ ## Downstream tasks
525
+
526
+ <table>
527
+ <tbody>
528
+ <tr>
529
+ <td></td>
530
+ <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
531
+ <td colspan="4"><center><strong>WMT</strong></center></td>
532
+ </tr>
533
+ <tr>
534
+ <td></td>
535
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
536
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
537
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
538
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
539
+ </tr>
540
+ <tr>
541
+ <td><strong>Model</strong></td>
542
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
543
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
544
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
545
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
546
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
547
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
548
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
549
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center>
550
+ </tr>
551
+ <tr>
552
+ <td>gemma-1.1-7b-it</td><td><center>87.54</center></td><td><center>51.48</center></td><td><center>83.87</center></td><td><center>85.61</center></td><td><center>17.96</center></td><td><center><strong>27.74</strong></center></td><td><center>25.48</center></td><td><center>36.11</center></td>
553
+ </tr>
554
+ <tr>
555
+ <td>RoGemma-7b-Instruct-2024-06-28</td><td><center><strong>97.86</strong></center></td><td><center><strong>65.70</strong></center></td><td><center>98.43</center></td><td><center><strong>87.17</strong></center></td><td><center><strong>27.91</strong></center></td><td><center>23.08</center></td><td><center><strong>27.99</strong></center></td><td><center><strong>39.51</strong></center></td>
556
+ </tr>
557
+ <tr>
558
+ <td>RoGemma-7b-Instruct-2024-10-09</td><td><center>86.96</center></td><td><center>56.72</center></td><td><center><strong>98.80</strong></center></td><td><center>85.81</center></td><td><center>24.45</center></td><td><center>14.20</center></td><td><center>25.96</center></td><td><center>39.07</center></td>
559
+ </tr>
560
+ <tr>
561
+ <td><em>RoGemma-7b-Instruct-2025-04-23</em></td><td><center><em>95.44</em></center></td><td><center><em>59.24</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>25.17</em></center></td><td><center><em>21.17</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
562
+ </tr>
563
+ <tr>
564
+ <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center>96.45</center></td><td><center>63.23</center></td><td><center>-</center></td><td><center>-</center></td><td><center>20.73</center></td><td><center>7.87</center></td><td><center>-</center></td><td><center>-</center></td>
565
+ </tr>
566
+ </tbody>
567
+ </table>
568
+
569
+
570
+ <table>
571
+ <tbody>
572
+ <tr>
573
+ <td></td>
574
+ <td colspan="4"><center><strong>XQuAD</strong></center></td>
575
+ <td colspan="4"><center><strong>STS</strong></center></td>
576
+ </tr>
577
+ <tr>
578
+ <td></td>
579
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
580
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
581
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
582
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
583
+ </tr>
584
+ <tr>
585
+ <td><strong>Model</strong></td>
586
+ <td><center><strong>(EM)</strong></center></td>
587
+ <td><center><strong>(F1)</strong></center></td>
588
+ <td><center><strong>(EM)</strong></center></td>
589
+ <td><center><strong>(F1)</strong></center></td>
590
+ <td><center><strong>(Spearman)</strong></center></td>
591
+ <td><center><strong>(Pearson)</strong></center></td>
592
+ <td><center><strong>(Spearman)</strong></center></td>
593
+ <td><center><strong>(Pearson)</strong></center></td>
594
+ </tr>
595
+ <tr>
596
+ <td>gemma-1.1-7b-it</td><td><center><strong>42.10</strong></center></td><td><center><strong>62.30</strong></center></td><td><center><strong>60.34</strong></center></td><td><center><strong>77.40</strong></center></td><td><center>49.10</center></td><td><center>50.23</center></td><td><center>83.43</center></td><td><center>83.64</center></td>
597
+ </tr>
598
+ <tr>
599
+ <td>RoGemma-7b-Instruct-2024-06-28</td><td><center>17.75</center></td><td><center>28.11</center></td><td><center>52.02</center></td><td><center>68.43</center></td><td><center>73.96</center></td><td><center><strong>75.16</strong></center></td><td><center>86.45</center></td><td><center>86.31</center></td>
600
+ </tr>
601
+ <tr>
602
