mihaimasala commited on
Commit
13857e4
·
verified ·
1 Parent(s): 250cd65

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +711 -749
README.md CHANGED
@@ -1,750 +1,712 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- language:
4
- - ro
5
- base_model:
6
- - OpenLLM-Ro/RoLlama3-8b-Instruct-2024-10-09
7
- datasets:
8
- - OpenLLM-Ro/ro_dpo_helpsteer
9
- model-index:
10
- - name: OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2024-10-09
11
- results:
12
- - task:
13
- type: text-generation
14
- dataset:
15
- name: RoMT-Bench
16
- type: RoMT-Bench
17
- metrics:
18
- - name: Score
19
- type: Score
20
- value: 5.87
21
- - task:
22
- type: text-generation
23
- dataset:
24
- name: RoCulturaBench
25
- type: RoCulturaBench
26
- metrics:
27
- - name: Score
28
- type: Score
29
- value: 4.40
30
- - task:
31
- type: text-generation
32
- dataset:
33
- name: Romanian_Academic_Benchmarks
34
- type: Romanian_Academic_Benchmarks
35
- metrics:
36
- - name: Average accuracy
37
- type: accuracy
38
- value: 49.96
39
- - task:
40
- type: text-generation
41
- dataset:
42
- name: OpenLLM-Ro/ro_arc_challenge
43
- type: OpenLLM-Ro/ro_arc_challenge
44
- metrics:
45
- - name: Average accuracy
46
- type: accuracy
47
- value: 46.29
48
- - task:
49
- type: text-generation
50
- dataset:
51
- name: OpenLLM-Ro/ro_mmlu
52
- type: OpenLLM-Ro/ro_mmlu
53
- metrics:
54
- - name: Average accuracy
55
- type: accuracy
56
- value: 53.29
57
- - task:
58
- type: text-generation
59
- dataset:
60
- name: OpenLLM-Ro/ro_winogrande
61
- type: OpenLLM-Ro/ro_winogrande
62
- metrics:
63
- - name: Average accuracy
64
- type: accuracy
65
- value: 65.57
66
- - task:
67
- type: text-generation
68
- dataset:
69
- name: OpenLLM-Ro/ro_hellaswag
70
- type: OpenLLM-Ro/ro_hellaswag
71
- metrics:
72
- - name: Average accuracy
73
- type: accuracy
74
- value: 58.15
75
- - task:
76
- type: text-generation
77
- dataset:
78
- name: OpenLLM-Ro/ro_gsm8k
79
- type: OpenLLM-Ro/ro_gsm8k
80
- metrics:
81
- - name: Average accuracy
82
- type: accuracy
83
- value: 34.77
84
- - task:
85
- type: text-generation
86
- dataset:
87
- name: OpenLLM-Ro/ro_truthfulqa
88
- type: OpenLLM-Ro/ro_truthfulqa
89
- metrics:
90
- - name: Average accuracy
91
- type: accuracy
92
- value: 41.70
93
- - task:
94
- type: text-generation
95
- dataset:
96
- name: LaRoSeDa_binary
97
- type: LaRoSeDa_binary
98
- metrics:
99
- - name: Average macro-f1
100
- type: macro-f1
101
- value: 97.48
102
- - task:
103
- type: text-generation
104
- dataset:
105
- name: LaRoSeDa_multiclass
106
- type: LaRoSeDa_multiclass
107
- metrics:
108
- - name: Average macro-f1
109
- type: macro-f1
110
- value: 54.00
111
- - task:
112
- type: text-generation
113
- dataset:
114
- name: LaRoSeDa_binary_finetuned
115
- type: LaRoSeDa_binary_finetuned
116
- metrics:
117
- - name: Average macro-f1
118
- type: macro-f1
119
- value: 0.00
120
- - task:
121
- type: text-generation
122
- dataset:
123
- name: LaRoSeDa_multiclass_finetuned
124
- type: LaRoSeDa_multiclass_finetuned
125
- metrics:
126
- - name: Average macro-f1
127
- type: macro-f1
128
- value: 0.00
129
- - task:
130
- type: text-generation
131
- dataset:
132
- name: WMT_EN-RO
133
- type: WMT_EN-RO
134
- metrics:
135
- - name: Average bleu
136
- type: bleu
137
- value: 22.09
138
- - task:
139
- type: text-generation
140
- dataset:
141
- name: WMT_RO-EN
142
- type: WMT_RO-EN
143
- metrics:
144
- - name: Average bleu
145
- type: bleu
146
- value: 23.00
147
- - task:
148
- type: text-generation
149
- dataset:
150
- name: WMT_EN-RO_finetuned
151
- type: WMT_EN-RO_finetuned
152
- metrics:
153
- - name: Average bleu
154
- type: bleu
155
- value: 0.00
156
- - task:
157
- type: text-generation
158
- dataset:
159
- name: WMT_RO-EN_finetuned
160
- type: WMT_RO-EN_finetuned
161
- metrics:
162
- - name: Average bleu
163
- type: bleu
164
- value: 0.00
165
- - task:
166
- type: text-generation
167
- dataset:
168
- name: XQuAD
169
- type: XQuAD
170
- metrics:
171
- - name: Average exact_match
172
- type: exact_match
173
- value: 26.05
174
- - task:
175
- type: text-generation
176
- dataset:
177
- name: XQuAD
178
- type: XQuAD
179
- metrics:
180
- - name: Average f1
181
- type: f1
182
- value: 42.77
183
- - task:
184
- type: text-generation
185
- dataset:
186
- name: XQuAD_finetuned
187
- type: XQuAD_finetuned
188
- metrics:
189
- - name: Average exact_match
190
- type: exact_match
191
- value: 0.00
192
- - task:
193
- type: text-generation
194
- dataset:
195
- name: XQuAD_finetuned
196
- type: XQuAD_finetuned
197
- metrics:
198
- - name: Average f1
199
- type: f1
200
- value: 0.00
201
- - task:
202
- type: text-generation
203
- dataset:
204
- name: STS
205
- type: STS
206
- metrics:
207
- - name: Average spearman
208
- type: spearman
209
- value: 79.64
210
- - task:
211
- type: text-generation
212
- dataset:
213
- name: STS
214
- type: STS
215
- metrics:
216
- - name: Average pearson
217
- type: pearson
218
- value: 79.52
219
- - task:
220
- type: text-generation
221
- dataset:
222
- name: STS_finetuned
223
- type: STS_finetuned
224
- metrics:
225
- - name: Average spearman
226
- type: spearman
227
- value: 0.00
228
- - task:
229
- type: text-generation
230
- dataset:
231
- name: STS_finetuned
232
- type: STS_finetuned
233
- metrics:
234
- - name: Average pearson
235
- type: pearson
236
