mihaimasala commited on
Commit
84e01fd
·
verified ·
1 Parent(s): 7c76152

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +718 -716
README.md CHANGED
@@ -1,717 +1,719 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- language:
4
- - ro
5
- base_model:
6
- - meta-llama/Meta-Llama-3-8B-Instruct
7
- datasets:
8
- - OpenLLM-Ro/ro_sft_alpaca
9
- - OpenLLM-Ro/ro_sft_alpaca_gpt4
10
- - OpenLLM-Ro/ro_sft_dolly
11
- - OpenLLM-Ro/ro_sft_selfinstruct_gpt4
12
- - OpenLLM-Ro/ro_sft_norobots
13
- - OpenLLM-Ro/ro_sft_orca
14
- - OpenLLM-Ro/ro_sft_camel
15
- - OpenLLM-Ro/ro_sft_oasst
16
- - OpenLLM-Ro/ro_sft_ultrachat
17
- - OpenLLM-Ro/ro_sft_magpie_mt
18
- - OpenLLM-Ro/ro_sft_magpie_reasoning
19
- model-index:
20
- - name: OpenLLM-Ro/RoLlama3-8b-Instruct-2025-04-23
21
- results:
22
- - task:
23
- type: text-generation
24
- dataset:
25
- name: RoMT-Bench
26
- type: RoMT-Bench
27
- metrics:
28
- - name: Score
29
- type: Score
30
- value: 6.39
31
- - task:
32
- type: text-generation
33
- dataset:
34
- name: RoCulturaBench
35
- type: RoCulturaBench
36
- metrics:
37
- - name: Score
38
- type: Score
39
- value: 4.05
40
- - task:
41
- type: text-generation
42
- dataset:
43
- name: Romanian_Academic_Benchmarks
44
- type: Romanian_Academic_Benchmarks
45
- metrics:
46
- - name: Average accuracy
47
- type: accuracy
48
- value: 54.66
49
- - task:
50
- type: text-generation
51
- dataset:
52
- name: OpenLLM-Ro/ro_arc_challenge
53
- type: OpenLLM-Ro/ro_arc_challenge
54
- metrics:
55
- - name: Average accuracy
56
- type: accuracy
57
- value: 50.31
58
- - task:
59
- type: text-generation
60
- dataset:
61
- name: OpenLLM-Ro/ro_mmlu
62
- type: OpenLLM-Ro/ro_mmlu
63
- metrics:
64
- - name: Average accuracy
65
- type: accuracy
66
- value: 55.91
67
- - task:
68
- type: text-generation
69
- dataset:
70
- name: OpenLLM-Ro/ro_winogrande
71
- type: OpenLLM-Ro/ro_winogrande
72
- metrics:
73
- - name: Average accuracy
74
- type: accuracy
75
- value: 67.01
76
- - task:
77
- type: text-generation
78
- dataset:
79
- name: OpenLLM-Ro/ro_hellaswag
80
- type: OpenLLM-Ro/ro_hellaswag
81
- metrics:
82
- - name: Average accuracy
83
- type: accuracy
84
- value: 61.73
85
- - task:
86
- type: text-generation
87
- dataset:
88
- name: OpenLLM-Ro/ro_gsm8k
89
- type: OpenLLM-Ro/ro_gsm8k
90
- metrics:
91
- - name: Average accuracy
92
- type: accuracy
93
- value: 47.41
94
- - task:
95
- type: text-generation
96
- dataset:
97
- name: OpenLLM-Ro/ro_truthfulqa
98
- type: OpenLLM-Ro/ro_truthfulqa
99
- metrics:
100
- - name: Average accuracy
101
- type: accuracy
102
- value: 45.61
103
- - task:
104
- type: text-generation
105
- dataset:
106
- name: LaRoSeDa_binary
107
- type: LaRoSeDa_binary
108
- metrics:
109
- - name: Average macro-f1
110
- type: macro-f1
111
- value: 96.21
112
- - task:
113
- type: text-generation
114
- dataset:
115
- name: LaRoSeDa_multiclass
116
- type: LaRoSeDa_multiclass
117
- metrics:
118
- - name: Average macro-f1
119
- type: macro-f1
120
- value: 59.15
121
- - task:
122
- type: text-generation
123
- dataset:
124
- name: WMT_EN-RO
125
- type: WMT_EN-RO
126
- metrics:
127
- - name: Average bleu
128
- type: bleu
129
- value: 23.32
130
- - task:
131
- type: text-generation
132
- dataset:
133
- name: WMT_RO-EN
134
- type: WMT_RO-EN
135
- metrics:
136
- - name: Average bleu
137
- type: bleu
138
- value: 22.50
139
- - task:
140
- type: text-generation
141
- dataset:
142
- name: XQuAD
143
- type: XQuAD
144
- metrics:
145
- - name: Average exact_match
146
- type: exact_match
147
- value: 11.01
148
- - task:
149
- type: text-generation
150
- dataset:
151
- name: XQuAD
152
- type: XQuAD
153
- metrics:
154
- - name: Average f1
155
- type: f1
156
- value: 23.55
157
- - task:
158
- type: text-generation
159
- dataset:
160
- name: STS
161
- type: STS
162
- metrics:
163
- - name: Average spearman
164
- type: spearman
165
- value: 76.78
166
- - task:
167
- type: text-generation
168
- dataset:
169
- name: STS
170
- type: STS
171
- metrics:
172
- - name: Average pearson
173
- type: pearson
174
- value: 74.36
175
- - task:
176
- type: text-generation
177
- dataset:
178
- name: RoMT-Bench
179
- type: RoMT-Bench
180
- metrics:
181
- - name: First turn
182
- type: Score
183
- value: 7.12
184
- - name: Second turn
185
- type: Score
186
- value: 5.66
187
- - task:
188
- type: text-generation
189
- dataset:
190
- name: OpenLLM-Ro/ro_arc_challenge
191
- type: OpenLLM-Ro/ro_arc_challenge
192
- metrics:
193
- - name: 0-shot
194
- type: accuracy
195
- value: 48.33
196
- - name: 1-shot
197
- type: accuracy
198
- value: 49.27
199
- - name: 3-shot
200
- type: accuracy
201
- value: 49.19
202
- - name: 5-shot
203
- type: accuracy
204
- value: 50.90
205
- - name: 10-shot
206
- type: accuracy
207
- value: 51.67
208
- - name: 25-shot
209
- type: accuracy
210
- value: 52.53
211
- - task:
212
- type: text-generation
213
- dataset:
214
- name: OpenLLM-Ro/ro_mmlu
215
- type: OpenLLM-Ro/ro_mmlu
216
- metrics:
217
- - name: 0-shot
218
- type: accuracy
219
- value: 54.17
220
- - name: 1-shot
221
- type: accuracy
222
- value: 56.19
223
- - name: 3-shot
224
- type: accuracy
225
- value: 56.90
226
- - name: 5-shot
227
- type: accuracy
228
- value: 56.37
229
- - task:
230
- type: text-generation
231
- dataset:
232
- name: OpenLLM-Ro/ro_winogrande
233
- type: OpenLLM-Ro/ro_winogrande
234
- metrics:
235
- - name: 0-shot
236
- type: accuracy
237
- value: 65.82
238
- - name: 1-shot
239
- type: accuracy
240
- value: 66.22
241
- - name: 3-shot
242
- type: accuracy
243
- value: 66.85
244
- - name: 5-shot
