mihaimasala commited on
Commit
0f5c763
·
verified ·
1 Parent(s): 090f424

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +696 -695
README.md CHANGED
@@ -1,696 +1,697 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- language:
4
- - ro
5
- base_model:
6
- - OpenLLM-Ro/RoLlama3.1-8b-Instruct-2025-04-23
7
- datasets:
8
- - OpenLLM-Ro/ro_dpo_helpsteer
9
- - OpenLLM-Ro/ro_dpo_ultrafeedback
10
- - OpenLLM-Ro/ro_dpo_magpie
11
- - OpenLLM-Ro/ro_dpo_argilla_magpie
12
- - OpenLLM-Ro/ro_dpo_helpsteer2
13
- model-index:
14
- - name: OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-2025-04-23
15
- results:
16
- - task:
17
- type: text-generation
18
- dataset:
19
- name: RoMT-Bench
20
- type: RoMT-Bench
21
- metrics:
22
- - name: Score
23
- type: Score
24
- value: 7.00
25
- - task:
26
- type: text-generation
27
- dataset:
28
- name: RoCulturaBench
29
- type: RoCulturaBench
30
- metrics:
31
- - name: Score
32
- type: Score
33
- value: 4.73
34
- - task:
35
- type: text-generation
36
- dataset:
37
- name: Romanian_Academic_Benchmarks
38
- type: Romanian_Academic_Benchmarks
39
- metrics:
40
- - name: Average accuracy
41
- type: accuracy
42
- value: 53.76
43
- - task:
44
- type: text-generation
45
- dataset:
46
- name: OpenLLM-Ro/ro_arc_challenge
47
- type: OpenLLM-Ro/ro_arc_challenge
48
- metrics:
49
- - name: Average accuracy
50
- type: accuracy
51
- value: 51.09
52
- - task:
53
- type: text-generation
54
- dataset:
55
- name: OpenLLM-Ro/ro_mmlu
56
- type: OpenLLM-Ro/ro_mmlu
57
- metrics:
58
- - name: Average accuracy
59
- type: accuracy
60
- value: 56.22
61
- - task:
62
- type: text-generation
63
- dataset:
64
- name: OpenLLM-Ro/ro_winogrande
65
- type: OpenLLM-Ro/ro_winogrande
66
- metrics:
67
- - name: Average accuracy
68
- type: accuracy
69
- value: 66.77
70
- - task:
71
- type: text-generation
72
- dataset:
73
- name: OpenLLM-Ro/ro_hellaswag
74
- type: OpenLLM-Ro/ro_hellaswag
75
- metrics:
76
- - name: Average accuracy
77
- type: accuracy
78
- value: 59.38
79
- - task:
80
- type: text-generation
81
- dataset:
82
- name: OpenLLM-Ro/ro_gsm8k
83
- type: OpenLLM-Ro/ro_gsm8k
84
- metrics:
85
- - name: Average accuracy
86
- type: accuracy
87
- value: 31.54
88
- - task:
89
- type: text-generation
90
- dataset:
91
- name: OpenLLM-Ro/ro_truthfulqa
92
- type: OpenLLM-Ro/ro_truthfulqa
93
- metrics:
94
- - name: Average accuracy
95
- type: accuracy
96
- value: 57.56
97
- - task:
98
- type: text-generation
99
- dataset:
100
- name: LaRoSeDa_binary
101
- type: LaRoSeDa_binary
102
- metrics:
103
- - name: Average macro-f1
104
- type: macro-f1
105
- value: 96.87
106
- - task:
107
- type: text-generation
108
- dataset:
109
- name: LaRoSeDa_multiclass
110
- type: LaRoSeDa_multiclass
111
- metrics:
112
- - name: Average macro-f1
113
- type: macro-f1
114
- value: 60.75
115
- - task:
116
- type: text-generation
117
- dataset:
118
- name: WMT_EN-RO
119
- type: WMT_EN-RO
120
- metrics:
121
- - name: Average bleu
122
- type: bleu
123
- value: 20.30
124
- - task:
125
- type: text-generation
126
- dataset:
127
- name: WMT_RO-EN
128
- type: WMT_RO-EN