- value: 0.00
237
- - task:
238
- type: text-generation
239
- dataset:
240
- name: RoMT-Bench
241
- type: RoMT-Bench
242
- metrics:
243
- - name: First turn
244
- type: Score
245
- value: 6.22
246
- - name: Second turn
247
- type: Score
248
- value: 5.49
249
- - task:
250
- type: text-generation
251
- dataset:
252
- name: OpenLLM-Ro/ro_arc_challenge
253
- type: OpenLLM-Ro/ro_arc_challenge
254
- metrics:
255
- - name: 0-shot
256
- type: accuracy
257
- value: 44.56
258
- - name: 1-shot
259
- type: accuracy
260
- value: 45.42
261
- - name: 3-shot
262
- type: accuracy
263
- value: 46.10
264
- - name: 5-shot
265
- type: accuracy
266
- value: 46.27
267
- - name: 10-shot
268
- type: accuracy
269
- value: 46.96
270
- - name: 25-shot
271
- type: accuracy
272
- value: 48.41
273
- - task:
274
- type: text-generation
275
- dataset:
276
- name: OpenLLM-Ro/ro_mmlu
277
- type: OpenLLM-Ro/ro_mmlu
278
- metrics:
279
- - name: 0-shot
280
- type: accuracy
281
- value: 52.33
282
- - name: 1-shot
283
- type: accuracy
284
- value: 52.86
285
- - name: 3-shot
286
- type: accuracy
287
- value: 54.06
288
- - name: 5-shot
289
- type: accuracy
290
- value: 53.90
291
- - task:
292
- type: text-generation
293
- dataset:
294
- name: OpenLLM-Ro/ro_winogrande
295
- type: OpenLLM-Ro/ro_winogrande
296
- metrics:
297
- - name: 0-shot
298
- type: accuracy
299
- value: 64.33
300
- - name: 1-shot
301
- type: accuracy
302
- value: 64.72
303
- - name: 3-shot
304
- type: accuracy
305
- value: 66.30
306
- - name: 5-shot
307
- type: accuracy
308
- value: 66.93
309
- - task:
310
- type: text-generation
311
- dataset:
312
- name: OpenLLM-Ro/ro_hellaswag
313
- type: OpenLLM-Ro/ro_hellaswag
314
- metrics:
315
- - name: 0-shot
316
- type: accuracy
317
- value: 57.45
318
- - name: 1-shot
319
- type: accuracy
320
- value: 57.65
321
- - name: 3-shot
322
- type: accuracy
323
- value: 58.18
324
- - name: 5-shot
325
- type: accuracy
326
- value: 58.64
327
- - name: 10-shot
328
- type: accuracy
329
- value: 58.85
330
- - task:
331
- type: text-generation
332
- dataset:
333
- name: OpenLLM-Ro/ro_gsm8k
334
- type: OpenLLM-Ro/ro_gsm8k
335
- metrics:
336
- - name: 1-shot
337
- type: accuracy
338
- value: 32.52
339
- - name: 3-shot
340
- type: accuracy
341
- value: 33.97
342
- - name: 5-shot
343
- type: accuracy
344
- value: 37.83
345
- - task:
346
- type: text-generation
347
- dataset:
348
- name: LaRoSeDa_binary
349
- type: LaRoSeDa_binary
350
- metrics:
351
- - name: 0-shot
352
- type: macro-f1
353
- value: 97.67
354
- - name: 1-shot
355
- type: macro-f1
356
- value: 97.07
357
- - name: 3-shot
358
- type: macro-f1
359
- value: 97.40
360
- - name: 5-shot
361
- type: macro-f1
362
- value: 97.80
363
- - task:
364
- type: text-generation
365
- dataset:
366
- name: LaRoSeDa_multiclass
367
- type: LaRoSeDa_multiclass
368
- metrics:
369
- - name: 0-shot
370
- type: macro-f1
371
- value: 58.49
372
- - name: 1-shot
373
- type: macro-f1
374
- value: 55.93
375
- - name: 3-shot
376
- type: macro-f1
377
- value: 47.70
378
- - name: 5-shot
379
- type: macro-f1
380
- value: 53.89
381
- - task:
382
- type: text-generation
383
- dataset:
384
- name: WMT_EN-RO
385
- type: WMT_EN-RO
386
- metrics:
387
- - name: 0-shot
388
- type: bleu
389
- value: 8.63
390
- - name: 1-shot
391
- type: bleu
392
- value: 25.89
393
- - name: 3-shot
394
- type: bleu
395
- value: 26.79
396
- - name: 5-shot
397
- type: bleu
398
- value: 27.05
399
- - task:
400
- type: text-generation
401
- dataset:
402
- name: WMT_RO-EN
403
- type: WMT_RO-EN
404
- metrics:
405
- - name: 0-shot
406
- type: bleu
407
- value: 3.56
408
- - name: 1-shot
409
- type: bleu
410
- value: 20.66
411
- - name: 3-shot
412
- type: bleu
413
- value: 33.56
414
- - name: 5-shot
415
- type: bleu
416
- value: 34.22
417
- - task:
418
- type: text-generation
419
- dataset:
420
- name: XQuAD_EM
421
- type: XQuAD_EM
422
- metrics:
423
- - name: 0-shot
424
- type: exact_match
425
- value: 11.26
426
- - name: 1-shot
427
- type: exact_match
428
- value: 34.29
429
- - name: 3-shot
430
- type: exact_match
431
- value: 29.24
432
- - name: 5-shot
433
- type: exact_match
434
- value: 29.41
435
- - task:
436
- type: text-generation
437
- dataset:
438
- name: XQuAD_F1
439
- type: XQuAD_F1
440
- metrics:
441
- - name: 0-shot
442
- type: f1
443
- value: 22.98
444
- - name: 1-shot
445
- type: f1
446
- value: 54.48
447
- - name: 3-shot
448
- type: f1
449
- value: 46.18
450
- - name: 5-shot
451
- type: f1
452
- value: 47.43
453
- - task:
454
- type: text-generation
455
- dataset:
456
- name: STS_Spearman
457
- type: STS_Spearman
458
- metrics:
459
- - name: 1-shot
460
- type: spearman
461
- value: 79.99
462
- - name: 3-shot
463
- type: spearman
464
- value: 78.42
465
- - name: 5-shot
466
- type: spearman
467
- value: 80.51
468
- - task:
469
- type: text-generation
470
- dataset:
471
- name: STS_Pearson
472
- type: STS_Pearson
473
- metrics:
474
- - name: 1-shot
475
- type: pearson
476
- value: 80.59
477
- - name: 3-shot
478
- type: pearson
479
- value: 78.11
480
- - name: 5-shot
481
- type: pearson
482
- value: 79.87
483
-
484
-
485
-
486
- ---
487
-
488
- # Model Card for Model ID
489
-
490
- *Built with Meta Llama 3*
491
-
492
- This model points/is identical to [RoLlama3-8b-Instruct-DPO-2024-10-09](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2024-10-09).