245
- type: accuracy
246
- value: 69.14
247
- - task:
248
- type: text-generation
249
- dataset:
250
- name: OpenLLM-Ro/ro_hellaswag
251
- type: OpenLLM-Ro/ro_hellaswag
252
- metrics:
253
- - name: 0-shot
254
- type: accuracy
255
- value: 61.67
256
- - name: 1-shot
257
- type: accuracy
258
- value: 62.06
259
- - name: 3-shot
260
- type: accuracy
261
- value: 61.73
262
- - name: 5-shot
263
- type: accuracy
264
- value: 61.28
265
- - name: 10-shot
266
- type: accuracy
267
- value: 61.93
268
- - task:
269
- type: text-generation
270
- dataset:
271
- name: OpenLLM-Ro/ro_gsm8k
272
- type: OpenLLM-Ro/ro_gsm8k
273
- metrics:
274
- - name: 1-shot
275
- type: accuracy
276
- value: 35.63
277
- - name: 3-shot
278
- type: accuracy
279
- value: 51.33
280
- - name: 5-shot
281
- type: accuracy
282
- value: 55.27
283
- - task:
284
- type: text-generation
285
- dataset:
286
- name: LaRoSeDa_binary
287
- type: LaRoSeDa_binary
288
- metrics:
289
- - name: 0-shot
290
- type: macro-f1
291
- value: 94.05
292
- - name: 1-shot
293
- type: macro-f1
294
- value: 96.46
295
- - name: 3-shot
296
- type: macro-f1
297
- value: 96.97
298
- - name: 5-shot
299
- type: macro-f1
300
- value: 97.37
301
- - task:
302
- type: text-generation
303
- dataset:
304
- name: LaRoSeDa_multiclass
305
- type: LaRoSeDa_multiclass
306
- metrics:
307
- - name: 0-shot
308
- type: macro-f1
309
- value: 60.34
310
- - name: 1-shot
311
- type: macro-f1
312
- value: 60.94
313
- - name: 3-shot
314
- type: macro-f1
315
- value: 54.55
316
- - name: 5-shot
317
- type: macro-f1
318
- value: 60.77
319
- - task:
320
- type: text-generation
321
- dataset:
322
- name: WMT_EN-RO
323
- type: WMT_EN-RO
324
- metrics:
325
- - name: 0-shot
326
- type: bleu
327
- value: 5.38
328
- - name: 1-shot
329
- type: bleu
330
- value: 29.60
331
- - name: 3-shot
332
- type: bleu
333
- value: 30.62
334
- - name: 5-shot
335
- type: bleu
336
- value: 27.67
337
- - task:
338
- type: text-generation
339
- dataset:
340
- name: WMT_RO-EN
341
- type: WMT_RO-EN
342
- metrics:
343
- - name: 0-shot
344
- type: bleu
345
- value: 1.14
346
- - name: 1-shot
347
- type: bleu
348
- value: 19.96
349
- - name: 3-shot
350
- type: bleu
351
- value: 34.22
352
- - name: 5-shot
353
- type: bleu
354
- value: 34.69
355
- - task:
356
- type: text-generation
357
- dataset:
358
- name: XQuAD_EM
359
- type: XQuAD_EM
360
- metrics:
361
- - name: 0-shot
362
- type: exact_match
363
- value: 16.39
364
- - name: 1-shot
365
- type: exact_match
366
- value: 18.49
367
- - name: 3-shot
368
- type: exact_match
369
- value: 5.46
370
- - name: 5-shot
371
- type: exact_match
372
- value: 3.70
373
- - task:
374
- type: text-generation
375
- dataset:
376
- name: XQuAD_F1
377
- type: XQuAD_F1
378
- metrics:
379
- - name: 0-shot
380
- type: f1
381
- value: 33.84
382
- - name: 1-shot
383
- type: f1
384
- value: 29.11
385
- - name: 3-shot
386
- type: f1
387
- value: 15.27
388
- - name: 5-shot
389
- type: f1
390
- value: 15.97
391
- - task:
392
- type: text-generation
393
- dataset:
394
- name: STS_Spearman
395
- type: STS_Spearman
396
- metrics:
397
- - name: 1-shot
398
- type: spearman
399
- value: 76.64
400
- - name: 3-shot
401
- type: spearman
402
- value: 76.88
403
- - name: 5-shot
404
- type: spearman
405
- value: 76.82
406
- - task:
407
- type: text-generation
408
- dataset:
409
- name: STS_Pearson
410
- type: STS_Pearson
411
- metrics:
412
- - name: 1-shot
413
- type: pearson
414
- value: 73.14
415
- - name: 3-shot
416
- type: pearson
417
- value: 74.78
418
- - name: 5-shot
419
- type: pearson
420
- value: 75.16
421
-
422
- ---
423
-
424
- # Model Card for Model ID
425
-
426
- *Built with Meta Llama 3*
427
-
428
-
429
- <!-- Provide a quick summary of what the model is/does. -->
430
-
431
- RoLlama3 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **instruct 8B model**. Links to other models can be found at the bottom of this page.
432
-
433
-
434
- ## Model Details
435
-
436
- ### Model Description
437
-
438
- <!-- Provide a longer summary of what this model is. -->
439
- OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
440
-
441
-
442
- - **Developed by:** OpenLLM-Ro
443
- <!-- - **Funded by [optional]:** [More Information Needed] -->
444
- <!-- - **Shared by [optional]:** [More Information Needed] -->
445
- <!-- - **Model type:** [More Information Needed] -->
446
- - **Language(s):** Romanian
447
- - **License:** cc-by-nc-4.0
448
- - **Finetuned from model:** [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
449
- - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel), [RoOpenAssistant](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_oasst), [RoUltraChat](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_ultrachat), [RoMagpiePro](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_magpie_mt), [RoMagpieReasoning](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_magpie_reasoning)
450
-
451
-
452
- ### Model Sources
453
-
454
- <!-- Provide the basic links for the model. -->
455
-
456
- - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
457
- - **Paper:** https://arxiv.org/abs/2406.18266
458
-
459
- ## Intended Use
460
-
461
- ### Intended Use Cases
462
-
463
- RoLlama3 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
464
-
465
- ### Out-of-Scope Use
466
-
467
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
468
-
469
- Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
470
-
471
-
472
-
473
- ## How to Get Started with the Model
474
-
475
- Use the code below to get started with the model.
