mihaimasala commited on
Commit
d4ecba7
·
verified ·
1 Parent(s): 1055530

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +716 -755
README.md CHANGED
@@ -1,756 +1,717 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- language:
4
- - ro
5
- base_model:
6
- - meta-llama/Meta-Llama-3-8B-Instruct
7
- datasets:
8
- - OpenLLM-Ro/ro_sft_alpaca
9
- - OpenLLM-Ro/ro_sft_alpaca_gpt4
10
- - OpenLLM-Ro/ro_sft_dolly
11
- - OpenLLM-Ro/ro_sft_selfinstruct_gpt4
12
- - OpenLLM-Ro/ro_sft_norobots
13
- - OpenLLM-Ro/ro_sft_orca
14
- - OpenLLM-Ro/ro_sft_camel
15
- - OpenLLM-Ro/ro_sft_oasst
16
- - OpenLLM-Ro/ro_sft_ultrachat
17
- model-index:
18
- - name: OpenLLM-Ro/RoLlama3-8b-Instruct-2024-10-09
19
- results:
20
- - task:
21
- type: text-generation
22
- dataset:
23
- name: RoMT-Bench
24
- type: RoMT-Bench
25
- metrics:
26
- - name: Score
27
- type: Score
28
- value: 5.38
29
- - task:
30
- type: text-generation
31
- dataset:
32
- name: RoCulturaBench
33
- type: RoCulturaBench
34
- metrics:
35
- - name: Score
36
- type: Score
37
- value: 3.81
38
- - task:
39
- type: text-generation
40
- dataset:
41
- name: Romanian_Academic_Benchmarks
42
- type: Romanian_Academic_Benchmarks
43
- metrics:
44
- - name: Average accuracy
45
- type: accuracy
46
- value: 52.21
47
- - task:
48
- type: text-generation
49
- dataset:
50
- name: OpenLLM-Ro/ro_arc_challenge
51
- type: OpenLLM-Ro/ro_arc_challenge
52
- metrics:
53
- - name: Average accuracy
54
- type: accuracy
55
- value: 47.94
56
- - task:
57
- type: text-generation
58
- dataset:
59
- name: OpenLLM-Ro/ro_mmlu
60
- type: OpenLLM-Ro/ro_mmlu
61
- metrics:
62
- - name: Average accuracy
63
- type: accuracy
64
- value: 53.50
65
- - task:
66
- type: text-generation
67
- dataset:
68
- name: OpenLLM-Ro/ro_winogrande
69
- type: OpenLLM-Ro/ro_winogrande
70
- metrics:
71
- - name: Average accuracy
72
- type: accuracy
73
- value: 66.06
74
- - task:
75
- type: text-generation
76
- dataset:
77
- name: OpenLLM-Ro/ro_hellaswag
78
- type: OpenLLM-Ro/ro_hellaswag
79
- metrics:
80
- - name: Average accuracy
81
- type: accuracy
82
- value: 59.72
83
- - task:
84
- type: text-generation
85
- dataset:
86
- name: OpenLLM-Ro/ro_gsm8k
87
- type: OpenLLM-Ro/ro_gsm8k
88
- metrics:
89
- - name: Average accuracy
90
- type: accuracy
91
- value: 40.16
92
- - task:
93
- type: text-generation
94
- dataset:
95
- name: OpenLLM-Ro/ro_truthfulqa
96
- type: OpenLLM-Ro/ro_truthfulqa
97
- metrics:
98
- - name: Average accuracy
99
- type: accuracy
100
- value: 45.90
101
- - task:
102
- type: text-generation
103
- dataset:
104
- name: LaRoSeDa_binary
105
- type: LaRoSeDa_binary
106
- metrics:
107
- - name: Average macro-f1
108
- type: macro-f1
109
- value: 95.58
110
- - task:
111
- type: text-generation
112
- dataset:
113
- name: LaRoSeDa_multiclass
114
- type: LaRoSeDa_multiclass
115
- metrics:
116
- - name: Average macro-f1
117
- type: macro-f1
118
- value: 61.20
119
- - task:
120
- type: text-generation
121
- dataset:
122
- name: LaRoSeDa_binary_finetuned
123
- type: LaRoSeDa_binary_finetuned
124
- metrics:
125
- - name: Average macro-f1
126
- type: macro-f1
127
- value: 96.46
128
- - task:
129
- type: text-generation
130
- dataset:
131
- name: LaRoSeDa_multiclass_finetuned
132
- type: LaRoSeDa_multiclass_finetuned
133
- metrics:
134
- - name: Average macro-f1
135
- type: macro-f1
136
- value: 87.26
137
- - task:
138
- type: text-generation
139
- dataset:
140
- name: WMT_EN-RO
141
- type: WMT_EN-RO
142
- metrics:
143
- - name: Average bleu
144
- type: bleu
145
- value: 22.92
146
- - task:
147
- type: text-generation
148
- dataset:
149
- name: WMT_RO-EN
150
- type: WMT_RO-EN
151
- metrics:
152
- - name: Average bleu
153
- type: bleu
154
- value: 24.28
155
- - task:
156
- type: text-generation
157
- dataset:
158
- name: WMT_EN-RO_finetuned
159
- type: WMT_EN-RO_finetuned
160
- metrics:
161
- - name: Average bleu
162
- type: bleu
163
- value: 27.31
164
- - task:
165
- type: text-generation
166
- dataset:
167
- name: WMT_RO-EN_finetuned
168
- type: WMT_RO-EN_finetuned
169
- metrics:
170
- - name: Average bleu
171
- type: bleu
172
- value: 40.52
173
- - task:
174
- type: text-generation
175
- dataset:
176
- name: XQuAD
177
- type: XQuAD
178
- metrics:
179
- - name: Average exact_match
180
- type: exact_match
181
- value: 18.89
182
- - task:
183
- type: text-generation
184
- dataset:
185
- name: XQuAD
186
- type: XQuAD
187
- metrics:
188
- - name: Average f1
189
- type: f1
190
- value: 31.79
191
- - task:
192
- type: text-generation
193
- dataset:
194
- name: XQuAD_finetuned
195
- type: XQuAD_finetuned
196
- metrics:
197
- - name: Average exact_match
198
- type: exact_match
199
- value: 50.84
200
- - task:
201
- type: text-generation
202
- dataset:
203
- name: XQuAD_finetuned
204
- type: XQuAD_finetuned
205
- metrics:
206
- - name: Average f1
207
- type: f1
208
- value: 65.18
209
- - task:
210
- type: text-generation
211
- dataset:
212
- name: STS
213
- type: STS
214
- metrics:
215
- - name: Average spearman
216
- type: spearman
217
- value: 77.60
218
- - task:
219
- type: text-generation
220
- dataset:
221
- name: STS
222
- type: STS
223
- metrics:
224
- - name: Average pearson
225
- type: pearson
226
- value: 76.86
227
- - task:
228
- type: text-generation
229
- dataset:
230
- name: STS_finetuned
231
- type: STS_finetuned
232
- metrics:
233
- - name: Average spearman
234
- type: spearman
235
- value: 86.70
236
- - task:
237
- type: text-generation