493
-
494
-
495
- <!-- Provide a quick summary of what the model is/does. -->
496
-
497
- RoLlama3 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **human aligned instruct 8B model**. Links to other models can be found at the bottom of this page.
498
-
499
-
500
- ## Model Details
501
-
502
- ### Model Description
503
-
504
- <!-- Provide a longer summary of what this model is. -->
505
- OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
506
-
507
-
508
- - **Developed by:** OpenLLM-Ro
509
- <!-- - **Funded by [optional]:** [More Information Needed] -->
510
- <!-- - **Shared by [optional]:** [More Information Needed] -->
511
- <!-- - **Model type:** [More Information Needed] -->
512
- - **Language(s):** Romanian
513
- - **License:** cc-by-nc-4.0
514
- - **Finetuned from model:** [RoLlama3-8b-Instruct-2024-10-09](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2024-10-09)
515
- - **Trained using:** [RoHelpSteer](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_helpsteer)
516
-
517
-
518
- ### Model Sources
519
-
520
- <!-- Provide the basic links for the model. -->
521
-
522
- - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
523
- - **Paper:** https://arxiv.org/abs/2406.18266
524
-
525
- ## Intended Use
526
-
527
- ### Intended Use Cases
528
-
529
- RoLlama3 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
530
-
531
- ### Out-of-Scope Use
532
-
533
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
534
-
535
- Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
536
-
537
-
538
-
539
- ## How to Get Started with the Model
540
-
541
- Use the code below to get started with the model.
542
-
543
- ```python
544
- from transformers import AutoTokenizer, AutoModelForCausalLM
545
-
546
- tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2024-10-09")
547
- model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2024-10-09")
548
-
549
- instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
550
- chat = [
551
- {"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."},
552
- {"role": "user", "content": instruction},
553
- ]
554
- prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
555
-
556
- inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
557
- outputs = model.generate(input_ids=inputs, max_new_tokens=128)
558
- print(tokenizer.decode(outputs[0]))
559
- ```
560
-
561
- ## Academic Benchmarks
562
-
563
- <table>
564
- <tbody>
565
- <tr>
566
- <td><strong>Model</strong></td>
567
- <td><strong><center>Average</center></strong></td>
568
- <td><strong><center>ARC</center></strong></td>
569
- <td><strong><center>MMLU</center></strong></td>
570
- <td><strong><center>Winogrande</center></strong></td>
571
- <td><strong><center>Hellaswag</center></strong></td>
572
- <td><strong><center>GSM8k</center></strong></td>
573
- <td><strong><center>TruthfulQA</center></strong></td>
574
- </tr>
575
- <tr>
576
- <td>Llama-3-8B-Instruct</td><td><center>50.62</center></td><td><center>43.69</center></td><td><center>52.04</center></td><td><center>59.33</center></td><td><center>53.19</center></td><td><center><strong>43.87</strong></center></td><td><center><strong>51.59</strong></center></td>
577
- </tr>
578
- <tr>
579
- <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>50.56</center></td><td><center>44.70</center></td><td><center>52.19</center></td><td><center><strong>67.23</strong></center></td><td><center>57.69</center></td><td><center>30.23</center></td><td><center>51.34</center></td>
580
- </tr>
581
- <tr>
582
- <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center><strong>52.21</strong></center></td><td><center><strong>47.94</strong></center></td><td><center><strong>53.50</strong></center></td><td><center>66.06</center></td><td><center><strong>59.72</strong></center></td><td><center>40.16</center></td><td><center>45.90</center></td>
583
- </tr>
584
- <tr>
585
- <td><em>RoLlama3-8b-Instruct-DPO-2024-10-09</em></td><td><center><em>49.96</em></center></td><td><center><em>46.29</em></center></td><td><center><em>53.29</em></center></td><td><center><em>65.57</em></center></td><td><center><em>58.15</em></center></td><td><center><em>34.77</em></center></td><td><center><em>41.70</em></center></td>
586
- </tr>
587
- </tbody>
588
- </table>
589
-
590
- ## Downstream tasks
591
-
592
- <table>
593
- <tbody>
594
- <tr>
595
- <td></td>
596
- <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
597
- <td colspan="4"><center><strong>WMT</strong></center></td>
598
- </tr>
599
- <tr>
600
- <td></td>
601
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
602
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
603
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
604
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
605
- </tr>
606
- <tr>
607
- <td><strong>Model</strong></td>
608
- <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
609
- <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
610
- <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
611
- <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
612
- <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
613
- <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
614
- <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
615
- <td><center><strong>RO-EN<br>(Bleu)</strong></center>
616
- </tr>
617
- <tr>
618
- <td>Llama-3-8B-Instruct</td><td><center>95.88</center></td><td><center>56.21</center></td><td><center><strong>98.53</strong></center></td><td><center>86.19</center></td><td><center>18.88</center></td><td><center><strong>30.98</strong></center></td><td><center><strong>28.02</strong></center></td><td><center>40.28</center></td>
619
- </tr>
620
- <tr>
621