476
-
477
- ```python
478
- from transformers import AutoTokenizer, AutoModelForCausalLM
479
-
480
- tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama3-8b-Instruct-2025-04-23")
481
- model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama3-8b-Instruct-2025-04-23")
482
-
483
- instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
484
- chat = [
485
- {"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."},
486
- {"role": "user", "content": instruction},
487
- ]
488
- prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
489
-
490
- inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
491
- outputs = model.generate(input_ids=inputs, max_new_tokens=128)
492
- print(tokenizer.decode(outputs[0]))
493
- ```
494
-
495
- ## Academic Benchmarks
496
-
497
- <table>
498
- <tbody>
499
- <tr>
500
- <td><strong>Model</strong></td>
501
- <td><strong><center>Average</center></strong></td>
502
- <td><strong><center>ARC</center></strong></td>
503
- <td><strong><center>MMLU</center></strong></td>
504
- <td><strong><center>Winogrande</center></strong></td>
505
- <td><strong><center>Hellaswag</center></strong></td>
506
- <td><strong><center>GSM8k</center></strong></td>
507
- <td><strong><center>TruthfulQA</center></strong></td>
508
- </tr>
509
- <tr>
510
- <td>Llama-3-8B-Instruct</td><td><center>50.62</center></td><td><center>43.69</center></td><td><center>52.04</center></td><td><center>59.33</center></td><td><center>53.19</center></td><td><center>43.87</center></td><td><center>51.59</center></td>
511
- </tr>
512
- <tr>
513
- <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>50.56</center></td><td><center>44.70</center></td><td><center>52.19</center></td><td><center><strong>67.23</strong></center></td><td><center>57.69</center></td><td><center>30.23</center></td><td><center>51.34</center></td>
514
- </tr>
515
- <tr>
516
- <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center>52.21</center></td><td><center>47.94</center></td><td><center>53.50</center></td><td><center>66.06</center></td><td><center>59.72</center></td><td><center>40.16</center></td><td><center>45.90</center></td>
517
- </tr>
518
- <tr>
519
- <td><em>RoLlama3-8b-Instruct-2025-04-23</em></td><td><center><em>54.66</em></center></td><td><center><em>50.31</em></center></td><td><center><em><strong>55.91</strong></em></center></td><td><center><em>67.01</em></center></td><td><center><em><strong>61.73</strong></em></center></td><td><center><em><strong>47.41</strong></em></center></td><td><center><em>45.61</em></center></td>
520
- </tr>
521
- <tr>
522
- <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>49.96</center></td><td><center>46.29</center></td><td><center>53.29</center></td><td><center>65.57</center></td><td><center>58.15</center></td><td><center>34.77</center></td><td><center>41.70</center></td>
523
- </tr>
524
- <tr>
525
- <td>RoLlama3-8b-Instruct-DPO-2025-04-23</td><td><center><strong>55.86</strong></center></td><td><center><strong>52.26</strong></center></td><td><center>55.35</center></td><td><center>66.62</center></td><td><center>59.93</center></td><td><center>43.95</center></td><td><center><strong>57.06</strong></center></td>
526
- </tr>
527
- </tbody>
528
- </table>
529
-
530
-
531
- ## Downstream tasks
532
-
533
- <table>
534
- <tbody>
535
- <tr>
536
- <td></td>
537
- <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
538
- <td colspan="4"><center><strong>WMT</strong></center></td>
539
- </tr>
540
- <tr>
541
- <td></td>
542
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
543
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
544
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
545
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
546
- </tr>
547
- <tr>
548
- <td><strong>Model</strong></td>
549
- <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
550
- <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
551
- <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
552
- <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
553
- <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
554
- <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
555
- <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
556
- <td><center><strong>RO-EN<br>(Bleu)</strong></center>
557
- </tr>
558
- <tr>
559
- <td>Llama-3-8B-Instruct</td><td><center>95.88</center></td><td><center>56.21</center></td><td><center><strong>98.53</strong></center></td><td><center>86.19</center></td><td><center>18.88</center></td><td><center><strong>30.98</strong></center></td><td><center><strong>28.02</strong></center></td><td><center>40.28</center></td>
560
- </tr>
561
- <tr>
562
- <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>97.52</center></td><td><center><strong>67.41</strong></center></td><td><center>94.15</center></td><td><center>87.13</center></td><td><center><strong>24.01</strong></center></td><td><center>27.36</center></td><td><center>26.53</center></td><td><center>40.36</center></td>
563
- </tr>
564
- <tr>
565
- <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center>95.58</center></td><td><center>61.20</center></td><td><center>96.46</center></td><td><center><strong>87.26</strong></center></td><td><center>22.92</center></td><td><center>24.28</center></td><td><center>27.31</center></td><td><center><strong>40.52</strong></center></td>
566
- </tr>
567
- <tr>
568
- <td><em>RoLlama3-8b-Instruct-2025-04-23</em></td><td><center><em>96.21</em></center></td><td><center><em>59.15</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>23.32</em></center></td><td><center><em>22.50</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
569
- </tr>
570
- <tr>
571
- <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>97.48</center></td><td><center>54.00</center></td><td><center>-</center></td><td><center>-</center></td><td><center>22.09</center></td><td><center>23.00</center></td><td><center>-</center></td><td><center>-</center></td>
572
- </tr>
573
- <tr>
574