129
- metrics:
130
- - name: Average bleu
131
- type: bleu
132
- value: 18.57
133
- - task:
134
- type: text-generation
135
- dataset:
136
- name: XQuAD
137
- type: XQuAD
138
- metrics:
139
- - name: Average exact_match
140
- type: exact_match
141
- value: 9.22
142
- - task:
143
- type: text-generation
144
- dataset:
145
- name: XQuAD
146
- type: XQuAD
147
- metrics:
148
- - name: Average f1
149
- type: f1
150
- value: 22.75
151
- - task:
152
- type: text-generation
153
- dataset:
154
- name: STS
155
- type: STS
156
- metrics:
157
- - name: Average spearman
158
- type: spearman
159
- value: 30.82
160
- - task:
161
- type: text-generation
162
- dataset:
163
- name: STS
164
- type: STS
165
- metrics:
166
- - name: Average pearson
167
- type: pearson
168
- value: 20.25
169
- - task:
170
- type: text-generation
171
- dataset:
172
- name: RoMT-Bench
173
- type: RoMT-Bench
174
- metrics:
175
- - name: First turn
176
- type: Score
177
- value: 7.30
178
- - name: Second turn
179
- type: Score
180
- value: 6.70
181
- - task:
182
- type: text-generation
183
- dataset:
184
- name: OpenLLM-Ro/ro_arc_challenge
185
- type: OpenLLM-Ro/ro_arc_challenge
186
- metrics:
187
- - name: 0-shot
188
- type: accuracy
189
- value: 51.59
190
- - name: 1-shot
191
- type: accuracy
192
- value: 52.10
193
- - name: 3-shot
194
- type: accuracy
195
- value: 50.99
196
- - name: 5-shot
197
- type: accuracy
198
- value: 50.81
199
- - name: 10-shot
200
- type: accuracy
201
- value: 49.70
202
- - name: 25-shot
203
- type: accuracy
204
- value: 51.33
205
- - task:
206
- type: text-generation
207
- dataset:
208
- name: OpenLLM-Ro/ro_mmlu
209
- type: OpenLLM-Ro/ro_mmlu
210
- metrics:
211
- - name: 0-shot
212
- type: accuracy
213
- value: 56.88
214
- - name: 1-shot
215
- type: accuracy
216
- value: 55.61
217
- - name: 3-shot
218
- type: accuracy
219
- value: 56.06
220
- - name: 5-shot
221
- type: accuracy
222
- value: 56.31
223
- - task:
224
- type: text-generation
225
- dataset:
226
- name: OpenLLM-Ro/ro_winogrande
227
- type: OpenLLM-Ro/ro_winogrande
228
- metrics:
229
- - name: 0-shot
230
- type: accuracy
231
- value: 65.67
232
- - name: 1-shot
233
- type: accuracy
234
- value: 66.30
235
- - name: 3-shot
236
- type: accuracy
237
- value: 67.40
238
- - name: 5-shot
239
- type: accuracy
240
- value: 67.72
241
- - task:
242
- type: text-generation
243
- dataset:
244
- name: OpenLLM-Ro/ro_hellaswag
245
- type: OpenLLM-Ro/ro_hellaswag
246
- metrics:
247
- - name: 0-shot
248
- type: accuracy
249
- value: 60.53
250
- - name: 1-shot
251
- type: accuracy
252
- value: 60.37
253
- - name: 3-shot
254
- type: accuracy
255
- value: 58.20
256
- - name: 5-shot
257
- type: accuracy
258
- value: 58.18
259
- - name: 10-shot
260
- type: accuracy
261
- value: 59.61
262
- - task:
263
- type: text-generation
264
- dataset:
265
- name: OpenLLM-Ro/ro_gsm8k
266
- type: OpenLLM-Ro/ro_gsm8k
267
- metrics:
268
- - name: 1-shot
269
- type: accuracy
270
- value: 25.09
271
- - name: 3-shot
272
- type: accuracy
273
- value: 30.02
274
- - name: 5-shot
275
- type: accuracy
276
- value: 39.50
277