+ <td>RoGemma-7b-Instruct-2024-10-09</td><td><center>26.03</center></td><td><center>41.58</center></td><td><center>46.72</center></td><td><center>60.79</center></td><td><center>73.23</center></td><td><center>71.58</center></td><td><center><strong>88.42</strong></center></td><td><center><strong>88.45</strong></center></td>
603
+ </tr>
604
+ <tr>
605
+ <td><em>RoGemma-7b-Instruct-2025-04-23</em></td><td><center><em>15.88</em></center></td><td><center><em>29.16</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em><strong>75.90</strong></em></center></td><td><center><em><strong>75.16</strong></em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
606
+ </tr>
607
+ <tr>
608
+ <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center>19.14</center></td><td><center>38.10</center></td><td><center>-</center></td><td><center>-</center></td><td><center>69.38</center></td><td><center>69.34</center></td><td><center>-</center></td><td><center>-</center></td>
609
+ </tr>
610
+ </tbody>
611
+ </table>
612
+
613
+
614
+ ## MT-Bench
615
+
616
+ <table>
617
+ <tbody>
618
+ <tr>
619
+ <td><strong>Model</strong></td>
620
+ <td><strong><center>Average</center></strong></td>
621
+ <td><strong><center>1st turn</center></strong></td>
622
+ <td><strong><center>2nd turn</center></strong></td>
623
+ <td><strong><center>Answers in Ro</center></strong></td>
624
+ </tr>
625
+ <tr>
626
+ <td>gemma-1.1-7b-it</td><td><center>4.83</center></td><td><center>5.11</center></td><td><center>4.55</center></td><td><center><strong>160/160</strong></center></td>
627
+ </tr>
628
+ <tr>
629
+ <td>RoGemma-7b-Instruct-2024-06-28</td><td><center>5.26</center></td><td><center>5.92</center></td><td><center>4.60</center></td><td><center><strong>160/160</strong></center></td>
630
+ </tr>
631
+ <tr>
632
+ <td>RoGemma-7b-Instruct-2024-10-09</td><td><center>5.24</center></td><td><center>5.55</center></td><td><center>4.94</center></td><td><center><strong>160/160</strong></center></td>
633
+ </tr>
634
+ <tr>
635
+ <td><em>RoGemma-7b-Instruct-2025-04-23</em></td><td><center><em><strong>6.28</strong></em></center></td><td><center><em><strong>6.97</strong></em></center></td><td><center><em><strong>5.58</strong></em></center></td><td><center><em><strong>160/160</strong></em></center></td>
636
+ </tr>
637
+ <tr>
638
+ <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center>5.47</center></td><td><center>5.92</center></td><td><center>5.03</center></td><td><center><strong>160/160</strong></center></td>
639
+ </tr>
640
+ </tbody>
641
+ </table>
642
+
643
+ ## RoCulturaBench
644
+
645
+ <table>
646
+ <tbody>
647
+ <tr>
648
+ <td><strong>Model</strong></td>
649
+ <td><strong><center>Average</center></strong></td>
650
+ <td><strong><center>Answers in Ro</center></strong></td>
651
+ </tr>
652
+ <tr>
653
+ <td>gemma-1.1-7b-it</td><td><center>3.38</center></td><td><center><strong>100/100</strong></center></td>
654
+ </tr>
655
+ <tr>
656
+ <td>RoGemma-7b-Instruct-2024-06-28</td><td><center>3.26</center></td><td><center><strong>100/100</strong></center></td>
657
+ </tr>
658
+ <tr>
659
+ <td>RoGemma-7b-Instruct-2024-10-09</td><td><center>3.51</center></td><td><center><strong>100/100</strong></center></td>
660
+ </tr>
661
+ <tr>
662
+ <td><em>RoGemma-7b-Instruct-2025-04-23</em></td><td><center><em>3.65</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
663
+ </tr>
664
+ <tr>
665
+ <td>RoGemma-7b-Instruct-DPO-2024-10-09</td><td><center><strong>3.94</strong></center></td><td><center><strong>100/100</strong></center></td>
666
+ </tr>
667
+ </tbody>
668
+ </table>
669
+
670
+ ## RoGemma Model Family
671
+
672
+ | Model | Link |
673
+ |--------------------|:--------:|
674
+ |RoGemma-7b-Instruct-2024-06-28| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-2024-06-28) |
675
+ |RoGemma-7b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-2024-10-09) |
676
+ |*RoGemma-7b-Instruct-2025-04-23*| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-2025-04-23) |
677
+ |RoGemma-7b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoGemma-7b-Instruct-DPO-2024-10-09) |
678
+
679
+
680
+ ## Citation
681
+
682
+ ```
683
+ @misc{masala2024vorbecstiromanecsterecipetrain,
684
+ title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
685
+ author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
686
+ year={2024},
687
+ eprint={2406.18266},
688
+ archivePrefix={arXiv},
689
+ primaryClass={cs.CL},
690
+ url={https://arxiv.org/abs/2406.18266},
691
+ }
692
+ ```
693
+ <!-- **APA:**
694
+
695
  [More Information Needed] -->