- <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center><strong>97.52</strong></center></td><td><center><strong>67.41</strong></center></td><td><center>94.15</center></td><td><center>87.13</center></td><td><center><strong>24.01</strong></center></td><td><center>27.36</center></td><td><center>26.53</center></td><td><center>40.36</center></td>
622
- </tr>
623
- <tr>
624
- <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center>95.58</center></td><td><center>61.20</center></td><td><center>96.46</center></td><td><center><strong>87.26</strong></center></td><td><center>22.92</center></td><td><center>24.28</center></td><td><center>27.31</center></td><td><center><strong>40.52</strong></center></td>
625
- </tr>
626
- <tr>
627
- <td><em>RoLlama3-8b-Instruct-DPO-2024-10-09</em></td><td><center><em>97.48</em></center></td><td><center><em>54.00</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>22.09</em></center></td><td><center><em>23.00</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
628
- </tr>
629
- </tbody>
630
- </table>
631
-
632
-
633
- <table>
634
- <tbody>
635
- <tr>
636
- <td></td>
637
- <td colspan="4"><center><strong>XQuAD</strong></center></td>
638
- <td colspan="4"><center><strong>STS</strong></center></td>
639
- </tr>
640
- <tr>
641
- <td></td>
642
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
643
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
644
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
645
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
646
- </tr>
647
- <tr>
648
- <td><strong>Model</strong></td>
649
- <td><center><strong>(EM)</strong></center></td>
650
- <td><center><strong>(F1)</strong></center></td>
651
- <td><center><strong>(EM)</strong></center></td>
652
- <td><center><strong>(F1)</strong></center></td>
653
- <td><center><strong>(Spearman)</strong></center></td>
654
- <td><center><strong>(Pearson)</strong></center></td>
655
- <td><center><strong>(Spearman)</strong></center></td>
656
- <td><center><strong>(Pearson)</strong></center></td>
657
- </tr>
658
- <tr>
659
- <td>Llama-3-8B-Instruct</td><td><center><strong>39.47</strong></center></td><td><center>58.67</center></td><td><center><strong>67.65</strong></center></td><td><center><strong>82.77</strong></center></td><td><center>73.04</center></td><td><center>72.36</center></td><td><center>83.49</center></td><td><center>84.06</center></td>
660
- </tr>
661
- <tr>
662
- <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>39.43</center></td><td><center><strong>59.50</strong></center></td><td><center>44.45</center></td><td><center>59.76</center></td><td><center>77.20</center></td><td><center>77.87</center></td><td><center>85.80</center></td><td><center>86.05</center></td>
663
- </tr>
664
- <tr>
665
- <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center>18.89</center></td><td><center>31.79</center></td><td><center>50.84</center></td><td><center>65.18</center></td><td><center>77.60</center></td><td><center>76.86</center></td><td><center><strong>86.70</strong></center></td><td><center><strong>87.09</strong></center></td>
666
- </tr>
667
- <tr>
668
- <td><em>RoLlama3-8b-Instruct-DPO-2024-10-09</em></td><td><center><em>26.05</em></center></td><td><center><em>42.77</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em><strong>79.64</strong></em></center></td><td><center><em><strong>79.52</strong></em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
669
- </tr>
670
- </tbody>
671
- </table>
672
-
673
-
674
- ## MT-Bench
675
-
676
- <table>
677
- <tbody>
678
- <tr>
679
- <td><strong>Model</strong></td>
680
- <td><strong><center>Average</center></strong></td>
681
- <td><strong><center>1st turn</center></strong></td>
682
- <td><strong><center>2nd turn</center></strong></td>
683
- <td><strong><center>Answers in Ro</center></strong></td>
684
- </tr>
685
- <tr>
686
- <td>Llama-3-8B-Instruct</td><td><center><strong>5.96</strong></center></td><td><center>6.16</center></td><td><center><strong>5.76</strong></center></td><td><center>158/160</center></td>
687
- </tr>
688
- <tr>
689
- <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>5.15</center></td><td><center>6.03</center></td><td><center>4.28</center></td><td><center><strong>160/160</strong></center></td>
690
- </tr>
691
- <tr>
692
- <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center>5.38</center></td><td><center>6.09</center></td><td><center>4.67</center></td><td><center><strong>160/160</strong></center></td>
693
- </tr>
694
- <tr>
695
- <td><em>RoLlama3-8b-Instruct-DPO-2024-10-09</em></td><td><center><em>5.87</em></center></td><td><center><em><strong>6.22</strong></em></center></td><td><center><em>5.49</em></center></td><td><center><em><strong>160/160</strong></em></center></td>
696
- </tr>
697
- </tbody>
698
- </table>
699
-
700
- ## RoCulturaBench
701
-
702
- <table>
703
- <tbody>
704
- <tr>
705
- <td><strong>Model</strong></td>
706
- <td><strong><center>Average</center></strong></td>
707
- <td><strong><center>Answers in Ro</center></strong></td>
708
- </tr>
709
- <tr>
710
- <td>Llama-3-8B-Instruct</td><td><center><strong>4.62</strong></center></td><td><center><strong>100/100</strong></center></td>
711
- </tr>
712
- <tr>
713
- <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>3.71</center></td><td><center><strong>100/100</strong></center></td>
714
- </tr>
715
- <tr>
716
- <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center>3.81</center></td><td><center><strong>100/100</strong></center></td>
717
- </tr>
718
- <tr>
719
- <td><em>RoLlama3-8b-Instruct-DPO-2024-10-09</em></td><td><center><em>4.40</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
720
- </tr>
721
- </tbody>
722
- </table>
723
-
724
-
725
-
726
- ## RoLlama3 Model Family
727
-
728
- | Model | Link |
729
- |--------------------|:--------:|
730