- - task:
278
- type: text-generation
279
- dataset:
280
- name: LaRoSeDa_binary
281
- type: LaRoSeDa_binary
282
- metrics:
283
- - name: 0-shot
284
- type: macro-f1
285
- value: 95.39
286
- - name: 1-shot
287
- type: macro-f1
288
- value: 95.90
289
- - name: 3-shot
290
- type: macro-f1
291
- value: 98.00
292
- - name: 5-shot
293
- type: macro-f1
294
- value: 98.17
295
- - task:
296
- type: text-generation
297
- dataset:
298
- name: LaRoSeDa_multiclass
299
- type: LaRoSeDa_multiclass
300
- metrics:
301
- - name: 0-shot
302
- type: macro-f1
303
- value: 60.30
304
- - name: 1-shot
305
- type: macro-f1
306
- value: 64.73
307
- - name: 3-shot
308
- type: macro-f1
309
- value: 58.69
310
- - name: 5-shot
311
- type: macro-f1
312
- value: 59.30
313
- - task:
314
- type: text-generation
315
- dataset:
316
- name: WMT_EN-RO
317
- type: WMT_EN-RO
318
- metrics:
319
- - name: 0-shot
320
- type: bleu
321
- value: 5.46
322
- - name: 1-shot
323
- type: bleu
324
- value: 26.08
325
- - name: 3-shot
326
- type: bleu
327
- value: 25.90
328
- - name: 5-shot
329
- type: bleu
330
- value: 23.76
331
- - task:
332
- type: text-generation
333
- dataset:
334
- name: WMT_RO-EN
335
- type: WMT_RO-EN
336
- metrics:
337
- - name: 0-shot
338
- type: bleu
339
- value: 2.74
340
- - name: 1-shot
341
- type: bleu
342
- value: 20.95
343
- - name: 3-shot
344
- type: bleu
345
- value: 31.53
346
- - name: 5-shot
347
- type: bleu
348
- value: 19.05
349
- - task:
350
- type: text-generation
351
- dataset:
352
- name: XQuAD_EM
353
- type: XQuAD_EM
354
- metrics:
355
- - name: 0-shot
356
- type: exact_match
357
- value: 12.27
358
- - name: 1-shot
359
- type: exact_match
360
- value: 17.98
361
- - name: 3-shot
362
- type: exact_match
363
- value: 5.04
364
- - name: 5-shot
365
- type: exact_match
366
- value: 1.60
367
- - task:
368
- type: text-generation
369
- dataset:
370
- name: XQuAD_F1
371
- type: XQuAD_F1
372
- metrics:
373
- - name: 0-shot
374
- type: f1
375
- value: 26.24
376
- - name: 1-shot
377
- type: f1
378
- value: 32.54
379
- - name: 3-shot
380
- type: f1
381
- value: 18.00
382
- - name: 5-shot
383
- type: f1
384
- value: 14.22
385
- - task:
386
- type: text-generation
387
- dataset:
388
- name: STS_Spearman
389
- type: STS_Spearman
390
- metrics:
391
- - name: 1-shot
392
- type: spearman
393
- value: 76.70
394
- - name: 3-shot
395
- type: spearman
396
- value: 2.82
397
- - name: 5-shot
398
- type: spearman
399
- value: 12.95
400
- - task:
401
- type: text-generation
402
- dataset:
403
- name: STS_Pearson
404
- type: STS_Pearson
405
- metrics:
406
- - name: 1-shot
407
- type: pearson
408
- value: 77.30
409
- - name: 3-shot
410
- type: pearson
411
- value: -14.56
412
- - name: 5-shot
413
- type: pearson
414
- value: -1.99
415
-
416
- ---
417
-
418
- # Model Card for Model ID
419
-
420
- *Built with Meta Llama 3.1*
421
-
422
-
423
- <!-- Provide a quick summary of what the model is/does. -->
424
-
425
- RoLlama3.1 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **human aligned instruct 8B model**. Links to other models can be found at the bottom of this page.