238
- dataset:
239
- name: STS_finetuned
240
- type: STS_finetuned
241
- metrics:
242
- - name: Average pearson
243
- type: pearson
244
- value: 87.09
245
- - task:
246
- type: text-generation
247
- dataset:
248
- name: RoMT-Bench
249
- type: RoMT-Bench
250
- metrics:
251
- - name: First turn
252
- type: Score
253
- value: 6.09
254
- - name: Second turn
255
- type: Score
256
- value: 4.67
257
- - task:
258
- type: text-generation
259
- dataset:
260
- name: OpenLLM-Ro/ro_arc_challenge
261
- type: OpenLLM-Ro/ro_arc_challenge
262
- metrics:
263
- - name: 0-shot
264
- type: accuracy
265
- value: 46.02
266
- - name: 1-shot
267
- type: accuracy
268
- value: 47.39
269
- - name: 3-shot
270
- type: accuracy
271
- value: 47.73
272
- - name: 5-shot
273
- type: accuracy
274
- value: 48.24
275
- - name: 10-shot
276
- type: accuracy
277
- value: 48.33
278
- - name: 25-shot
279
- type: accuracy
280
- value: 49.96
281
- - task:
282
- type: text-generation
283
- dataset:
284
- name: OpenLLM-Ro/ro_mmlu
285
- type: OpenLLM-Ro/ro_mmlu
286
- metrics:
287
- - name: 0-shot
288
- type: accuracy
289
- value: 51.19
290
- - name: 1-shot
291
- type: accuracy
292
- value: 53.05
293
- - name: 3-shot
294
- type: accuracy
295
- value: 54.83
296
- - name: 5-shot
297
- type: accuracy
298
- value: 54.93
299
- - task:
300
- type: text-generation
301
- dataset:
302
- name: OpenLLM-Ro/ro_winogrande
303
- type: OpenLLM-Ro/ro_winogrande
304
- metrics:
305
- - name: 0-shot
306
- type: accuracy
307
- value: 64.09
308
- - name: 1-shot
309
- type: accuracy
310
- value: 66.22
311
- - name: 3-shot
312
- type: accuracy
313
- value: 66.61
314
- - name: 5-shot
315
- type: accuracy
316
- value: 67.32
317
- - task:
318
- type: text-generation
319
- dataset:
320
- name: OpenLLM-Ro/ro_hellaswag
321
- type: OpenLLM-Ro/ro_hellaswag
322
- metrics:
323
- - name: 0-shot
324
- type: accuracy
325
- value: 59.34
326
- - name: 1-shot
327
- type: accuracy
328
- value: 59.52
329
- - name: 3-shot
330
- type: accuracy
331
- value: 59.61
332
- - name: 5-shot
333
- type: accuracy
334
- value: 59.95
335
- - name: 10-shot
336
- type: accuracy
337
- value: 60.19
338
- - task:
339
- type: text-generation
340
- dataset:
341
- name: OpenLLM-Ro/ro_gsm8k
342
- type: OpenLLM-Ro/ro_gsm8k
343
- metrics:
344
- - name: 1-shot
345
- type: accuracy
346
- value: 31.31
347
- - name: 3-shot
348
- type: accuracy
349
- value: 42.23
350
- - name: 5-shot
351
- type: accuracy
352
- value: 46.93
353
- - task:
354
- type: text-generation
355
- dataset:
356
- name: LaRoSeDa_binary
357
- type: LaRoSeDa_binary
358
- metrics:
359
- - name: 0-shot
360
- type: macro-f1
361
- value: 92.43
362
- - name: 1-shot
363
- type: macro-f1
364
- value: 96.23
365
- - name: 3-shot
366
- type: macro-f1
367
- value: 96.66
368
- - name: 5-shot
369
- type: macro-f1
370
- value: 97.00
371
- - task:
372
- type: text-generation
373
- dataset:
374
- name: LaRoSeDa_multiclass
375
- type: LaRoSeDa_multiclass
376
- metrics:
377
- - name: 0-shot
378
- type: macro-f1
379
- value: 61.47
380
- - name: 1-shot
381
- type: macro-f1
382
- value: 63.77
383
- - name: 3-shot
384
- type: macro-f1
385
- value: 57.12
386
- - name: 5-shot
387
- type: macro-f1
388
- value: 62.43
389
- - task:
390
- type: text-generation
391
- dataset:
392
- name: WMT_EN-RO
393
- type: WMT_EN-RO
394
- metrics:
395
- - name: 0-shot
396
- type: bleu
397
- value: 5.25
398
- - name: 1-shot
399
- type: bleu
400
- value: 28.62
401
- - name: 3-shot
402
- type: bleu
403
- value: 29.60
404
- - name: 5-shot
405
- type: bleu
406
- value: 28.21
407
- - task:
408
- type: text-generation
409
- dataset:
410
- name: WMT_RO-EN
411
- type: WMT_RO-EN
412
- metrics:
413
- - name: 0-shot
414
- type: bleu
415
- value: 1.95
416
- - name: 1-shot
417
- type: bleu
418
- value: 24.00
419
- - name: 3-shot
420
- type: bleu
421
- value: 34.87
422
- - name: 5-shot
423
- type: bleu
424
- value: 36.31
425
- - task:
426
- type: text-generation
427
- dataset:
428
- name: XQuAD_EM
429
- type: XQuAD_EM
430
- metrics:
431
- - name: 0-shot
432
- type: exact_match
433
- value: 16.97
434
- - name: 1-shot
435
- type: exact_match
436
- value: 31.01
437
- - name: 3-shot
438
- type: exact_match
439
- value: 13.95
440
- - name: 5-shot
441
- type: exact_match
442
- value: 13.61
443
- - task:
444
- type: text-generation
445
- dataset:
446
- name: XQuAD_F1
447
- type: XQuAD_F1
448
- metrics:
449
- - name: 0-shot
450
- type: f1
451
- value: 31.29
452
- - name: 1-shot
453
- type: f1
454
- value: 42.77
455
- - name: 3-shot
456
- type: f1
457
- value: 24.78
458
- - name: 5-shot
459
- type: f1
460
- value: 28.30
461
- - task:
462
- type: text-generation
463
- dataset:
464
- name: STS_Spearman
465
- type: STS_Spearman
466
- metrics:
467
- - name: 1-shot
468
- type: spearman
469
- value: 77.73
470
- - name: 3-shot
471
- type: spearman
472
- value: 76.78
473
- - name: 5-shot
474
- type: spearman
475
- value: 78.30
476
- - task:
477
- type: text-generation
478
- dataset:
479
- name: STS_Pearson
480
- type: STS_Pearson
481
- metrics:
482
- - name: 1-shot
483
- type: pearson
484
- value: 77.25
485
- - name: 3-shot
486
- type: pearson
487
- value: 75.83
488
- - name: 5-shot
489
- type: pearson
490
- value: 77.49
491
-
492
- ---
493
-
494
- # Model Card for Model ID
495
-
496
- *Built with Meta Llama 3*
497
-
498
- This model points/is identical to [RoLlama3-8b-Instruct-2024-10-09](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2024-10-09).