- |RoLlama3-8b-Instruct-2024-06-28| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2024-06-28) |
731
- |RoLlama3-8b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2024-10-09) |
732
- |*RoLlama3-8b-Instruct-DPO-2024-10-09*| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2024-10-09) |
733
-
734
-
735
- ## Citation
736
-
737
- ```
738
- @misc{masala2024vorbecstiromanecsterecipetrain,
739
- title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
740
- author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
741
- year={2024},
742
- eprint={2406.18266},
743
- archivePrefix={arXiv},
744
- primaryClass={cs.CL},
745
- url={https://arxiv.org/abs/2406.18266},
746
- }
747
- ```
748
- <!-- **APA:**
749
-
750
  [More Information Needed] -->
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ language:
4
+ - ro
5
+ base_model:
6
+ - OpenLLM-Ro/RoLlama3-8b-Instruct-2025-04-23
7
+ datasets:
8
+ - OpenLLM-Ro/ro_dpo_helpsteer
9
+ - OpenLLM-Ro/ro_dpo_ultrafeedback
10
+ - OpenLLM-Ro/ro_dpo_magpie
11
+ - OpenLLM-Ro/ro_dpo_argilla_magpie
12
+ - OpenLLM-Ro/ro_dpo_helpsteer2
13
+ model-index:
14
+ - name: OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2025-04-23
15
+ results:
16
+ - task:
17
+ type: text-generation
18
+ dataset:
19
+ name: RoMT-Bench
20
+ type: RoMT-Bench
21
+ metrics:
22
+ - name: Score
23
+ type: Score
24
+ value: 6.67
25
+ - task:
26
+ type: text-generation
27
+ dataset:
28
+ name: RoCulturaBench
29
+ type: RoCulturaBench
30
+ metrics:
31
+ - name: Score
32
+ type: Score
33
+ value: 4.83
34
+ - task:
35
+ type: text-generation
36
+ dataset:
37
+ name: Romanian_Academic_Benchmarks
38
+ type: Romanian_Academic_Benchmarks
39
+ metrics:
40
+ - name: Average accuracy
41
+ type: accuracy
42
+ value: 55.86
43
+ - task:
44
+ type: text-generation
45
+ dataset:
46
+ name: OpenLLM-Ro/ro_arc_challenge
47
+ type: OpenLLM-Ro/ro_arc_challenge
48
+ metrics:
49
+ - name: Average accuracy
50
+ type: accuracy
51
+ value: 52.26
52
+ - task:
53
+ type: text-generation
54
+ dataset:
55
+ name: OpenLLM-Ro/ro_mmlu
56
+ type: OpenLLM-Ro/ro_mmlu
57
+ metrics:
58
+ - name: Average accuracy
59
+ type: accuracy
60
+ value: 55.35
61
+ - task:
62
+ type: text-generation
63
+ dataset:
64
+ name: OpenLLM-Ro/ro_winogrande
65
+ type: OpenLLM-Ro/ro_winogrande
66
+ metrics:
67
+ - name: Average accuracy
68
+ type: accuracy
69
+ value: 66.62
70
+ - task:
71
+ type: text-generation
72
+ dataset:
73
+ name: OpenLLM-Ro/ro_hellaswag
74
+ type: OpenLLM-Ro/ro_hellaswag
75
+ metrics:
76
+ - name: Average accuracy
77
+ type: accuracy
78
+ value: 59.93
79
+ - task:
80
+ type: text-generation
81
+ dataset:
82
+ name: OpenLLM-Ro/ro_gsm8k
83
+ type: OpenLLM-Ro/ro_gsm8k
84
+ metrics:
85
+ - name: Average accuracy
86
+ type: accuracy
87
+ value: 43.95
88
+ - task:
89
+ type: text-generation
90
+ dataset:
91
+ name: OpenLLM-Ro/ro_truthfulqa
92
+ type: OpenLLM-Ro/ro_truthfulqa
93
+ metrics:
94
+ - name: Average accuracy
95
+ type: accuracy
96
+ value: 57.06
97
+ - task:
98
+ type: text-generation
99
+ dataset:
100
+ name: LaRoSeDa_binary
101
+ type: LaRoSeDa_binary
102
+ metrics:
103
+ - name: Average macro-f1
104
+ type: macro-f1
105
+ value: 97.60
106
+ - task:
107
+ type: text-generation
108
+ dataset:
109
+ name: LaRoSeDa_multiclass
110
+ type: LaRoSeDa_multiclass
111
+ metrics:
112
+ - name: Average macro-f1
113
+ type: macro-f1
114
+ value: 62.16
115
+ - task:
116
+ type: text-generation
117
+ dataset:
118
+ name: WMT_EN-RO
119
+ type: WMT_EN-RO
120
+ metrics:
121
+ - name: Average bleu
122
+ type: bleu
123
+ value: 18.14
124
+ - task:
125
+ type: text-generation
126
+ dataset:
127
+ name: WMT_RO-EN
128
+ type: WMT_RO-EN
129
+ metrics:
130
+ - name: Average bleu
131
+ type: bleu
132
+ value: 14.13
133
+ - task:
134
+ type: text-generation
135
+ dataset:
136
+ name: XQuAD
137
+ type: XQuAD
138
+ metrics:
139
+ - name: Average exact_match
140
+ type: exact_match
141
+ value: 30.65
142
+ - task:
143
+ type: text-generation
144
+ dataset:
145
+ name: XQuAD
146
+ type: XQuAD
147
+ metrics:
148
+ - name: Average f1
149
+ type: f1
150
+ value: 46.29
151
+ - task:
152
+ type: text-generation
153
+ dataset:
154
+ name: STS
155
+ type: STS
156
+ metrics:
157
+ - name: Average spearman
158
+ type: spearman
159
+ value: 67.62
160
+ - task:
161
+ type: text-generation
162
+ dataset:
163
+ name: STS
164
+ type: STS
165
+ metrics:
166
+ - name: Average pearson
167
+ type: pearson
168
+ value: 67.82
169
+ - task:
170
+ type: text-generation
171
+ dataset:
172
+ name: RoMT-Bench
173
+ type: RoMT-Bench
174
+ metrics:
175
+ - name: First turn
176
+ type: Score
177
+ value: 6.81
178
+ - name: Second turn
179
+ type: Score
180
+ value: 6.54
181
+ - task:
182
+ type: text-generation
183
+ dataset:
184
+ name: OpenLLM-Ro/ro_arc_challenge
185
+ type: OpenLLM-Ro/ro_arc_challenge
186
+ metrics:
187
+ - name: 0-shot
188
+ type: accuracy
189
+ value: 48.76
190
+ - name: 1-shot
191
+ type: accuracy
192
+ value: 49.70
193
+ - name: 3-shot
194
+ type: accuracy
195
+ value: 52.70
196
+ - name: 5-shot
197
+ type: accuracy
198
+ value: 54.07
199
+ - name: 10-shot
200
+ type: accuracy
201
+ value: 53.90
202
+ - name: 25-shot
203
+ type: accuracy
204
+ value: 54.41
205
+ - task:
206
+ type: text-generation
207
+ dataset:
208
+ name: OpenLLM-Ro/ro_mmlu
209
+ type: OpenLLM-Ro/ro_mmlu
210
+ metrics:
211
+ - name: 0-shot
212
+ type: accuracy
213
+ value: 55.78
214
+ - name: 1-shot
215
+ type: accuracy
216
+ value: 55.09
217
+ - name: 3-shot
218
+ type: accuracy
219
+ value: 55.39
220
+ - name: 5-shot
221
+ type: accuracy
222
+ value: 55.15
223
+ - task:
224
+ type: text-generation
225
+ dataset:
226
+ name: OpenLLM-Ro/ro_winogrande
227
+ type: OpenLLM-Ro/ro_winogrande
228
+ metrics:
229
+ - name: 0-shot
230
+ type: accuracy
231
+ value: 65.19
232
