--- license: cc-by-nc-4.0 language: - ro base_model: - OpenLLM-Ro/RoGemma2-9b-Instruct-2025-04-23 datasets: - OpenLLM-Ro/ro_dpo_helpsteer - OpenLLM-Ro/ro_dpo_ultrafeedback - OpenLLM-Ro/ro_dpo_magpie - OpenLLM-Ro/ro_dpo_argilla_magpie - OpenLLM-Ro/ro_dpo_helpsteer2 model-index: - name: OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2025-04-23 results: - task: type: text-generation dataset: name: RoMT-Bench type: RoMT-Bench metrics: - name: Score type: Score value: 7.26 - task: type: text-generation dataset: name: RoCulturaBench type: RoCulturaBench metrics: - name: Score type: Score value: 5.36 - task: type: text-generation dataset: name: Romanian_Academic_Benchmarks type: Romanian_Academic_Benchmarks metrics: - name: Average accuracy type: accuracy value: 59.79 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_arc_challenge type: OpenLLM-Ro/ro_arc_challenge metrics: - name: Average accuracy type: accuracy value: 55.66 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_mmlu type: OpenLLM-Ro/ro_mmlu metrics: - name: Average accuracy type: accuracy value: 64.00 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_winogrande type: OpenLLM-Ro/ro_winogrande metrics: - name: Average accuracy type: accuracy value: 73.16 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_hellaswag type: OpenLLM-Ro/ro_hellaswag metrics: - name: Average accuracy type: accuracy value: 64.26 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_gsm8k type: OpenLLM-Ro/ro_gsm8k metrics: - name: Average accuracy type: accuracy value: 37.80 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_truthfulqa type: OpenLLM-Ro/ro_truthfulqa metrics: - name: Average accuracy type: accuracy value: 63.86 - task: type: text-generation dataset: name: LaRoSeDa_binary type: LaRoSeDa_binary metrics: - name: Average macro-f1 type: macro-f1 value: 82.84 - task: type: text-generation dataset: name: LaRoSeDa_multiclass type: LaRoSeDa_multiclass metrics: - name: Average macro-f1 type: macro-f1 value: 65.95 - task: type: text-generation dataset: name: WMT_EN-RO type: WMT_EN-RO metrics: - name: Average bleu type: bleu value: 28.16 - task: type: text-generation dataset: name: WMT_RO-EN type: WMT_RO-EN metrics: - name: Average bleu type: bleu value: 19.34 - task: type: text-generation dataset: name: XQuAD type: XQuAD metrics: - name: Average exact_match type: exact_match value: 30.82 - task: type: text-generation dataset: name: XQuAD type: XQuAD metrics: - name: Average f1 type: f1 value: 48.53 - task: type: text-generation dataset: name: STS type: STS metrics: - name: Average spearman type: spearman value: 73.24 - task: type: text-generation dataset: name: STS type: STS metrics: - name: Average pearson type: pearson value: 73.13 - task: type: text-generation dataset: name: RoMT-Bench type: RoMT-Bench metrics: - name: First turn type: Score value: 7.65 - name: Second turn type: Score value: 6.86 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_arc_challenge type: OpenLLM-Ro/ro_arc_challenge metrics: - name: 0-shot type: accuracy value: 52.44 - name: 1-shot type: accuracy value: 55.70 - name: 3-shot type: accuracy value: 56.47 - name: 5-shot type: accuracy value: 55.70 - name: 10-shot type: accuracy value: 57.16 - name: 25-shot type: accuracy value: 56.47 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_mmlu type: OpenLLM-Ro/ro_mmlu metrics: - name: 0-shot type: accuracy value: 65.20 - name: 1-shot type: accuracy value: 63.27 - name: 3-shot type: accuracy value: 63.83 - name: 5-shot type: accuracy value: 63.69 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_winogrande type: OpenLLM-Ro/ro_winogrande metrics: - name: 0-shot type: accuracy value: 74.11 - name: 1-shot type: accuracy value: 72.53 - name: 3-shot type: accuracy value: 72.93 - name: 5-shot type: accuracy value: 73.09 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_hellaswag type: OpenLLM-Ro/ro_hellaswag metrics: - name: 0-shot type: accuracy value: 65.90 - name: 1-shot type: accuracy value: 66.06 - name: 3-shot type: accuracy value: 62.36 - name: 5-shot type: accuracy value: 61.87 - name: 10-shot type: accuracy value: 65.11 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_gsm8k type: OpenLLM-Ro/ro_gsm8k metrics: - name: 1-shot type: accuracy value: 16.83 - name: 3-shot type: accuracy value: 43.21 - name: 5-shot type: accuracy value: 53.37 - task: type: text-generation dataset: name: LaRoSeDa_binary type: LaRoSeDa_binary metrics: - name: 0-shot type: macro-f1 value: 39.18 - name: 1-shot type: macro-f1 value: 96.59 - name: 3-shot