499
-
500
- <!-- Provide a quick summary of what the model is/does. -->
501
-
502
- RoLlama3 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **instruct 8B model**. Links to other models can be found at the bottom of this page.
503
-
504
-
505
- ## Model Details
506
-
507
- ### Model Description
508
-
509
- <!-- Provide a longer summary of what this model is. -->
510
- OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
511
-
512
-
513
- - **Developed by:** OpenLLM-Ro
514
- <!-- - **Funded by [optional]:** [More Information Needed] -->
515
- <!-- - **Shared by [optional]:** [More Information Needed] -->
516
- <!-- - **Model type:** [More Information Needed] -->
517
- - **Language(s):** Romanian
518
- - **License:** cc-by-nc-4.0
519
- - **Finetuned from model:** [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
520
- - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel), [RoOpenAssistant](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_oasst), [RoUltraChat](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_ultrachat)
521
-
522
-
523
- ### Model Sources
524
-
525
- <!-- Provide the basic links for the model. -->
526
-
527
- - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
528
- - **Paper:** https://arxiv.org/abs/2406.18266
529
-
530
- ## Intended Use
531
-
532
- ### Intended Use Cases
533
-
534
- RoLlama3 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
535
-
536
- ### Out-of-Scope Use
537
-
538
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
539
-
540
- Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
541
-
542
-
543
-
544
- ## How to Get Started with the Model
545
-
546
- Use the code below to get started with the model.
547
-
548
- ```python
549
- from transformers import AutoTokenizer, AutoModelForCausalLM
550
-
551
- tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama3-8b-Instruct")
552
- model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama3-8b-Instruct")
553
-
554
- instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
555
- chat = [
556
- {"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."},
557
- {"role": "user", "content": instruction},
558
- ]
559
- prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
560
-
561
- inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
562
- outputs = model.generate(input_ids=inputs, max_new_tokens=128)
563
- print(tokenizer.decode(outputs[0]))
564
- ```
565
-
566
- ## Academic Benchmarks
567
-
568
- <table>
569
- <tbody>
570
- <tr>
571
- <td><strong>Model</strong></td>
572
- <td><strong><center>Average</center></strong></td>
573
- <td><strong><center>ARC</center></strong></td>
574
- <td><strong><center>MMLU</center></strong></td>
575
- <td><strong><center>Winogrande</center></strong></td>
576
- <td><strong><center>Hellaswag</center></strong></td>
577
- <td><strong><center>GSM8k</center></strong></td>
578
- <td><strong><center>TruthfulQA</center></strong></td>
579
- </tr>
580
- <tr>
581
- <td>Llama-3-8B-Instruct</td><td><center>50.62</center></td><td><center>43.69</center></td><td><center>52.04</center></td><td><center>59.33</center></td><td><center>53.19</center></td><td><center><strong>43.87</strong></center></td><td><center><strong>51.59</strong></center></td>
582
- </tr>
583
- <tr>
584
- <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>50.56</center></td><td><center>44.70</center></td><td><center>52.19</center></td><td><center><strong>67.23</strong></center></td><td><center>57.69</center></td><td><center>30.23</center></td><td><center>51.34</center></td>
585
- </tr>
586
- <tr>
587
- <td><em>RoLlama3-8b-Instruct-2024-10-09</em></td><td><center><em><strong>52.21</strong></em></center></td><td><center><em><strong>47.94</strong></em></center></td><td><center><em><strong>53.50</strong></em></center></td><td><center><em>66.06</em></center></td><td><center><em><strong>59.72</strong></em></center></td><td><center><em>40.16</em></center></td><td><center><em>45.90</em></center></td>
588
- </tr>
589
- <tr>
590
- <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>49.96</center></td><td><center>46.29</center></td><td><center>53.29</center></td><td><center>65.57</center></td><td><center>58.15</center></td><td><center>34.77</center></td><td><center>41.70</center></td>
591
- </tr>
592
- </tbody>
593
- </table>
594
-
595
-
596
- ## Downstream tasks
597
-
598
- <table>
599
- <tbody>
600
- <tr>
601
- <td></td>
602
- <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
603
- <td colspan="4"><center><strong>WMT</strong></center></td>
604
- </tr>
605
- <tr>
606
- <td></td>
607
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
608
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
609
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
610
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
611
- </tr>
612
- <tr>
613
- <td><strong>Model</strong></td>
614
- <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
615
- <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
616
- <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
617
- <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
618
- <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
619
- <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
620
- <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
621
- <td><center><strong>RO-EN<br>(Bleu)</strong></center>
622
- </tr>
623
- <tr>
624
- <td>Llama-3-8B-Instruct</td><td><center>95.88</center></td><td><center>56.21</center></td><td><center><strong>98.53</strong></center></td><td><center>86.19</center></td><td><center>18.88</center></td><td><center><strong>30.98</strong></center></td><td><center><strong>28.02</strong></center></td><td><center>40.28</center></td>
625
- </tr>
626
- <tr>
627