+ - name: 1-shot
233
+ type: accuracy
234
+ value: 64.25
235
+ - name: 3-shot
236
+ type: accuracy
237
+ value: 68.59
238
+ - name: 5-shot
239
+ type: accuracy
240
+ value: 68.43
241
+ - task:
242
+ type: text-generation
243
+ dataset:
244
+ name: OpenLLM-Ro/ro_hellaswag
245
+ type: OpenLLM-Ro/ro_hellaswag
246
+ metrics:
247
+ - name: 0-shot
248
+ type: accuracy
249
+ value: 60.31
250
+ - name: 1-shot
251
+ type: accuracy
252
+ value: 59.88
253
+ - name: 3-shot
254
+ type: accuracy
255
+ value: 59.17
256
+ - name: 5-shot
257
+ type: accuracy
258
+ value: 59.89
259
+ - name: 10-shot
260
+ type: accuracy
261
+ value: 60.40
262
+ - task:
263
+ type: text-generation
264
+ dataset:
265
+ name: OpenLLM-Ro/ro_gsm8k
266
+ type: OpenLLM-Ro/ro_gsm8k
267
+ metrics:
268
+ - name: 1-shot
269
+ type: accuracy
270
+ value: 32.37
271
+ - name: 3-shot
272
+ type: accuracy
273
+ value: 46.70
274
+ - name: 5-shot
275
+ type: accuracy
276
+ value: 52.77
277
+ - task:
278
+ type: text-generation
279
+ dataset:
280
+ name: LaRoSeDa_binary
281
+ type: LaRoSeDa_binary
282
+ metrics:
283
+ - name: 0-shot
284
+ type: macro-f1
285
+ value: 95.79
286
+ - name: 1-shot
287
+ type: macro-f1
288
+ value: 97.87
289
+ - name: 3-shot
290
+ type: macro-f1
291
+ value: 98.30
292
+ - name: 5-shot
293
+ type: macro-f1
294
+ value: 98.43
295
+ - task:
296
+ type: text-generation
297
+ dataset:
298
+ name: LaRoSeDa_multiclass
299
+ type: LaRoSeDa_multiclass
300
+ metrics:
301
+ - name: 0-shot
302
+ type: macro-f1
303
+ value: 64.86
304
+ - name: 1-shot
305
+ type: macro-f1
306
+ value: 64.46
307
+ - name: 3-shot
308
+ type: macro-f1
309
+ value: 58.36
310
+ - name: 5-shot
311
+ type: macro-f1
312
+ value: 60.97
313
+ - task:
314
+ type: text-generation
315
+ dataset:
316
+ name: WMT_EN-RO
317
+ type: WMT_EN-RO
318
+ metrics:
319
+ - name: 0-shot
320
+ type: bleu
321
+ value: 5.57
322
+ - name: 1-shot
323
+ type: bleu
324
+ value: 26.05
325
+ - name: 3-shot
326
+ type: bleu
327
+ value: 24.71
328
+ - name: 5-shot
329
+ type: bleu
330
+ value: 16.22
331
+ - task:
332
+ type: text-generation
333
+ dataset:
334
+ name: WMT_RO-EN
335
+ type: WMT_RO-EN
336
+ metrics:
337
+ - name: 0-shot
338
+ type: bleu
339
+ value: 3.01
340
+ - name: 1-shot
341
+ type: bleu
342
+ value: 22.63
343
+ - name: 3-shot
344
+ type: bleu
345
+ value: 19.43
346
+ - name: 5-shot
347
+ type: bleu
348
+ value: 11.47
349
+ - task:
350
+ type: text-generation
351
+ dataset:
352
+ name: XQuAD_EM
353
+ type: XQuAD_EM
354
+ metrics:
355
+ - name: 0-shot
356
+ type: exact_match
357
+ value: 16.55
358
+ - name: 1-shot
359
+ type: exact_match
360
+ value: 31.76
361
+ - name: 3-shot
362
+ type: exact_match
363
+ value: 35.97
364
+ - name: 5-shot
365
+ type: exact_match
366
+ value: 38.32
367
+ - task:
368
+ type: text-generation
369
+ dataset:
370
+ name: XQuAD_F1
371
+ type: XQuAD_F1
372
+ metrics:
373
+ - name: 0-shot
374
+ type: f1
375
+ value: 33.31
376
+ - name: 1-shot
377
+ type: f1
378
+ value: 46.85
379
+ - name: 3-shot
380
+ type: f1
381
+ value: 50.73
382
+ - name: 5-shot
383
+ type: f1
384
+ value: 54.29
385
+ - task:
386
+ type: text-generation
387
+ dataset:
388
+ name: STS_Spearman
389
+ type: STS_Spearman
390
+ metrics:
391
+ - name: 1-shot
392
+ type: spearman
393
+ value: 66.56
394
+ - name: 3-shot
395
+ type: spearman
396
+ value: 58.64
397
+ - name: 5-shot
398
+ type: spearman
399
+ value: 77.66
400
+ - task:
401
+ type: text-generation
402
+ dataset:
403
+ name: STS_Pearson
404
+ type: STS_Pearson
405
+ metrics:
406
+ - name: 1-shot
407
+ type: pearson
408
+ value: 70.09
409
+ - name: 3-shot
410
+ type: pearson
411
+ value: 56.39
412
+ - name: 5-shot
413
+ type: pearson
414
+ value: 76.97
415
+
416
+ ---
417
+
418
+ # Model Card for Model ID
419
+
420
+ *Built with Meta Llama 3*
421
+
422
+ <!-- Provide a quick summary of what the model is/does. -->
423
+
424
+ RoLlama3 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **human aligned instruct 8B model**. Links to other models can be found at the bottom of this page.
425
+
426
+ ## Model Details
427
+
428
+ ### Model Description
429
+
430
+ <!-- Provide a longer summary of what this model is. -->
431
+ OpenLLM represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
432
+
433
+
434
+ - **Developed by:** OpenLLM-Ro
435
+ <!-- - **Funded by [optional]:** [More Information Needed] -->
436
+ <!-- - **Shared by [optional]:** [More Information Needed] -->
437
+ <!-- - **Model type:** [More Information Needed] -->
438
+ - **Language(s):** Romanian
439
+ - **License:** cc-by-nc-4.0
440
+ - **Finetuned from model:** [RoLlama3-8b-Instruct-2025-04-23](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2025-04-23)
441
+ - **Trained using:** [RoHelpSteer](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_helpsteer), [RoUltraFeedback](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_ultrafeedback), [RoMagpieDPO](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_magpie), [RoArgillaMagpie](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_argilla_magpie), [RoHelpSteer2](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_helpsteer2)
442
+
443
+
444
+ ### Model Sources
445
+
446
+ <!-- Provide the basic links for the model. -->
447
+
448
+ - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
449
+ - **Paper:** https://arxiv.org/abs/2406.18266
450
+
451
+ ## Intended Use
452
+
453
+ ### Intended Use Cases
454
+
455
+ RoLlama3 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
456
+
457
+ ### Out-of-Scope Use
458
+
459
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
460
+
461
+ Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
462
+
463
+
464
+
465
+ ## How to Get Started with the Model
466
+
467
+ Use the code below to get started with the model.