type: macro-f1 value: 97.63 - name: 5-shot type: macro-f1 value: 97.97 - task: type: text-generation dataset: name: LaRoSeDa_multiclass type: LaRoSeDa_multiclass metrics: - name: 0-shot type: macro-f1 value: 58.94 - name: 1-shot type: macro-f1 value: 64.99 - name: 3-shot type: macro-f1 value: 68.86 - name: 5-shot type: macro-f1 value: 71.03 - task: type: text-generation dataset: name: WMT_EN-RO type: WMT_EN-RO metrics: - name: 0-shot type: bleu value: 26.89 - name: 1-shot type: bleu value: 31.18 - name: 3-shot type: bleu value: 30.65 - name: 5-shot type: bleu value: 23.91 - task: type: text-generation dataset: name: WMT_RO-EN type: WMT_RO-EN metrics: - name: 0-shot type: bleu value: 2.98 - name: 1-shot type: bleu value: 20.30 - name: 3-shot type: bleu value: 30.08 - name: 5-shot type: bleu value: 24.01 - task: type: text-generation dataset: name: XQuAD_EM type: XQuAD_EM metrics: - name: 0-shot type: exact_match value: 26.39 - name: 1-shot type: exact_match value: 23.87 - name: 3-shot type: exact_match value: 34.03 - name: 5-shot type: exact_match value: 38.99 - task: type: text-generation dataset: name: XQuAD_F1 type: XQuAD_F1 metrics: - name: 0-shot type: f1 value: 43.28 - name: 1-shot type: f1 value: 37.38 - name: 3-shot type: f1 value: 54.08 - name: 5-shot type: f1 value: 59.38 - task: type: text-generation dataset: name: STS_Spearman type: STS_Spearman metrics: - name: 1-shot type: spearman value: 73.46 - name: 3-shot type: spearman value: 73.55 - name: 5-shot type: spearman value: 72.70 - task: type: text-generation dataset: name: STS_Pearson type: STS_Pearson metrics: - name: 1-shot type: pearson value: 74.87 - name: 3-shot type: pearson value: 72.96 - name: 5-shot type: pearson value: 71.55 --- # Model Card for Model ID RoGemma2 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **human aligned instruct 9B model**. Links to other models can be found at the bottom of this page. ## Model Details ### Model Description OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants. - **Developed by:** OpenLLM-Ro - **Language(s):** Romanian - **License:** cc-by-nc-4.0 - **Finetuned from model:** [RoGemma2-9b-Instruct-2025-04-23](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-2025-04-23) - **Trained using:** [RoHelpSteer](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_helpsteer), [RoUltraFeedback](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_ultrafeedback), [RoMagpieDPO](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_magpie), [RoArgillaMagpie](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_argilla_magpie), [RoHelpSteer2](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_helpsteer2) ### Model Sources - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory - **Paper:** https://arxiv.org/abs/2406.18266 ## Intended Use ### Intended Use Cases RoGemma2 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat. ### Out-of-Scope Use Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian. ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2025-04-23") model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2025-10-23") instruction = "Ce jocuri de societate pot juca cu prietenii mei?" chat = [ {"role": "user", "content": instruction}, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="") inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") outputs = model.generate(input_ids=inputs, max_new_tokens=128) print(tokenizer.decode(outputs[0])) ``` ## Academic Benchmarks
Model | |||||||
gemma-2-9b-it | |||||||
RoGemma2-9b-Instruct-2024-10-09 | |||||||
RoGemma2-9b-Instruct-2025-04-23 | |||||||
RoGemma2-9b-Instruct-DPO-2024-10-09 | |||||||
RoGemma2-9b-Instruct-DPO-2025-04-23 |
Model | (Macro F1) |
(Macro F1) |
(Macro F1) |
(Macro F1) |
(Bleu) |
(Bleu) |
(Bleu) |
(Bleu) |
gemma-2-9b-it | ||||||||
RoGemma2-9b-Instruct-2024-10-09 | ||||||||
RoGemma2-9b-Instruct-2025-04-23 | ||||||||
RoGemma2-9b-Instruct-DPO-2024-10-09 | ||||||||
RoGemma2-9b-Instruct-DPO-2025-04-23 |
Model | ||||||||
gemma-2-9b-it | ||||||||
RoGemma2-9b-Instruct-2024-10-09 | ||||||||
RoGemma2-9b-Instruct-2025-04-23 | ||||||||
RoGemma2-9b-Instruct-DPO-2024-10-09 | ||||||||
RoGemma2-9b-Instruct-DPO-2025-04-23 |
Model | ||||
gemma-2-9b-it | ||||
RoGemma2-9b-Instruct-2024-10-09 | ||||
RoGemma2-9b-Instruct-2025-04-23 | ||||
RoGemma2-9b-Instruct-DPO-2024-10-09 | ||||
RoGemma2-9b-Instruct-DPO-2025-04-23 |
Model | ||
gemma-2-9b-it | ||
RoGemma2-9b-Instruct-2024-10-09 | ||
RoGemma2-9b-Instruct-2025-04-23 | ||
RoGemma2-9b-Instruct-DPO-2024-10-09 | ||
RoGemma2-9b-Instruct-DPO-2025-04-23 |