- <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center><strong>97.52</strong></center></td><td><center><strong>67.41</strong></center></td><td><center>94.15</center></td><td><center>87.13</center></td><td><center><strong>24.01</strong></center></td><td><center>27.36</center></td><td><center>26.53</center></td><td><center>40.36</center></td>
628
- </tr>
629
- <tr>
630
- <td><em>RoLlama3-8b-Instruct-2024-10-09</em></td><td><center><em>95.58</em></center></td><td><center><em>61.20</em></center></td><td><center><em>96.46</em></center></td><td><center><em><strong>87.26</strong></em></center></td><td><center><em>22.92</em></center></td><td><center><em>24.28</em></center></td><td><center><em>27.31</em></center></td><td><center><em><strong>40.52</strong></em></center></td>
631
- </tr>
632
- <tr>
633
- <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>97.48</center></td><td><center>54.00</center></td><td><center>-</center></td><td><center>-</center></td><td><center>22.09</center></td><td><center>23.00</center></td><td><center>-</center></td><td><center>-</center></td>
634
- </tr>
635
- </tbody>
636
- </table>
637
-
638
-
639
- <table>
640
- <tbody>
641
- <tr>
642
- <td></td>
643
- <td colspan="4"><center><strong>XQuAD</strong></center></td>
644
- <td colspan="4"><center><strong>STS</strong></center></td>
645
- </tr>
646
- <tr>
647
- <td></td>
648
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
649
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
650
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
651
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
652
- </tr>
653
- <tr>
654
- <td><strong>Model</strong></td>
655
- <td><center><strong>(EM)</strong></center></td>
656
- <td><center><strong>(F1)</strong></center></td>
657
- <td><center><strong>(EM)</strong></center></td>
658
- <td><center><strong>(F1)</strong></center></td>
659
- <td><center><strong>(Spearman)</strong></center></td>
660
- <td><center><strong>(Pearson)</strong></center></td>
661
- <td><center><strong>(Spearman)</strong></center></td>
662
- <td><center><strong>(Pearson)</strong></center></td>
663
- </tr>
664
- <tr>
665
- <td>Llama-3-8B-Instruct</td><td><center><strong>39.47</strong></center></td><td><center>58.67</center></td><td><center><strong>67.65</strong></center></td><td><center><strong>82.77</strong></center></td><td><center>73.04</center></td><td><center>72.36</center></td><td><center>83.49</center></td><td><center>84.06</center></td>
666
- </tr>
667
- <tr>
668
- <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>39.43</center></td><td><center><strong>59.50</strong></center></td><td><center>44.45</center></td><td><center>59.76</center></td><td><center>77.20</center></td><td><center>77.87</center></td><td><center>85.80</center></td><td><center>86.05</center></td>
669
- </tr>
670
- <tr>
671
- <td><em>RoLlama3-8b-Instruct-2024-10-09</em></td><td><center><em>18.89</em></center></td><td><center><em>31.79</em></center></td><td><center><em>50.84</em></center></td><td><center><em>65.18</em></center></td><td><center><em>77.60</em></center></td><td><center><em>76.86</em></center></td><td><center><em><strong>86.70</strong></em></center></td><td><center><em><strong>87.09</strong></em></center></td>
672
- </tr>
673
- <tr>
674
- <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>26.05</center></td><td><center>42.77</center></td><td><center>-</center></td><td><center>-</center></td><td><center><strong>79.64</strong></center></td><td><center><strong>79.52</strong></center></td><td><center>-</center></td><td><center>-</center></td>
675
- </tr>
676
- </tbody>
677
- </table>
678
-
679
- ## MT-Bench
680
-
681
- <table>
682
- <tbody>
683
- <tr>
684
- <td><strong>Model</strong></td>
685
- <td><strong><center>Average</center></strong></td>
686
- <td><strong><center>1st turn</center></strong></td>
687
- <td><strong><center>2nd turn</center></strong></td>
688
- <td><strong><center>Answers in Ro</center></strong></td>
689
- </tr>
690
- <tr>
691
- <td>Llama-3-8B-Instruct</td><td><center><strong>5.96</strong></center></td><td><center>6.16</center></td><td><center><strong>5.76</strong></center></td><td><center>158/160</center></td>
692
- </tr>
693
- <tr>
694
- <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>5.15</center></td><td><center>6.03</center></td><td><center>4.28</center></td><td><center><strong>160/160</strong></center></td>
695
- </tr>
696
- <tr>
697
- <td><em>RoLlama3-8b-Instruct-2024-10-09</em></td><td><center><em>5.38</em></center></td><td><center><em>6.09</em></center></td><td><center><em>4.67</em></center></td><td><center><em><strong>160/160</strong></em></center></td>
698
- </tr>
699
- <tr>
700
- <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>5.87</center></td><td><center><strong>6.22</strong></center></td><td><center>5.49</center></td><td><center><strong>160/160</strong></center></td>
701
- </tr>
702
- </tbody>
703
- </table>
704
-
705
-
706
- ## RoCulturaBench
707
-
708
- <table>
709
- <tbody>
710
- <tr>
711
- <td><strong>Model</strong></td>
712
- <td><strong><center>Average</center></strong></td>
713
- <td><strong><center>Answers in Ro</center></strong></td>
714
- </tr>
715
- <tr>
716
- <td>Llama-3-8B-Instruct</td><td><center><strong>4.62</strong></center></td><td><center><strong>100/100</strong></center></td>
717
- </tr>
718
- <tr>
719
- <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>3.71</center></td><td><center><strong>100/100</strong></center></td>
720
- </tr>
721
- <tr>
722
- <td><em>RoLlama3-8b-Instruct-2024-10-09</em></td><td><center><em>3.81</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
723
- </tr>
724
- <tr>
725
- <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>4.40</center></td><td><center><strong>100/100</strong></center></td>
726
- </tr>
727
- </tbody>
728
- </table>
729
-
730
-
731
-
732
- ## RoLlama3 Model Family
733
-
734
- | Model | Link |
735
- |--------------------|:--------:|