- <td>RoLlama3-8b-Instruct-DPO-2025-04-23</td><td><center><strong>97.60</strong></center></td><td><center>62.16</center></td><td><center>-</center></td><td><center>-</center></td><td><center>18.14</center></td><td><center>14.13</center></td><td><center>-</center></td><td><center>-</center></td>
575
- </tr>
576
- </tbody>
577
- </table>
578
-
579
-
580
- <table>
581
- <tbody>
582
- <tr>
583
- <td></td>
584
- <td colspan="4"><center><strong>XQuAD</strong></center></td>
585
- <td colspan="4"><center><strong>STS</strong></center></td>
586
- </tr>
587
- <tr>
588
- <td></td>
589
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
590
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
591
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
592
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
593
- </tr>
594
- <tr>
595
- <td><strong>Model</strong></td>
596
- <td><center><strong>(EM)</strong></center></td>
597
- <td><center><strong>(F1)</strong></center></td>
598
- <td><center><strong>(EM)</strong></center></td>
599
- <td><center><strong>(F1)</strong></center></td>
600
- <td><center><strong>(Spearman)</strong></center></td>
601
- <td><center><strong>(Pearson)</strong></center></td>
602
- <td><center><strong>(Spearman)</strong></center></td>
603
- <td><center><strong>(Pearson)</strong></center></td>
604
- </tr>
605
- <tr>
606
- <td>Llama-3-8B-Instruct</td><td><center><strong>39.47</strong></center></td><td><center>58.67</center></td><td><center><strong>67.65</strong></center></td><td><center><strong>82.77</strong></center></td><td><center>73.04</center></td><td><center>72.36</center></td><td><center>83.49</center></td><td><center>84.06</center></td>
607
- </tr>
608
- <tr>
609
- <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>39.43</center></td><td><center><strong>59.50</strong></center></td><td><center>44.45</center></td><td><center>59.76</center></td><td><center>77.20</center></td><td><center>77.87</center></td><td><center>85.80</center></td><td><center>86.05</center></td>
610
- </tr>
611
- <tr>
612
- <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center>18.89</center></td><td><center>31.79</center></td><td><center>50.84</center></td><td><center>65.18</center></td><td><center>77.60</center></td><td><center>76.86</center></td><td><center><strong>86.70</strong></center></td><td><center><strong>87.09</strong></center></td>
613
- </tr>
614
- <tr>
615
- <td><em>RoLlama3-8b-Instruct-2025-04-23</em></td><td><center><em>11.01</em></center></td><td><center><em>23.55</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>76.78</em></center></td><td><center><em>74.36</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
616
- </tr>
617
- <tr>
618
- <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>26.05</center></td><td><center>42.77</center></td><td><center>-</center></td><td><center>-</center></td><td><center><strong>79.64</strong></center></td><td><center><strong>79.52</strong></center></td><td><center>-</center></td><td><center>-</center></td>
619
- </tr>
620
- <tr>
621
- <td>RoLlama3-8b-Instruct-DPO-2025-04-23</td><td><center>30.65</center></td><td><center>46.29</center></td><td><center>-</center></td><td><center>-</center></td><td><center>67.62</center></td><td><center>67.82</center></td><td><center>-</center></td><td><center>-</center></td>
622
- </tr>
623
- </tbody>
624
- </table>
625
-
626
- ## MT-Bench
627
-
628
- <table>
629
- <tbody>
630
- <tr>
631
- <td><strong>Model</strong></td>
632
- <td><strong><center>Average</center></strong></td>
633
- <td><strong><center>1st turn</center></strong></td>
634
- <td><strong><center>2nd turn</center></strong></td>
635
- <td><strong><center>Answers in Ro</center></strong></td>
636
- </tr>
637
- <tr>
638
- <td>Llama-3-8B-Instruct</td><td><center>5.96</center></td><td><center>6.16</center></td><td><center>5.76</center></td><td><center>158/160</center></td>
639
- </tr>
640
- <tr>
641
- <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>5.15</center></td><td><center>6.03</center></td><td><center>4.28</center></td><td><center><strong>160/160</strong></center></td>
642
- </tr>
643
- <tr>
644
- <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center>5.38</center></td><td><center>6.09</center></td><td><center>4.67</center></td><td><center><strong>160/160</strong></center></td>
645
- </tr>
646
- <tr>
647
- <td><em>RoLlama3-8b-Instruct-2025-04-23</em></td><td><center><em>6.39</em></center></td><td><center><em><strong>7.12</strong></em></center></td><td><center><em>5.66</em></center></td><td><center><em><strong>160/160</strong></em></center></td>
648
- </tr>
649
- <tr>
650
- <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>5.87</center></td><td><center>6.22</center></td><td><center>5.49</center></td><td><center><strong>160/160</strong></center></td>
651
- </tr>
652
- <tr>
653
- <td>RoLlama3-8b-Instruct-DPO-2025-04-23</td><td><center><strong>6.67</strong></center></td><td><center>6.81</center></td><td><center><strong>6.54</strong></center></td><td><center><strong>160/160</strong></center></td>
654
- </tr>
655
- </tbody>
656
- </table>
657
-
658
-
659
- ## RoCulturaBench
660
-
661
- <table>
662
- <tbody>
663
- <tr>
664
- <td><strong>Model</strong></td>
665
- <td><strong><center>Average</center></strong></td>
666
- <td><strong><center>Answers in Ro</center></strong></td>
667
- </tr>
668
- <tr>
669
- <td>Llama-3-8B-Instruct</td><td><center>4.62</center></td><td><center><strong>100/100</strong></center></td>
670
- </tr>
671
- <tr>
672
- <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>3.71</center></td><td><center><strong>100/100</strong></center></td>
673
- </tr>
674
- <tr>
675
- <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center>3.81</center></td><td><center><strong>100/100</strong></center></td>
676
- </tr>
677
- <tr>
678
- <td><em>RoLlama3-8b-Instruct-2025-04-23</em></td><td><center><em>4.05</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
679
- </tr>
680
- <tr>
681
- <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>4.40</center></td><td><center><strong>100/100</strong></center></td>
682
- </tr>
683
- <tr>
684
- <td>RoLlama3-8b-Instruct-DPO-2025-04-23</td><td><center><strong>4.83</strong></center></td><td><center><strong>100/100</strong></center></td>