426
-
427
-
428
- ## Model Details
429
-
430
- ### Model Description
431
-
432
- <!-- Provide a longer summary of what this model is. -->
433
- OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
434
-
435
-
436
- - **Developed by:** OpenLLM-Ro
437
- <!-- - **Funded by [optional]:** [More Information Needed] -->
438
- <!-- - **Shared by [optional]:** [More Information Needed] -->
439
- <!-- - **Model type:** [More Information Needed] -->
440
- - **Language(s):** Romanian
441
- - **License:** cc-by-nc-4.0
442
- - **Finetuned from model:** [RoLlama3.1-8b-Instruct-2025-04-23](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-2025-04-23)
443
- - **Trained using:** [RoHelpSteer](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_helpsteer), [RoUltraFeedback](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_ultrafeedback), [RoMagpieDPO](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_magpie), [RoArgillaMagpie](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_argilla_magpie), [RoHelpSteer2](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_helpsteer2)
444
-
445
- ### Model Sources
446
-
447
- <!-- Provide the basic links for the model. -->
448
-
449
- - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
450
- - **Paper:** https://arxiv.org/abs/2406.18266
451
-
452
- ## Intended Use
453
-
454
- ### Intended Use Cases
455
-
456
- RoLlama3.1 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
457
-
458
- ### Out-of-Scope Use
459
-
460
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
461
-
462
- Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
463
-
464
-
465
-
466
- ## How to Get Started with the Model
467
-
468
- Use the code below to get started with the model.
469
-
470
- ```python
471
- from transformers import AutoTokenizer, AutoModelForCausalLM
472
-
473
- tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-2025-04-23")
474
- model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-2025-04-23")
475
-
476
- instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
477
- chat = [
478
- {"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."},
479
- {"role": "user", "content": instruction},
480
- ]
481
- prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
482
-
483
- inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
484
- outputs = model.generate(input_ids=inputs, max_new_tokens=128)
485
- print(tokenizer.decode(outputs[0]))
486
- ```
487
-
488
- ## Academic Benchmarks
489
-
490
-
491
- <table>
492
- <tbody>
493
- <tr>
494
- <td><strong>Model</strong></td>
495
- <td><strong><center>Average</center></strong></td>
496
- <td><strong><center>ARC</center></strong></td>
497
- <td><strong><center>MMLU</center></strong></td>
498
- <td><strong><center>Winogrande</center></strong></td>
499
- <td><strong><center>Hellaswag</center></strong></td>
500
- <td><strong><center>GSM8k</center></strong></td>
501
- <td><strong><center>TruthfulQA</center></strong></td>
502
- </tr>
503
- <tr>
504
- <td>Llama-3.1-8B-Instruct</td><td><center>49.87</center></td><td><center>42.86</center></td><td><center>53.73</center></td><td><center>59.71</center></td><td><center>56.82</center></td><td><center>35.56</center></td><td><center>50.54</center></td>
505
- </tr>
506
- <tr>
507
- <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>53.03</center></td><td><center>47.69</center></td><td><center>54.57</center></td><td><center>65.84</center></td><td><center>59.94</center></td><td><center><strong>44.30</strong></center></td><td><center>45.82</center></td>
508
- </tr>
509
- <tr>
510
- <td>RoLlama3.1-8b-Instruct-2025-04-23</td><td><center>53.36</center></td><td><center>48.97</center></td><td><center>55.17</center></td><td><center>66.52</center></td><td><center><strong>60.73</strong></center></td><td><center>42.03</center></td><td><center>46.71</center></td>
511
- </tr>
512
- <tr>
513
- <td>RoLlama3.1-8b-Instruct-DPO-2024-10-09</td><td><center>52.74</center></td><td><center>44.84</center></td><td><center>55.06</center></td><td><center>65.87</center></td><td><center>58.67</center></td><td><center>44.17</center></td><td><center>47.82</center></td>