736
- |RoLlama3-8b-Instruct-2024-06-28| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2024-06-28) |
737
- |*RoLlama3-8b-Instruct-2024-10-09*| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2024-10-09) |
738
- |RoLlama3-8b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2024-10-09) |
739
-
740
-
741
- ## Citation
742
-
743
- ```
744
- @misc{masala2024vorbecstiromanecsterecipetrain,
745
- title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
746
- author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
747
- year={2024},
748
- eprint={2406.18266},
749
- archivePrefix={arXiv},
750
- primaryClass={cs.CL},
751
- url={https://arxiv.org/abs/2406.18266},
752
- }
753
- ```
754
- <!-- **APA:**
755
-
756
  [More Information Needed] -->
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ language:
4
+ - ro
5
+ base_model:
6
+ - meta-llama/Meta-Llama-3-8B-Instruct
7
+ datasets:
8
+ - OpenLLM-Ro/ro_sft_alpaca
9
+ - OpenLLM-Ro/ro_sft_alpaca_gpt4
10
+ - OpenLLM-Ro/ro_sft_dolly
11
+ - OpenLLM-Ro/ro_sft_selfinstruct_gpt4
12
+ - OpenLLM-Ro/ro_sft_norobots
13
+ - OpenLLM-Ro/ro_sft_orca
14
+ - OpenLLM-Ro/ro_sft_camel
15
+ - OpenLLM-Ro/ro_sft_oasst
16
+ - OpenLLM-Ro/ro_sft_ultrachat
17
+ - OpenLLM-Ro/ro_sft_magpie_mt
18
+ - OpenLLM-Ro/ro_sft_magpie_reasoning
19
+ model-index:
20
+ - name: OpenLLM-Ro/RoLlama3-8b-Instruct-2025-04-23
21
+ results:
22
+ - task:
23
+ type: text-generation
24
+ dataset:
25
+ name: RoMT-Bench
26
+ type: RoMT-Bench
27
+ metrics:
28
+ - name: Score
29
+ type: Score
30
+ value: 6.39
31
+ - task:
32
+ type: text-generation
33
+ dataset:
34
+ name: RoCulturaBench
35
+ type: RoCulturaBench
36
+ metrics:
37
+ - name: Score
38
+ type: Score
39
+ value: 4.05
40
+ - task:
41
+ type: text-generation
42
+ dataset:
43
+ name: Romanian_Academic_Benchmarks
44
+ type: Romanian_Academic_Benchmarks
45
+ metrics:
46
+ - name: Average accuracy
47
+ type: accuracy
48
+ value: 54.66
49
+ - task:
50
+ type: text-generation
51
+ dataset:
52
+ name: OpenLLM-Ro/ro_arc_challenge
53
+ type: OpenLLM-Ro/ro_arc_challenge
54
+ metrics:
55
+ - name: Average accuracy
56
+ type: accuracy
57
+ value: 50.31
58
+ - task:
59
+ type: text-generation
60
+ dataset:
61
+ name: OpenLLM-Ro/ro_mmlu
62
+ type: OpenLLM-Ro/ro_mmlu
63
+ metrics:
64
+ - name: Average accuracy
65
+ type: accuracy
66
+ value: 55.91
67
+ - task:
68
+ type: text-generation
69
+ dataset:
70
+ name: OpenLLM-Ro/ro_winogrande
71
+ type: OpenLLM-Ro/ro_winogrande
72
+ metrics:
73
+ - name: Average accuracy
74
+ type: accuracy
75
+ value: 67.01
76
+ - task:
77
+ type: text-generation
78
+ dataset:
79
+ name: OpenLLM-Ro/ro_hellaswag
80
+ type: OpenLLM-Ro/ro_hellaswag
81
+ metrics:
82
+ - name: Average accuracy
83
+ type: accuracy
84
+ value: 61.73
85
+ - task:
86
+ type: text-generation
87
+ dataset:
88
+ name: OpenLLM-Ro/ro_gsm8k
89
+ type: OpenLLM-Ro/ro_gsm8k
90
+ metrics:
91
+ - name: Average accuracy
92
+ type: accuracy
93
+ value: 47.41
94
+ - task:
95
+ type: text-generation
96
+ dataset:
97
+ name: OpenLLM-Ro/ro_truthfulqa
98
+ type: OpenLLM-Ro/ro_truthfulqa
99
+ metrics:
100
+ - name: Average accuracy
101
+ type: accuracy
102
+ value: 45.61
103
+ - task:
104
+ type: text-generation
105
+ dataset:
106
+ name: LaRoSeDa_binary
107
+ type: LaRoSeDa_binary
108
+ metrics:
109
+ - name: Average macro-f1
110
+ type: macro-f1
111
+ value: 96.21
112
+ - task:
113
+ type: text-generation
114
+ dataset:
115
+ name: LaRoSeDa_multiclass
116
+ type: LaRoSeDa_multiclass
117
+ metrics:
118
+ - name: Average macro-f1
119
+ type: macro-f1
120
+ value: 59.15
121
+ - task:
122
+ type: text-generation
123
+ dataset:
124
+ name: WMT_EN-RO
125
+ type: WMT_EN-RO
126
+ metrics:
127
+ - name: Average bleu
128
+ type: bleu
129
+ value: 23.32
130
+ - task:
131
+ type: text-generation
132
+ dataset:
133
+ name: WMT_RO-EN
134
+ type: WMT_RO-EN
135
+ metrics:
136
+ - name: Average bleu
137
+ type: bleu
138
+ value: 22.50
139
+ - task:
140
+ type: text-generation
141
+ dataset:
142
+ name: XQuAD
143
+ type: XQuAD
144
+ metrics:
145
+ - name: Average exact_match
146
+ type: exact_match
147
+ value: 11.01
148
+ - task:
149
+ type: text-generation
150
+ dataset:
151
+ name: XQuAD
152
+ type: XQuAD
153
+ metrics:
154
+ - name: Average f1
155
+ type: f1
156
+ value: 23.55
157
+ - task:
158
+ type: text-generation
159
+ dataset:
160
+ name: STS
161
+ type: STS
162
+ metrics:
163
+ - name: Average spearman
164
+ type: spearman
165
+ value: 76.78
166
+ - task:
167
+ type: text-generation
168
+ dataset:
169
+ name: STS
170
+ type: STS
171
+ metrics:
172
+ - name: Average pearson
173
+ type: pearson
174
+ value: 74.36
175
+ - task:
176
+ type: text-generation
177
+ dataset:
178
+ name: RoMT-Bench
179
+ type: RoMT-Bench
180
+ metrics:
181
+ - name: First turn
182
+ type: Score
183
+ value: 7.12
184
+ - name: Second turn
185
+ type: Score
186
+ value: 5.66
187
+ - task:
188
+ type: text-generation
189
+ dataset:
190
+ name: OpenLLM-Ro/ro_arc_challenge
191
+ type: OpenLLM-Ro/ro_arc_challenge
192
+ metrics:
193
+ - name: 0-shot
194
+ type: accuracy
195
+ value: 48.33
196
+ - name: 1-shot
197
+ type: accuracy
198
+ value: 49.27
199
+ - name: 3-shot
200
+ type: accuracy
201
+ value: 49.19
202
+ - name: 5-shot
203
+ type: accuracy
204
+ value: 50.90
205
+ - name: 10-shot
206
+ type: accuracy
207
+ value: 51.67
208
+ - name: 25-shot
209
+ type: accuracy
210
+ value: 52.53
211
+ - task:
212
+ type: text-generation
213
+ dataset:
214
+ name: OpenLLM-Ro/ro_mmlu
215
+ type: OpenLLM-Ro/ro_mmlu
216
+ metrics:
217
+ - name: 0-shot
218
+ type: accuracy
219
+ value: 54.17
220
+ - name: 1-shot
221
+ type: accuracy
222
+ value: 56.19
223
+ - name: 3-shot
224
+ type: accuracy
225
+ value: 56.90
226
+ - name: 5-shot
227
+ type: accuracy
228
+ value: 56.37
229
+ - task:
230
+ type: text-generation
231