685
- </tr>
686
- </tbody>
687
- </table>
688
-
689
-
690
-
691
- ## RoLlama3 Model Family
692
-
693
- | Model | Link |
694
- |--------------------|:--------:|
695
- |RoLlama3-8b-Instruct-2024-06-28| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2024-06-28) |
696
- |RoLlama3-8b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2024-10-09) |
697
- |*RoLlama3-8b-Instruct-2025-04-23*| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2025-04-23) |
698
- |RoLlama3-8b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2024-10-09) |
699
- |RoLlama3-8b-Instruct-DPO-2025-04-23| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2025-04-23) |
700
-
701
-
702
- ## Citation
703
-
704
- ```
705
- @misc{masala2024vorbecstiromanecsterecipetrain,
706
- title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
707
- author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
708
- year={2024},
709
- eprint={2406.18266},
710
- archivePrefix={arXiv},
711
- primaryClass={cs.CL},
712
- url={https://arxiv.org/abs/2406.18266},
713
- }
714
- ```
715
- <!-- **APA:**
716
-
 
 
717
  [More Information Needed] -->
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ language:
4
+ - ro
5
+ base_model:
6
+ - meta-llama/Meta-Llama-3-8B-Instruct
7
+ datasets:
8
+ - OpenLLM-Ro/ro_sft_alpaca
9
+ - OpenLLM-Ro/ro_sft_alpaca_gpt4
10
+ - OpenLLM-Ro/ro_sft_dolly
11
+ - OpenLLM-Ro/ro_sft_selfinstruct_gpt4
12
+ - OpenLLM-Ro/ro_sft_norobots
13
+ - OpenLLM-Ro/ro_sft_orca
14
+ - OpenLLM-Ro/ro_sft_camel
15
+ - OpenLLM-Ro/ro_sft_oasst
16
+ - OpenLLM-Ro/ro_sft_ultrachat
17
+ - OpenLLM-Ro/ro_sft_magpie_mt
18
+ - OpenLLM-Ro/ro_sft_magpie_reasoning
19
+ model-index:
20
+ - name: OpenLLM-Ro/RoLlama3-8b-Instruct-2025-04-23
21
+ results:
22
+ - task:
23
+ type: text-generation
24
+ dataset:
25
+ name: RoMT-Bench
26
+ type: RoMT-Bench
27
+ metrics:
28
+ - name: Score
29
+ type: Score
30
+ value: 6.39
31
+ - task:
32
+ type: text-generation
33
+ dataset:
34
+ name: RoCulturaBench
35
+ type: RoCulturaBench
36
+ metrics:
37
+ - name: Score
38
+ type: Score
39
+ value: 4.05
40
+ - task:
41
+ type: text-generation
42
+ dataset:
43
+ name: Romanian_Academic_Benchmarks
44
+ type: Romanian_Academic_Benchmarks
45
+ metrics:
46
+ - name: Average accuracy
47
+ type: accuracy
48
+ value: 54.66
49
+ - task:
50
+ type: text-generation
51
+ dataset:
52
+ name: OpenLLM-Ro/ro_arc_challenge
53
+ type: OpenLLM-Ro/ro_arc_challenge
54
+ metrics:
55
+ - name: Average accuracy
56
+ type: accuracy
57
+ value: 50.31
58
+ - task:
59
+ type: text-generation
60
+ dataset:
61
+ name: OpenLLM-Ro/ro_mmlu
62
+ type: OpenLLM-Ro/ro_mmlu
63
+ metrics:
64
+ - name: Average accuracy
65
+ type: accuracy
66
+ value: 55.91
67
+ - task:
68
+ type: text-generation
69
+ dataset:
70
+ name: OpenLLM-Ro/ro_winogrande
71
+ type: OpenLLM-Ro/ro_winogrande
72
+ metrics:
73
+ - name: Average accuracy
74
+ type: accuracy
75
+ value: 67.01
76
+ - task:
77
+ type: text-generation
78
+ dataset:
79
+ name: OpenLLM-Ro/ro_hellaswag
80
+ type: OpenLLM-Ro/ro_hellaswag
81
+ metrics:
82
+ - name: Average accuracy
83
+ type: accuracy
84
+ value: 61.73
85
+ - task:
86
+ type: text-generation
87
+ dataset:
88
+ name: OpenLLM-Ro/ro_gsm8k
89
+ type: OpenLLM-Ro/ro_gsm8k
90
+ metrics:
91
+ - name: Average accuracy
92
+ type: accuracy
93
+ value: 47.41
94
+ - task:
95
+ type: text-generation
96
+ dataset:
97
+ name: OpenLLM-Ro/ro_truthfulqa
98
+ type: OpenLLM-Ro/ro_truthfulqa
99
+ metrics:
100
+ - name: Average accuracy
101
+ type: accuracy
102
+ value: 45.61
103
+ - task:
104
+ type: text-generation
105
+ dataset:
106
+ name: LaRoSeDa_binary
107
+ type: LaRoSeDa_binary
108
+ metrics:
109
+ - name: Average macro-f1
110
+ type: macro-f1
111
+ value: 96.21
112
+ - task:
113
+ type: text-generation
114
+ dataset:
115
+ name: LaRoSeDa_multiclass
116
+ type: LaRoSeDa_multiclass
117
+ metrics:
118
+ - name: Average macro-f1
119
+ type: macro-f1
120
+ value: 59.15
121
+ - task:
122
+ type: text-generation
123
+ dataset:
124
+ name: WMT_EN-RO
125
+ type: WMT_EN-RO
126
+ metrics:
127
+ - name: Average bleu
128
+ type: bleu
129
+ value: 23.32
130
+ - task:
131
+ type: text-generation
132
+ dataset:
133
+ name: WMT_RO-EN
134
+ type: WMT_RO-EN
135
+ metrics:
136
+ - name: Average bleu
137
+ type: bleu
138
+ value: 22.50
139
+ - task:
140
+ type: text-generation
141
+ dataset:
142
+ name: XQuAD
143
+ type: XQuAD
144
+ metrics:
145
+ - name: Average exact_match
146
+ type: exact_match
147
+ value: 11.01
148
+ - task:
149
+ type: text-generation
150
+ dataset:
151
+ name: XQuAD
152
+ type: XQuAD
153
+ metrics:
154
+ - name: Average f1
155
+ type: f1
156
+ value: 23.55
157
+ - task:
158
+ type: text-generation
159
+ dataset:
160
+ name: STS
161
+ type: STS
162
+ metrics:
163
+ - name: Average spearman
164
+ type: spearman
165
+ value: 76.78
166
+ - task:
167
+ type: text-generation
168
+ dataset:
169
+ name: STS
170
+ type: STS
171
+ metrics:
172
+ - name: Average pearson
173
+ type: pearson
174
+ value: 74.36
175
+ - task:
176
+ type: text-generation
177
+ dataset:
178
+ name: RoMT-Bench
179
+ type: RoMT-Bench
180
+ metrics:
181
+ - name: First turn
182
+ type: Score
183
+ value: 7.12
184
+ - name: Second turn
185
+ type: Score
186
+ value: 5.66
187
+ - task:
188
+ type: text-generation
189
+ dataset:
190
+ name: OpenLLM-Ro/ro_arc_challenge
191
+ type: OpenLLM-Ro/ro_arc_challenge
192
+ metrics:
193
+ - name: 0-shot
194
+ type: accuracy
195
+ value: 48.33
196
+ - name: 1-shot
197
+ type: accuracy
198
+ value: 49.27
199
+ - name: 3-shot
200
+ type: accuracy
201
+ value: 49.19
202
+ - name: 5-shot
203
+ type: accuracy
204
+ value: 50.90
205
+ - name: 10-shot
206
+ type: accuracy
207
+ value: 51.67
208
+ - name: 25-shot
209
+ type: accuracy
210
+ value: 52.53
211
+ - task:
212
+ type: text-generation
213
+ dataset:
214
+ name: OpenLLM-Ro/ro_mmlu
215
+ type: OpenLLM-Ro/ro_mmlu
216
+ metrics:
217
+ - name: 0-shot
218
+ type: accuracy
219
+ value: 54.17
220
+ - name: 1-shot
221
+ type: accuracy
222
+ value: 56.19
223
+ - name: 3-shot
224
+ type: accuracy
225