468
+
469
+ ```python
470
+ from transformers import AutoTokenizer, AutoModelForCausalLM
471
+
472
+ tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2025-04-23")
473
+ model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2025-04-23")
474
+
475
+ instruction = "Care este cel mai înalt vârf muntos din România?"
476
+ chat = [
477
+ {"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."},
478
+ {"role": "user", "content": instruction},
479
+ ]
480
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False)
481
+
482
+ inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
483
+ outputs = model.generate(input_ids=inputs, max_new_tokens=128)
484
+ print(tokenizer.decode(outputs[0]))
485
+ ```
486
+
487
+ ## Academic Benchmarks
488
+
489
+ <table>
490
+ <tbody>
491
+ <tr>
492
+ <td><strong>Model</strong></td>
493
+ <td><strong><center>Average</center></strong></td>
494
+ <td><strong><center>ARC</center></strong></td>
495
+ <td><strong><center>MMLU</center></strong></td>
496
+ <td><strong><center>Winogrande</center></strong></td>
497
+ <td><strong><center>Hellaswag</center></strong></td>
498
+ <td><strong><center>GSM8k</center></strong></td>
499
+ <td><strong><center>TruthfulQA</center></strong></td>
500
+ </tr>
501
+ <tr>
502
+ <td>Llama-3-8B-Instruct</td><td><center>50.62</center></td><td><center>43.69</center></td><td><center>52.04</center></td><td><center>59.33</center></td><td><center>53.19</center></td><td><center>43.87</center></td><td><center>51.59</center></td>
503
+ </tr>
504
+ <tr>
505
+ <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>50.56</center></td><td><center>44.70</center></td><td><center>52.19</center></td><td><center><strong>67.23</strong></center></td><td><center>57.69</center></td><td><center>30.23</center></td><td><center>51.34</center></td>
506
+ </tr>
507
+ <tr>
508
+ <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center>52.21</center></td><td><center>47.94</center></td><td><center>53.50</center></td><td><center>66.06</center></td><td><center>59.72</center></td><td><center>40.16</center></td><td><center>45.90</center></td>
509
+ </tr>
510
+ <tr>
511
+ <td>RoLlama3-8b-Instruct-2025-04-23</td><td><center>54.66</center></td><td><center>50.31</center></td><td><center><strong>55.91</strong></center></td><td><center>67.01</center></td><td><center><strong>61.73</strong></center></td><td><center><strong>47.41</strong></center></td><td><center>45.61</center></td>
512
+ </tr>
513
+ <tr>
514
+ <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>49.96</center></td><td><center>46.29</center></td><td><center>53.29</center></td><td><center>65.57</center></td><td><center>58.15</center></td><td><center>34.77</center></td><td><center>41.70</center></td>
515
+ </tr>
516
+ <tr>
517
+ <td><em>RoLlama3-8b-Instruct-DPO-2025-04-23</em></td><td><center><em><strong>55.86</strong></em></center></td><td><center><em><strong>52.26</strong></em></center></td><td><center><em>55.35</em></center></td><td><center><em>66.62</em></center></td><td><center><em>59.93</em></center></td><td><center><em>43.95</em></center></td><td><center><em><strong>57.06</strong></em></center></td>
518
+ </tr>
519
+ </tbody>
520
+ </table>
521
+
522
+ ## Downstream tasks
523
+
524
+ <table>
525
+ <tbody>
526
+ <tr>
527
+ <td></td>
528
+ <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
529
+ <td colspan="4"><center><strong>WMT</strong></center></td>
530
+ </tr>
531
+ <tr>
532
+ <td></td>
533
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
534
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
535
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
536
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
537
+ </tr>
538
+ <tr>
539
+ <td><strong>Model</strong></td>
540
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
541
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
542
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
543
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
544
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
545
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
546
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
547
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center>
548
+ </tr>
549
+ <tr>
550
+ <td>Llama-3-8B-Instruct</td><td><center>95.88</center></td><td><center>56.21</center></td><td><center><strong>98.53</strong></center></td><td><center>86.19</center></td><td><center>18.88</center></td><td><center><strong>30.98</strong></center></td><td><center><strong>28.02</strong></center></td><td><center>40.28</center></td>
551
+ </tr>
552
+ <tr>
553
+ <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>97.52</center></td><td><center><strong>67.41</strong></center></td><td><center>94.15</center></td><td><center>87.13</center></td><td><center><strong>24.01</strong></center></td><td><center>27.36</center></td><td><center>26.53</center></td><td><center>40.36</center></td>
554
+ </tr>
555
+ <tr>
556
+ <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center>95.58</center></td><td><center>61.20</center></td><td><center>96.46</center></td><td><center><strong>87.26</strong></center></td><td><center>22.92</center></td><td><center>24.28</center></td><td><center>27.31</center></td><td><center><strong>40.52</strong></center></td>
557
+ </tr>
558
+ <tr>
559
+ <td>RoLlama3-8b-Instruct-2025-04-23</td><td><center>96.21</center></td><td><center>59.15</center></td><td><center>-</center></td><td><center>-</center></td><td><center>23.32</center></td><td><center>22.50</center></td><td><center>-</center></td><td><center>-</center></td>
560
+ </tr>
561
+ <tr>
562
+ <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>97.48</center></td><td><center>54.00</center></td><td><center>-</center></td><td><center>-</center></td><td><center>22.09</center></td><td><center>23.00</center></td><td><center>-</center></td><td><center>-</center></td>
563
+ </tr>
564
+ <tr>
565
+ <td><em>RoLlama3-8b-Instruct-DPO-2025-04-23</em></td><td><center><em><strong>97.60</strong></em></center></td><td><center><em>62.16</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>18.14</em></center></td><td><center><em>14.13</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
566
+ </tr>
567
+ </tbody>
568
+ </table>
569
+
570
+
571
+ <table>
572
+ <tbody>
573
+ <tr>
574
+ <td></td>
575
+ <td colspan="4"><center><strong>XQuAD</strong></center></td>
576
+ <td colspan="4"><center><strong>STS</strong></center></td>
577
+ </tr>
578
+ <tr>
579
+ <td></td>
580
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
581
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
582
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
583
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
584
+ </tr>
585
+ <tr>
586