+ dataset:
232
+ name: OpenLLM-Ro/ro_winogrande
233
+ type: OpenLLM-Ro/ro_winogrande
234
+ metrics:
235
+ - name: 0-shot
236
+ type: accuracy
237
+ value: 65.82
238
+ - name: 1-shot
239
+ type: accuracy
240
+ value: 66.22
241
+ - name: 3-shot
242
+ type: accuracy
243
+ value: 66.85
244
+ - name: 5-shot
245
+ type: accuracy
246
+ value: 69.14
247
+ - task:
248
+ type: text-generation
249
+ dataset:
250
+ name: OpenLLM-Ro/ro_hellaswag
251
+ type: OpenLLM-Ro/ro_hellaswag
252
+ metrics:
253
+ - name: 0-shot
254
+ type: accuracy
255
+ value: 61.67
256
+ - name: 1-shot
257
+ type: accuracy
258
+ value: 62.06
259
+ - name: 3-shot
260
+ type: accuracy
261
+ value: 61.73
262
+ - name: 5-shot
263
+ type: accuracy
264
+ value: 61.28
265
+ - name: 10-shot
266
+ type: accuracy
267
+ value: 61.93
268
+ - task:
269
+ type: text-generation
270
+ dataset:
271
+ name: OpenLLM-Ro/ro_gsm8k
272
+ type: OpenLLM-Ro/ro_gsm8k
273
+ metrics:
274
+ - name: 1-shot
275
+ type: accuracy
276
+ value: 35.63
277
+ - name: 3-shot
278
+ type: accuracy
279
+ value: 51.33
280
+ - name: 5-shot
281
+ type: accuracy
282
+ value: 55.27
283
+ - task:
284
+ type: text-generation
285
+ dataset:
286
+ name: LaRoSeDa_binary
287
+ type: LaRoSeDa_binary
288
+ metrics:
289
+ - name: 0-shot
290
+ type: macro-f1
291
+ value: 94.05
292
+ - name: 1-shot
293
+ type: macro-f1
294
+ value: 96.46
295
+ - name: 3-shot
296
+ type: macro-f1
297
+ value: 96.97
298
+ - name: 5-shot
299
+ type: macro-f1
300
+ value: 97.37
301
+ - task:
302
+ type: text-generation
303
+ dataset:
304
+ name: LaRoSeDa_multiclass
305
+ type: LaRoSeDa_multiclass
306
+ metrics:
307
+ - name: 0-shot
308
+ type: macro-f1
309
+ value: 60.34
310
+ - name: 1-shot
311
+ type: macro-f1
312
+ value: 60.94
313
+ - name: 3-shot
314
+ type: macro-f1
315
+ value: 54.55
316
+ - name: 5-shot
317
+ type: macro-f1
318
+ value: 60.77
319
+ - task:
320
+ type: text-generation
321
+ dataset:
322
+ name: WMT_EN-RO
323
+ type: WMT_EN-RO
324
+ metrics:
325
+ - name: 0-shot
326
+ type: bleu
327
+ value: 5.38
328
+ - name: 1-shot
329
+ type: bleu
330
+ value: 29.60
331
+ - name: 3-shot
332
+ type: bleu
333
+ value: 30.62
334
+ - name: 5-shot
335
+ type: bleu
336
+ value: 27.67
337
+ - task:
338
+ type: text-generation
339
+ dataset:
340
+ name: WMT_RO-EN
341
+ type: WMT_RO-EN
342
+ metrics:
343
+ - name: 0-shot
344
+ type: bleu
345
+ value: 1.14
346
+ - name: 1-shot
347
+ type: bleu
348
+ value: 19.96
349
+ - name: 3-shot
350
+ type: bleu
351
+ value: 34.22
352
+ - name: 5-shot
353
+ type: bleu
354
+ value: 34.69
355
+ - task:
356
+ type: text-generation
357
+ dataset:
358
+ name: XQuAD_EM
359
+ type: XQuAD_EM
360
+ metrics:
361
+ - name: 0-shot
362
+ type: exact_match
363
+ value: 16.39
364
+ - name: 1-shot
365
+ type: exact_match
366
+ value: 18.49
367
+ - name: 3-shot
368
+ type: exact_match
369
+ value: 5.46
370
+ - name: 5-shot
371
+ type: exact_match
372
+ value: 3.70
373
+ - task:
374
+ type: text-generation
375
+ dataset:
376
+ name: XQuAD_F1
377
+ type: XQuAD_F1
378
+ metrics:
379
+ - name: 0-shot
380
+ type: f1
381
+ value: 33.84
382
+ - name: 1-shot
383
+ type: f1
384
+ value: 29.11
385
+ - name: 3-shot
386
+ type: f1
387
+ value: 15.27
388
+ - name: 5-shot
389
+ type: f1
390
+ value: 15.97
391
+ - task:
392
+ type: text-generation
393
+ dataset:
394
+ name: STS_Spearman
395
+ type: STS_Spearman
396
+ metrics:
397
+ - name: 1-shot
398
+ type: spearman
399
+ value: 76.64
400
+ - name: 3-shot
401
+ type: spearman
402
+ value: 76.88
403
+ - name: 5-shot
404
+ type: spearman
405
+ value: 76.82
406
+ - task:
407
+ type: text-generation
408
+ dataset:
409
+ name: STS_Pearson
410
+ type: STS_Pearson
411
+ metrics:
412
+ - name: 1-shot
413
+ type: pearson
414
+ value: 73.14
415
+ - name: 3-shot
416
+ type: pearson
417
+ value: 74.78
418
+ - name: 5-shot
419
+ type: pearson
420
+ value: 75.16
421
+
422
+ ---
423
+
424
+ # Model Card for Model ID
425
+
426
+ *Built with Meta Llama 3*
427
+
428
+
429
+ <!-- Provide a quick summary of what the model is/does. -->
430
+
431
+ RoLlama3 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **instruct 8B model**. Links to other models can be found at the bottom of this page.
432
+
433
+
434
+ ## Model Details
435
+
436
+ ### Model Description
437
+
438
+ <!-- Provide a longer summary of what this model is. -->
439
+ OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
440
+
441
+
442
+ - **Developed by:** OpenLLM-Ro
443
+ <!-- - **Funded by [optional]:** [More Information Needed] -->
444
+ <!-- - **Shared by [optional]:** [More Information Needed] -->
445
+ <!-- - **Model type:** [More Information Needed] -->
446
+ - **Language(s):** Romanian
447
+ - **License:** cc-by-nc-4.0
448
+ - **Finetuned from model:** [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
449
+ - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel), [RoOpenAssistant](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_oasst), [RoUltraChat](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_ultrachat), [RoMagpiePro](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_magpie_mt), [RoMagpieReasoning](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_magpie_reasoning)
450
+
451
+
452
+ ### Model Sources
453
+
454
+ <!-- Provide the basic links for the model. -->
455
+
456
+ - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
457
+ - **Paper:** https://arxiv.org/abs/2406.18266
458
+
459
+ ## Intended Use
460
+
461
+ ### Intended Use Cases
462
+
463
+ RoLlama3 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
464
+
465
+ ### Out-of-Scope Use
466
+
467
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
468
+
469
+ Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
470
+
471
+
472
+
473
+ ## How to Get Started with the Model
474
+
475
+ Use the code below to get started with the model.