+ value: 56.90
226
+ - name: 5-shot
227
+ type: accuracy
228
+ value: 56.37
229
+ - task:
230
+ type: text-generation
231
+ dataset:
232
+ name: OpenLLM-Ro/ro_winogrande
233
+ type: OpenLLM-Ro/ro_winogrande
234
+ metrics:
235
+ - name: 0-shot
236
+ type: accuracy
237
+ value: 65.82
238
+ - name: 1-shot
239
+ type: accuracy
240
+ value: 66.22
241
+ - name: 3-shot
242
+ type: accuracy
243
+ value: 66.85
244
+ - name: 5-shot
245
+ type: accuracy
246
+ value: 69.14
247
+ - task:
248
+ type: text-generation
249
+ dataset:
250
+ name: OpenLLM-Ro/ro_hellaswag
251
+ type: OpenLLM-Ro/ro_hellaswag
252
+ metrics:
253
+ - name: 0-shot
254
+ type: accuracy
255
+ value: 61.67
256
+ - name: 1-shot
257
+ type: accuracy
258
+ value: 62.06
259
+ - name: 3-shot
260
+ type: accuracy
261
+ value: 61.73
262
+ - name: 5-shot
263
+ type: accuracy
264
+ value: 61.28
265
+ - name: 10-shot
266
+ type: accuracy
267
+ value: 61.93
268
+ - task:
269
+ type: text-generation
270
+ dataset:
271
+ name: OpenLLM-Ro/ro_gsm8k
272
+ type: OpenLLM-Ro/ro_gsm8k
273
+ metrics:
274
+ - name: 1-shot
275
+ type: accuracy
276
+ value: 35.63
277
+ - name: 3-shot
278
+ type: accuracy
279
+ value: 51.33
280
+ - name: 5-shot
281
+ type: accuracy
282
+ value: 55.27
283
+ - task:
284
+ type: text-generation
285
+ dataset:
286
+ name: LaRoSeDa_binary
287
+ type: LaRoSeDa_binary
288
+ metrics:
289
+ - name: 0-shot
290
+ type: macro-f1
291
+ value: 94.05
292
+ - name: 1-shot
293
+ type: macro-f1
294
+ value: 96.46
295
+ - name: 3-shot
296
+ type: macro-f1
297
+ value: 96.97
298
+ - name: 5-shot
299
+ type: macro-f1
300
+ value: 97.37
301
+ - task:
302
+ type: text-generation
303
+ dataset:
304
+ name: LaRoSeDa_multiclass
305
+ type: LaRoSeDa_multiclass
306
+ metrics:
307
+ - name: 0-shot
308
+ type: macro-f1
309
+ value: 60.34
310
+ - name: 1-shot
311
+ type: macro-f1
312
+ value: 60.94
313
+ - name: 3-shot
314
+ type: macro-f1
315
+ value: 54.55
316
+ - name: 5-shot
317
+ type: macro-f1
318
+ value: 60.77
319
+ - task:
320
+ type: text-generation
321
+ dataset:
322
+ name: WMT_EN-RO
323
+ type: WMT_EN-RO
324
+ metrics:
325
+ - name: 0-shot
326
+ type: bleu
327
+ value: 5.38
328
+ - name: 1-shot
329
+ type: bleu
330
+ value: 29.60
331
+ - name: 3-shot
332
+ type: bleu
333
+ value: 30.62
334
+ - name: 5-shot
335
+ type: bleu
336
+ value: 27.67
337
+ - task:
338
+ type: text-generation
339
+ dataset:
340
+ name: WMT_RO-EN
341
+ type: WMT_RO-EN
342
+ metrics:
343
+ - name: 0-shot
344
+ type: bleu
345
+ value: 1.14
346
+ - name: 1-shot
347
+ type: bleu
348
+ value: 19.96
349
+ - name: 3-shot
350
+ type: bleu
351
+ value: 34.22
352
+ - name: 5-shot
353
+ type: bleu
354
+ value: 34.69
355
+ - task:
356
+ type: text-generation
357
+ dataset:
358
+ name: XQuAD_EM
359
+ type: XQuAD_EM
360
+ metrics:
361
+ - name: 0-shot
362
+ type: exact_match
363
+ value: 16.39
364
+ - name: 1-shot
365
+ type: exact_match
366
+ value: 18.49
367
+ - name: 3-shot
368
+ type: exact_match
369
+ value: 5.46
370
+ - name: 5-shot
371
+ type: exact_match
372
+ value: 3.70
373
+ - task:
374
+ type: text-generation
375
+ dataset:
376
+ name: XQuAD_F1
377
+ type: XQuAD_F1
378
+ metrics:
379
+ - name: 0-shot
380
+ type: f1
381
+ value: 33.84
382
+ - name: 1-shot
383
+ type: f1
384
+ value: 29.11
385
+ - name: 3-shot
386
+ type: f1
387
+ value: 15.27
388
+ - name: 5-shot
389
+ type: f1
390
+ value: 15.97
391
+ - task:
392
+ type: text-generation
393
+ dataset:
394
+ name: STS_Spearman
395
+ type: STS_Spearman
396
+ metrics:
397
+ - name: 1-shot
398
+ type: spearman
399
+ value: 76.64
400
+ - name: 3-shot
401
+ type: spearman
402
+ value: 76.88
403
+ - name: 5-shot
404
+ type: spearman
405
+ value: 76.82
406
+ - task:
407
+ type: text-generation
408
+ dataset:
409
+ name: STS_Pearson
410
+ type: STS_Pearson
411
+ metrics:
412
+ - name: 1-shot
413
+ type: pearson
414
+ value: 73.14
415
+ - name: 3-shot
416
+ type: pearson
417
+ value: 74.78
418
+ - name: 5-shot
419
+ type: pearson
420
+ value: 75.16
421
+
422
+ ---
423
+
424
+ # Model Card for Model ID
425
+
426
+ *Built with Meta Llama 3*
427
+
428
+ This model points/is identical to [RoLlama3-8b-Instruct-2025-04-23](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2025-04-23).
429
+
430
+
431
+ <!-- Provide a quick summary of what the model is/does. -->
432
+
433
+ RoLlama3 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **instruct 8B model**. Links to other models can be found at the bottom of this page.
434
+
435
+
436
+ ## Model Details
437
+
438
+ ### Model Description
439
+
440
+ <!-- Provide a longer summary of what this model is. -->
441
+ OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
442
+
443
+
444
+ - **Developed by:** OpenLLM-Ro
445
+ <!-- - **Funded by [optional]:** [More Information Needed] -->
446
+ <!-- - **Shared by [optional]:** [More Information Needed] -->
447
+ <!-- - **Model type:** [More Information Needed] -->
448
+ - **Language(s):** Romanian
449
+ - **License:** cc-by-nc-4.0
450
+ - **Finetuned from model:** [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
451
+ - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel), [RoOpenAssistant](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_oasst), [RoUltraChat](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_ultrachat), [RoMagpiePro](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_magpie_mt), [RoMagpieReasoning](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_magpie_reasoning)
452
+
453
+
454
+ ### Model Sources
455
+
456
+ <!-- Provide the basic links for the model. -->
457
+
458
+ - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
459
+ - **Paper:** https://arxiv.org/abs/2406.18266
460
+
461
+ ## Intended Use
462
+
463
+ ### Intended Use Cases
464
+
465
+ RoLlama3 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
466
+
467
+ ### Out-of-Scope Use
468
+
469
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
470
+
471
+ Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
472
+
473
+
474
+
475
+ ## How to Get Started with the Model
476
+
477
+ Use the code below to get started with the model.