+ <td><strong>Model</strong></td>
587
+ <td><center><strong>(EM)</strong></center></td>
588
+ <td><center><strong>(F1)</strong></center></td>
589
+ <td><center><strong>(EM)</strong></center></td>
590
+ <td><center><strong>(F1)</strong></center></td>
591
+ <td><center><strong>(Spearman)</strong></center></td>
592
+ <td><center><strong>(Pearson)</strong></center></td>
593
+ <td><center><strong>(Spearman)</strong></center></td>
594
+ <td><center><strong>(Pearson)</strong></center></td>
595
+ </tr>
596
+ <tr>
597
+ <td>Llama-3-8B-Instruct</td><td><center><strong>39.47</strong></center></td><td><center>58.67</center></td><td><center><strong>67.65</strong></center></td><td><center><strong>82.77</strong></center></td><td><center>73.04</center></td><td><center>72.36</center></td><td><center>83.49</center></td><td><center>84.06</center></td>
598
+ </tr>
599
+ <tr>
600
+ <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>39.43</center></td><td><center><strong>59.50</strong></center></td><td><center>44.45</center></td><td><center>59.76</center></td><td><center>77.20</center></td><td><center>77.87</center></td><td><center>85.80</center></td><td><center>86.05</center></td>
601
+ </tr>
602
+ <tr>
603
+ <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center>18.89</center></td><td><center>31.79</center></td><td><center>50.84</center></td><td><center>65.18</center></td><td><center>77.60</center></td><td><center>76.86</center></td><td><center><strong>86.70</strong></center></td><td><center><strong>87.09</strong></center></td>
604
+ </tr>
605
+ <tr>
606
+ <td>RoLlama3-8b-Instruct-2025-04-23</td><td><center>11.01</center></td><td><center>23.55</center></td><td><center>-</center></td><td><center>-</center></td><td><center>76.78</center></td><td><center>74.36</center></td><td><center>-</center></td><td><center>-</center></td>
607
+ </tr>
608
+ <tr>
609
+ <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>26.05</center></td><td><center>42.77</center></td><td><center>-</center></td><td><center>-</center></td><td><center><strong>79.64</strong></center></td><td><center><strong>79.52</strong></center></td><td><center>-</center></td><td><center>-</center></td>
610
+ </tr>
611
+ <tr>
612
+ <td><em>RoLlama3-8b-Instruct-DPO-2025-04-23</em></td><td><center><em>30.65</em></center></td><td><center><em>46.29</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>67.62</em></center></td><td><center><em>67.82</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
613
+ </tr>
614
+ </tbody>
615
+ </table>
616
+
617
+
618
+ ## Romanian MT-Bench
619
+
620
+ <table>
621
+ <tbody>
622
+ <tr>
623
+ <td><strong>Model</strong></td>
624
+ <td><strong><center>Average</center></strong></td>
625
+ <td><strong><center>1st turn</center></strong></td>
626
+ <td><strong><center>2nd turn</center></strong></td>
627
+ <td><strong><center>Answers in Ro</center></strong></td>
628
+ </tr>
629
+ <tr>
630
+ <td>Llama-3-8B-Instruct</td><td><center>5.96</center></td><td><center>6.16</center></td><td><center>5.76</center></td><td><center>158/160</center></td>
631
+ </tr>
632
+ <tr>
633
+ <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>5.15</center></td><td><center>6.03</center></td><td><center>4.28</center></td><td><center><strong>160/160</strong></center></td>
634
+ </tr>
635
+ <tr>
636
+ <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center>5.38</center></td><td><center>6.09</center></td><td><center>4.67</center></td><td><center><strong>160/160</strong></center></td>
637
+ </tr>
638
+ <tr>
639
+ <td>RoLlama3-8b-Instruct-2025-04-23</td><td><center>6.39</center></td><td><center><strong>7.12</strong></center></td><td><center>5.66</center></td><td><center><strong>160/160</strong></center></td>
640
+ </tr>
641
+ <tr>
642
+ <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>5.87</center></td><td><center>6.22</center></td><td><center>5.49</center></td><td><center><strong>160/160</strong></center></td>
643
+ </tr>
644
+ <tr>
645
+ <td><em>RoLlama3-8b-Instruct-DPO-2025-04-23</em></td><td><center><em><strong>6.67</strong></em></center></td><td><center><em>6.81</em></center></td><td><center><em><strong>6.54</strong></em></center></td><td><center><em><strong>160/160</strong></em></center></td>
646
+ </tr>
647
+ </tbody>
648
+ </table>
649
+
650
+
651
+ ## RoCulturaBench
652
+
653
+
654
+ <table>
655
+ <tbody>
656
+ <tr>
657
+ <td><strong>Model</strong></td>
658
+ <td><strong><center>Average</center></strong></td>
659
+ <td><strong><center>Answers in Ro</center></strong></td>
660
+ </tr>
661
+ <tr>
662
+ <td>Llama-3-8B-Instruct</td><td><center>4.62</center></td><td><center><strong>100/100</strong></center></td>
663
+ </tr>
664
+ <tr>
665
+ <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>3.71</center></td><td><center><strong>100/100</strong></center></td>
666
+ </tr>
667
+ <tr>
668
+ <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center>3.81</center></td><td><center><strong>100/100</strong></center></td>
669
+ </tr>
670
+ <tr>
671
+ <td>RoLlama3-8b-Instruct-2025-04-23</td><td><center>4.05</center></td><td><center><strong>100/100</strong></center></td>
672
+ </tr>
673
+ <tr>
674
+ <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>4.40</center></td><td><center><strong>100/100</strong></center></td>
675
+ </tr>
676
+ <tr>
677
+ <td><em>RoLlama3-8b-Instruct-DPO-2025-04-23</em></td><td><center><em><strong>4.83</strong></em></center></td><td><center><em><strong>100/100</strong></em></center></td>
678
+ </tr>
679
+ </tbody>
680
+ </table>
681
+
682
+
683
+
684
+ ## RoLlama3 Model Family
685
+
686
+ | Model | Link |
687
+ |--------------------|:--------:|
688
+ |RoLlama3-8b-Base-2024-05-14 | [link](https://huggingface.co/OpenLLM-Ro/RoLlam32-8b-Base-2024-05-14) |
689
+ |RoLlama3-8b-Instruct-2024-05-14 | [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2024-05-14) |
690
+ |RoLlama3-8b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2024-10-09) |
691
+ |RoLlama3-8b-Instruct-2025-04-23| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2025-04-23) |
692
+ |RoLlama3-8b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2024-10-09) |
693
+ |*RoLlama3-8b-Instruct-DPO-2025-04-23*| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2025-04-23) |
694
+
695
+
696
+
697
+ ## Citation
698
+
699
+ ```
700
+ @misc{masala2024vorbecstiromanecsterecipetrain,
701
+ title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
702
+ author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
703
+ year={2024},
704
+ eprint={2406.18266},
705
+ archivePrefix={arXiv},
706
+ primaryClass={cs.CL},
707
+ url={https://arxiv.org/abs/2406.18266},
708
+ }
709
+ ```
710
+ <!-- **APA:**
711
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
712
  [More Information Needed] -->