476
+
477
+ ```python
478
+ from transformers import AutoTokenizer, AutoModelForCausalLM
479
+
480
+ tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama3-8b-Instruct-2025-04-23")
481
+ model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama3-8b-Instruct-2025-04-23")
482
+
483
+ instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
484
+ chat = [
485
+ {"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."},
486
+ {"role": "user", "content": instruction},
487
+ ]
488
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
489
+
490
+ inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
491
+ outputs = model.generate(input_ids=inputs, max_new_tokens=128)
492
+ print(tokenizer.decode(outputs[0]))
493
+ ```
494
+
495
+ ## Academic Benchmarks
496
+
497
+ <table>
498
+ <tbody>
499
+ <tr>
500
+ <td><strong>Model</strong></td>
501
+ <td><strong><center>Average</center></strong></td>
502
+ <td><strong><center>ARC</center></strong></td>
503
+ <td><strong><center>MMLU</center></strong></td>
504
+ <td><strong><center>Winogrande</center></strong></td>
505
+ <td><strong><center>Hellaswag</center></strong></td>
506
+ <td><strong><center>GSM8k</center></strong></td>
507
+ <td><strong><center>TruthfulQA</center></strong></td>
508
+ </tr>
509
+ <tr>
510
+ <td>Llama-3-8B-Instruct</td><td><center>50.62</center></td><td><center>43.69</center></td><td><center>52.04</center></td><td><center>59.33</center></td><td><center>53.19</center></td><td><center>43.87</center></td><td><center>51.59</center></td>
511
+ </tr>
512
+ <tr>
513
+ <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>50.56</center></td><td><center>44.70</center></td><td><center>52.19</center></td><td><center><strong>67.23</strong></center></td><td><center>57.69</center></td><td><center>30.23</center></td><td><center>51.34</center></td>
514
+ </tr>
515
+ <tr>
516
+ <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center>52.21</center></td><td><center>47.94</center></td><td><center>53.50</center></td><td><center>66.06</center></td><td><center>59.72</center></td><td><center>40.16</center></td><td><center>45.90</center></td>
517
+ </tr>
518
+ <tr>
519
+ <td><em>RoLlama3-8b-Instruct-2025-04-23</em></td><td><center><em>54.66</em></center></td><td><center><em>50.31</em></center></td><td><center><em><strong>55.91</strong></em></center></td><td><center><em>67.01</em></center></td><td><center><em><strong>61.73</strong></em></center></td><td><center><em><strong>47.41</strong></em></center></td><td><center><em>45.61</em></center></td>
520
+ </tr>
521
+ <tr>
522
+ <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>49.96</center></td><td><center>46.29</center></td><td><center>53.29</center></td><td><center>65.57</center></td><td><center>58.15</center></td><td><center>34.77</center></td><td><center>41.70</center></td>
523
+ </tr>
524
+ <tr>
525
+ <td>RoLlama3-8b-Instruct-DPO-2025-04-23</td><td><center><strong>55.86</strong></center></td><td><center><strong>52.26</strong></center></td><td><center>55.35</center></td><td><center>66.62</center></td><td><center>59.93</center></td><td><center>43.95</center></td><td><center><strong>57.06</strong></center></td>
526
+ </tr>
527
+ </tbody>
528
+ </table>
529
+
530
+
531
+ ## Downstream tasks
532
+
533
+ <table>
534
+ <tbody>
535
+ <tr>
536
+ <td></td>
537
+ <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
538
+ <td colspan="4"><center><strong>WMT</strong></center></td>
539
+ </tr>
540
+ <tr>
541
+ <td></td>
542
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
543
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
544
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
545
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
546
+ </tr>
547
+ <tr>
548
+ <td><strong>Model</strong></td>
549
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
550
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
551
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
552
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
553
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
554
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
555
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
556
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center>
557
+ </tr>
558
+ <tr>
559
+ <td>Llama-3-8B-Instruct</td><td><center>95.88</center></td><td><center>56.21</center></td><td><center><strong>98.53</strong></center></td><td><center>86.19</center></td><td><center>18.88</center></td><td><center><strong>30.98</strong></center></td><td><center><strong>28.02</strong></center></td><td><center>40.28</center></td>
560
+ </tr>
561
+ <tr>
562
+ <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>97.52</center></td><td><center><strong>67.41</strong></center></td><td><center>94.15</center></td><td><center>87.13</center></td><td><center><strong>24.01</strong></center></td><td><center>27.36</center></td><td><center>26.53</center></td><td><center>40.36</center></td>
563
+ </tr>
564
+ <tr>
565
+ <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center>95.58</center></td><td><center>61.20</center></td><td><center>96.46</center></td><td><center><strong>87.26</strong></center></td><td><center>22.92</center></td><td><center>24.28</center></td><td><center>27.31</center></td><td><center><strong>40.52</strong></center></td>
566
+ </tr>
567
+ <tr>
568
+ <td><em>RoLlama3-8b-Instruct-2025-04-23</em></td><td><center><em>96.21</em></center></td><td><center><em>59.15</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>23.32</em></center></td><td><center><em>22.50</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
569
+ </tr>
570
+ <tr>
571
+ <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>97.48</center></td><td><center>54.00</center></td><td><center>-</center></td><td><center>-</center></td><td><center>22.09</center></td><td><center>23.00</center></td><td><center>-</center></td><td><center>-</center></td>
572
+ </tr>
573
+ <tr>
574
+ <td>RoLlama3-8b-Instruct-DPO-2025-04-23</td><td><center><strong>97.60</strong></center></td><td><center>62.16</center></td><td><center>-</center></td><td><center>-</center></td><td><center>18.14</center></td><td><center>14.13</center></td><td><center>-</center></td><td><center>-</center></td>
575
+ </tr>
576
+ </tbody>
577
+ </table>
578
+
579
+
580
+ <table>
581
+ <tbody>
582
+ <tr>
583
+ <td></td>
584
+ <td colspan="4"><center><strong>XQuAD</strong></center></td>
585
+ <td colspan="4"><center><strong>STS</strong></center></td>
586
+ </tr>
587
+ <tr>
588
+ <td></td>
589
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
590
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
591
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