478
+
479
+ ```python
480
+ from transformers import AutoTokenizer, AutoModelForCausalLM
481
+
482
+ tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama3-8b-Instruct")
483
+ model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama3-8b-Instruct")
484
+
485
+ instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
486
+ chat = [
487
+ {"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."},
488
+ {"role": "user", "content": instruction},
489
+ ]
490
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
491
+
492
+ inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
493
+ outputs = model.generate(input_ids=inputs, max_new_tokens=128)
494
+ print(tokenizer.decode(outputs[0]))
495
+ ```
496
+
497
+ ## Academic Benchmarks
498
+
499
+ <table>
500
+ <tbody>
501
+ <tr>
502
+ <td><strong>Model</strong></td>
503
+ <td><strong><center>Average</center></strong></td>
504
+ <td><strong><center>ARC</center></strong></td>
505
+ <td><strong><center>MMLU</center></strong></td>
506
+ <td><strong><center>Winogrande</center></strong></td>
507
+ <td><strong><center>Hellaswag</center></strong></td>
508
+ <td><strong><center>GSM8k</center></strong></td>
509
+ <td><strong><center>TruthfulQA</center></strong></td>
510
+ </tr>
511
+ <tr>
512
+ <td>Llama-3-8B-Instruct</td><td><center>50.62</center></td><td><center>43.69</center></td><td><center>52.04</center></td><td><center>59.33</center></td><td><center>53.19</center></td><td><center>43.87</center></td><td><center>51.59</center></td>
513
+ </tr>
514
+ <tr>
515
+ <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>50.56</center></td><td><center>44.70</center></td><td><center>52.19</center></td><td><center><strong>67.23</strong></center></td><td><center>57.69</center></td><td><center>30.23</center></td><td><center>51.34</center></td>
516
+ </tr>
517
+ <tr>
518
+ <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center>52.21</center></td><td><center>47.94</center></td><td><center>53.50</center></td><td><center>66.06</center></td><td><center>59.72</center></td><td><center>40.16</center></td><td><center>45.90</center></td>
519
+ </tr>
520
+ <tr>
521
+ <td><em>RoLlama3-8b-Instruct-2025-04-23</em></td><td><center><em>54.66</em></center></td><td><center><em>50.31</em></center></td><td><center><em><strong>55.91</strong></em></center></td><td><center><em>67.01</em></center></td><td><center><em><strong>61.73</strong></em></center></td><td><center><em><strong>47.41</strong></em></center></td><td><center><em>45.61</em></center></td>
522
+ </tr>
523
+ <tr>
524
+ <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>49.96</center></td><td><center>46.29</center></td><td><center>53.29</center></td><td><center>65.57</center></td><td><center>58.15</center></td><td><center>34.77</center></td><td><center>41.70</center></td>
525
+ </tr>
526
+ <tr>
527
+ <td>RoLlama3-8b-Instruct-DPO-2025-04-23</td><td><center><strong>55.86</strong></center></td><td><center><strong>52.26</strong></center></td><td><center>55.35</center></td><td><center>66.62</center></td><td><center>59.93</center></td><td><center>43.95</center></td><td><center><strong>57.06</strong></center></td>
528
+ </tr>
529
+ </tbody>
530
+ </table>
531
+
532
+
533
+ ## Downstream tasks
534
+
535
+ <table>
536
+ <tbody>
537
+ <tr>
538
+ <td></td>
539
+ <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
540
+ <td colspan="4"><center><strong>WMT</strong></center></td>
541
+ </tr>
542
+ <tr>
543
+ <td></td>
544
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
545
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
546
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
547
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
548
+ </tr>
549
+ <tr>
550
+ <td><strong>Model</strong></td>
551
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
552
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
553
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
554
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
555
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
556
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
557
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
558
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center>
559
+ </tr>
560
+ <tr>
561
+ <td>Llama-3-8B-Instruct</td><td><center>95.88</center></td><td><center>56.21</center></td><td><center><strong>98.53</strong></center></td><td><center>86.19</center></td><td><center>18.88</center></td><td><center><strong>30.98</strong></center></td><td><center><strong>28.02</strong></center></td><td><center>40.28</center></td>
562
+ </tr>
563
+ <tr>
564
+ <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>97.52</center></td><td><center><strong>67.41</strong></center></td><td><center>94.15</center></td><td><center>87.13</center></td><td><center><strong>24.01</strong></center></td><td><center>27.36</center></td><td><center>26.53</center></td><td><center>40.36</center></td>
565
+ </tr>
566
+ <tr>
567
+ <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center>95.58</center></td><td><center>61.20</center></td><td><center>96.46</center></td><td><center><strong>87.26</strong></center></td><td><center>22.92</center></td><td><center>24.28</center></td><td><center>27.31</center></td><td><center><strong>40.52</strong></center></td>
568
+ </tr>
569
+ <tr>
570
+ <td><em>RoLlama3-8b-Instruct-2025-04-23</em></td><td><center><em>96.21</em></center></td><td><center><em>59.15</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>23.32</em></center></td><td><center><em>22.50</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
571
+ </tr>
572
+ <tr>
573
+ <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>97.48</center></td><td><center>54.00</center></td><td><center>-</center></td><td><center>-</center></td><td><center>22.09</center></td><td><center>23.00</center></td><td><center>-</center></td><td><center>-</center></td>
574
+ </tr>
575
+ <tr>
576
+ <td>RoLlama3-8b-Instruct-DPO-2025-04-23</td><td><center><strong>97.60</strong></center></td><td><center>62.16</center></td><td><center>-</center></td><td><center>-</center></td><td><center>18.14</center></td><td><center>14.13</center></td><td><center>-</center></td><td><center>-</center></td>
577
+ </tr>
578
+ </tbody>
579
+ </table>
580
+
581
+
582
+ <table>
583
+ <tbody>
584
+ <tr>
585
+ <td></td>
586
+ <td colspan="4"><center><strong>XQuAD</strong></center></td>
587
+ <td colspan="4"><center><strong>STS</strong></center></td>
588
+ </tr>
589
+ <tr>
590
+ <td></td>
591
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
592
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
593
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
594
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
595
+ </tr>
596
+ <tr>
597
+ <td><strong>Model</strong></td>
598
+ <td><center><strong>(EM)</strong></center></td>
599
+ <td><center><strong>(F1)</strong></center></td>
600
+ <td><center><strong>(EM)</strong></center></td>
601
+ <td><center><strong>(F1)</strong></center></td>
602
+ <td><center><strong>(Spearman)</strong></center></td>
603
+ <td><center><strong>(Pearson)</strong></center></td>
604
+ <td><center><strong>(Spearman)</strong></center></td>
605
+ <td><center><strong>(Pearson)</strong></center></td>
606
+ </tr>
607
+ <tr>
608
+ <td>Llama-3-8B-Instruct</td><td><center><strong>39.47</strong></center></td><td><center>58.67</center></td><td><center><strong>67.65</strong></center></td><td><center><strong>82.77</strong></center></td><td><center>73.04</center></td><td><center>72.36</center></td><td><center>83.49</center></td><td><center>84.06</center></td>
609
+ </tr>
610
+ <tr>
611
+ <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>39.43</center></td><td><center><strong>59.50</strong></center></td><td><center>44.45</center></td><td><center>59.76</center></td><td><center>77.20</center></td><td><center>77.87</center></td><td><center>85.80</center></td><td><center>86.05</center></td>
612
+ </tr>
613
+ <tr>
614
+ <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center>18.89</center></td><td><center>31.79</center></td><td><center>50.84</center></td><td><center>65.18</center></td><td><center>77.60</center></td><td><center>76.86</center></td><td><center><strong>86.70</strong></center></td><td><center><strong>87.09</strong></center></td>
615
+ </tr>
616
+ <tr>
617
+ <td><em>RoLlama3-8b-Instruct-2025-04-23</em></td><td><center><em>11.01</em></center></td><td><center><em>23.55</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>76.78</em></center></td><td><center><em>74.36</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
618
+ </tr>
619
+ <tr>
620
+ <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>26.05</center></td><td><center>42.77</center></td><td><center>-</center></td><td><center>-</center></td><td><center><strong>79.64</strong></center></td><td><center><strong>79.52</strong></center></td><td><center>-</center></td><td><center>-</center></td>
621
+ </tr>
622
+ <tr>
623
+ <td>RoLlama3-8b-Instruct-DPO-2025-04-23</td><td><center>30.65</center></td><td><center>46.29</center></td><td><center>-</center></td><td><center>-</center></td><td><center>67.62</center></td><td><center>67.82</center></td><td><center>-</center></td><td><center>-</center></td>
624
+ </tr>
625
+ </tbody>
626
+ </table>
627
+
628
+ ## MT-Bench
629
+
630
+ <table>
631
+ <tbody>
632
+ <tr>
633
+ <td><strong>Model</strong></td>
634
+ <td><strong><center>Average</center></strong></td>
635
+ <td><strong><center>1st turn</center></strong></td>
636
+ <td><strong><center>2nd turn</center></strong></td>
637
+ <td><strong><center>Answers in Ro</center></strong></td>
638
+ </tr>
639
+ <tr>
640
+ <td>Llama-3-8B-Instruct</td><td><center>5.96</center></td><td><center>6.16</center></td><td><center>5.76</center></td><td><center>158/160</center></td>
641
+ </tr>
642
+ <tr>
643
+ <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>5.15</center></td><td><center>6.03</center></td><td><center>4.28</center></td><td><center><strong>160/160</strong></center></td>
644
+ </tr>
645
+ <tr>
646
+ <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center>5.38</center></td><td><center>6.09</center></td><td><center>4.67</center></td><td><center><strong>160/160</strong></center></td>
647
+ </tr>
648
+ <tr>
649
+ <td><em>RoLlama3-8b-Instruct-2025-04-23</em></td><td><center><em>6.39</em></center></td><td><center><em><strong>7.12</strong></em></center></td><td><center><em>5.66</em></center></td><td><center><em><strong>160/160</strong></em></center></td>
650
+ </tr>
651
+ <tr>
652
+ <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>5.87</center></td><td><center>6.22</center></td><td><center>5.49</center></td><td><center><strong>160/160</strong></center></td>
653
+ </tr>
654
+ <tr>
655
+ <td>RoLlama3-8b-Instruct-DPO-2025-04-23</td><td><center><strong>6.67</strong></center></td><td><center>6.81</center></td><td><center><strong>6.54</strong></center></td><td><center><strong>160/160</strong></center></td>
656
+ </tr>
657
+ </tbody>
658
+ </table>
659
+
660
+
661
+ ## RoCulturaBench
662
+
663
+ <table>
664
+ <tbody>
665
+ <tr>
666
+ <td><strong>Model</strong></td>
667
+ <td><strong><center>Average</center></strong></td>
668
+ <td><strong><center>Answers in Ro</center></strong></td>
669
+ </tr>
670
+ <tr>
671
+ <td>Llama-3-8B-Instruct</td><td><center>4.62</center></td><td><center><strong>100/100</strong></center></td>
672
+ </tr>
673
+ <tr>
674
+ <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>3.71</center></td><td><center><strong>100/100</strong></center></td>
675
+ </tr>
676
+ <tr>
677
+ <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center>3.81</center></td><td><center><strong>100/100</strong></center></td>
678
+ </tr>
679
+ <tr>
680
+ <td><em>RoLlama3-8b-Instruct-2025-04-23</em></td><td><center><em>4.05</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
681
+ </tr>
682
+ <tr>
683
+ <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>4.40</center></td><td><center><strong>100/100</strong></center></td>
684
+ </tr>
685
+ <tr>
686
+ <td>RoLlama3-8b-Instruct-DPO-2025-04-23</td><td><center><strong>4.83</strong></center></td><td><center><strong>100/100</strong></center></td>
687
+ </tr>
688
+ </tbody>
689
+ </table>
690
+
691
+
692
+
693
+ ## RoLlama3 Model Family
694
+
695
+ | Model | Link |
696
+ |--------------------|:--------:|
697
+ |RoLlama3-8b-Instruct-2024-06-28| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2024-06-28) |
698
+ |RoLlama3-8b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2024-10-09) |
699
+ |*RoLlama3-8b-Instruct-2025-04-23*| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2025-04-23) |
700
+ |RoLlama3-8b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2024-10-09) |
701
+ |RoLlama3-8b-Instruct-DPO-2025-04-23| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2025-04-23) |
702
+
703
+
704
+ ## Citation
705
+
706
+ ```
707
+ @misc{masala2024vorbecstiromanecsterecipetrain,
708
+ title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
709
+ author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
710
+ year={2024},
711
+ eprint={2406.18266},
712
+ archivePrefix={arXiv},
713
+ primaryClass={cs.CL},
714
+ url={https://arxiv.org/abs/2406.18266},
715
+ }
716
+ ```
717
+ <!-- **APA:**
718
+
719
  [More Information Needed] -->