592
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
593
+ </tr>
594
+ <tr>
595
+ <td><strong>Model</strong></td>
596
+ <td><center><strong>(EM)</strong></center></td>
597
+ <td><center><strong>(F1)</strong></center></td>
598
+ <td><center><strong>(EM)</strong></center></td>
599
+ <td><center><strong>(F1)</strong></center></td>
600
+ <td><center><strong>(Spearman)</strong></center></td>
601
+ <td><center><strong>(Pearson)</strong></center></td>
602
+ <td><center><strong>(Spearman)</strong></center></td>
603
+ <td><center><strong>(Pearson)</strong></center></td>
604
+ </tr>
605
+ <tr>
606
+ <td>Llama-3-8B-Instruct</td><td><center><strong>39.47</strong></center></td><td><center>58.67</center></td><td><center><strong>67.65</strong></center></td><td><center><strong>82.77</strong></center></td><td><center>73.04</center></td><td><center>72.36</center></td><td><center>83.49</center></td><td><center>84.06</center></td>
607
+ </tr>
608
+ <tr>
609
+ <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>39.43</center></td><td><center><strong>59.50</strong></center></td><td><center>44.45</center></td><td><center>59.76</center></td><td><center>77.20</center></td><td><center>77.87</center></td><td><center>85.80</center></td><td><center>86.05</center></td>
610
+ </tr>
611
+ <tr>
612
+ <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center>18.89</center></td><td><center>31.79</center></td><td><center>50.84</center></td><td><center>65.18</center></td><td><center>77.60</center></td><td><center>76.86</center></td><td><center><strong>86.70</strong></center></td><td><center><strong>87.09</strong></center></td>
613
+ </tr>
614
+ <tr>
615
+ <td><em>RoLlama3-8b-Instruct-2025-04-23</em></td><td><center><em>11.01</em></center></td><td><center><em>23.55</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>76.78</em></center></td><td><center><em>74.36</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
616
+ </tr>
617
+ <tr>
618
+ <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>26.05</center></td><td><center>42.77</center></td><td><center>-</center></td><td><center>-</center></td><td><center><strong>79.64</strong></center></td><td><center><strong>79.52</strong></center></td><td><center>-</center></td><td><center>-</center></td>
619
+ </tr>
620
+ <tr>
621
+ <td>RoLlama3-8b-Instruct-DPO-2025-04-23</td><td><center>30.65</center></td><td><center>46.29</center></td><td><center>-</center></td><td><center>-</center></td><td><center>67.62</center></td><td><center>67.82</center></td><td><center>-</center></td><td><center>-</center></td>
622
+ </tr>
623
+ </tbody>
624
+ </table>
625
+
626
+ ## MT-Bench
627
+
628
+ <table>
629
+ <tbody>
630
+ <tr>
631
+ <td><strong>Model</strong></td>
632
+ <td><strong><center>Average</center></strong></td>
633
+ <td><strong><center>1st turn</center></strong></td>
634
+ <td><strong><center>2nd turn</center></strong></td>
635
+ <td><strong><center>Answers in Ro</center></strong></td>
636
+ </tr>
637
+ <tr>
638
+ <td>Llama-3-8B-Instruct</td><td><center>5.96</center></td><td><center>6.16</center></td><td><center>5.76</center></td><td><center>158/160</center></td>
639
+ </tr>
640
+ <tr>
641
+ <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>5.15</center></td><td><center>6.03</center></td><td><center>4.28</center></td><td><center><strong>160/160</strong></center></td>
642
+ </tr>
643
+ <tr>
644
+ <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center>5.38</center></td><td><center>6.09</center></td><td><center>4.67</center></td><td><center><strong>160/160</strong></center></td>
645
+ </tr>
646
+ <tr>
647
+ <td><em>RoLlama3-8b-Instruct-2025-04-23</em></td><td><center><em>6.39</em></center></td><td><center><em><strong>7.12</strong></em></center></td><td><center><em>5.66</em></center></td><td><center><em><strong>160/160</strong></em></center></td>
648
+ </tr>
649
+ <tr>
650
+ <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>5.87</center></td><td><center>6.22</center></td><td><center>5.49</center></td><td><center><strong>160/160</strong></center></td>
651
+ </tr>
652
+ <tr>
653
+ <td>RoLlama3-8b-Instruct-DPO-2025-04-23</td><td><center><strong>6.67</strong></center></td><td><center>6.81</center></td><td><center><strong>6.54</strong></center></td><td><center><strong>160/160</strong></center></td>
654
+ </tr>
655
+ </tbody>
656
+ </table>
657
+
658
+
659
+ ## RoCulturaBench
660
+
661
+ <table>
662
+ <tbody>
663
+ <tr>
664
+ <td><strong>Model</strong></td>
665
+ <td><strong><center>Average</center></strong></td>
666
+ <td><strong><center>Answers in Ro</center></strong></td>
667
+ </tr>
668
+ <tr>
669
+ <td>Llama-3-8B-Instruct</td><td><center>4.62</center></td><td><center><strong>100/100</strong></center></td>
670
+ </tr>
671
+ <tr>
672
+ <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>3.71</center></td><td><center><strong>100/100</strong></center></td>
673
+ </tr>
674
+ <tr>
675
+ <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center>3.81</center></td><td><center><strong>100/100</strong></center></td>
676
+ </tr>
677
+ <tr>
678
+ <td><em>RoLlama3-8b-Instruct-2025-04-23</em></td><td><center><em>4.05</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
679
+ </tr>
680
+ <tr>
681
+ <td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>4.40</center></td><td><center><strong>100/100</strong></center></td>
682
+ </tr>
683
+ <tr>
684
+ <td>RoLlama3-8b-Instruct-DPO-2025-04-23</td><td><center><strong>4.83</strong></center></td><td><center><strong>100/100</strong></center></td>
685
+ </tr>
686
+ </tbody>
687
+ </table>
688
+
689
+
690
+
691
+ ## RoLlama3 Model Family
692
+
693
+ | Model | Link |
694
+ |--------------------|:--------:|
695
+ |RoLlama3-8b-Instruct-2024-06-28| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2024-06-28) |
696
+ |RoLlama3-8b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2024-10-09) |
697
+ |*RoLlama3-8b-Instruct-2025-04-23*| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2025-04-23) |
698
+ |RoLlama3-8b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2024-10-09) |
699
+ |RoLlama3-8b-Instruct-DPO-2025-04-23| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2025-04-23) |
700
+
701
+
702
+ ## Citation
703
+
704
+ ```
705
+ @misc{masala2024vorbecstiromanecsterecipetrain,
706
+ title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
707
+ author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
708
+ year={2024},
709
+ eprint={2406.18266},
710
+ archivePrefix={arXiv},
711
+ primaryClass={cs.CL},
712
+ url={https://arxiv.org/abs/2406.18266},
713
+ }
714
+ ```
715
+ <!-- **APA:**
716
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
717
  [More Information Needed] -->