514
- </tr>
515
- <tr>
516
- <td><em>RoLlama3.1-8b-Instruct-DPO-2025-04-23</em></td><td><center><em><strong>53.76</strong></em></center></td><td><center><em><strong>51.09</strong></em></center></td><td><center><em><strong>56.22</strong></em></center></td><td><center><em><strong>66.77</strong></em></center></td><td><center><em>59.38</em></center></td><td><center><em>31.54</em></center></td><td><center><em><strong>57.56</strong></em></center></td>
517
- </tr>
518
- </tbody>
519
- </table>
520
-
521
-
522
-
523
- ## Downstream tasks
524
-
525
- <table>
526
- <tbody>
527
- <tr>
528
- <td></td>
529
- <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
530
- <td colspan="4"><center><strong>WMT</strong></center></td>
531
- </tr>
532
- <tr>
533
- <td></td>
534
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
535
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
536
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
537
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
538
- </tr>
539
- <tr>
540
- <td><strong>Model</strong></td>
541
- <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
542
- <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
543
- <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
544
- <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
545
- <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
546
- <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
547
- <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
548
- <td><center><strong>RO-EN<br>(Bleu)</strong></center>
549
- </tr>
550
- <tr>
551
- <td>Llama-3.1-8B-Instruct</td><td><center>95.74</center></td><td><center>59.49</center></td><td><center><strong>98.57</strong></center></td><td><center>82.41</center></td><td><center>19.01</center></td><td><center><strong>27.77</strong></center></td><td><center><strong>29.02</strong></center></td><td><center>39.80</center></td>
552
- </tr>
553
- <tr>
554
- <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>94.56</center></td><td><center>60.10</center></td><td><center>95.12</center></td><td><center><strong>87.53</strong></center></td><td><center>21.88</center></td><td><center>23.99</center></td><td><center>28.27</center></td><td><center><strong>40.44</strong></center></td>
555
- </tr>
556
- <tr>
557
- <td>RoLlama3.1-8b-Instruct-2025-04-23</td><td><center>95.32</center></td><td><center><strong>60.84</strong></center></td><td><center>-</center></td><td><center>-</center></td><td><center><strong>23.18</strong></center></td><td><center>25.11</center></td><td><center>-</center></td><td><center>-</center></td>
558
- </tr>
559
- <tr>
560
- <td>RoLlama3.1-8b-Instruct-DPO-2024-10-09</td><td><center>96.10</center></td><td><center>55.37</center></td><td><center>-</center></td><td><center>-</center></td><td><center>21.29</center></td><td><center>21.86</center></td><td><center>-</center></td><td><center>-</center></td>
561
- </tr>
562
- <tr>
563
- <td><em>RoLlama3.1-8b-Instruct-DPO-2025-04-23</em></td><td><center><em><strong>96.87</strong></em></center></td><td><center><em>60.75</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>20.30</em></center></td><td><center><em>18.57</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
564
- </tr>
565
- </tbody>
566
- </table>
567
-
568
-
569
- <table>
570
- <tbody>
571
- <tr>
572
- <td></td>
573
- <td colspan="4"><center><strong>XQuAD</strong></center></td>
574
- <td colspan="4"><center><strong>STS</strong></center></td>
575
- </tr>
576
- <tr>
577
- <td></td>
578
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
579
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
580
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
581
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
582
- </tr>
583
- <tr>
584
- <td><strong>Model</strong></td>
585
- <td><center><strong>(EM)</strong></center></td>
586
- <td><center><strong>(F1)</strong></center></td>
587
- <td><center><strong>(EM)</strong></center></td>
588
- <td><center><strong>(F1)</strong></center></td>
589
- <td><center><strong>(Spearman)</strong></center></td>
590
- <td><center><strong>(Pearson)</strong></center></td>
591
- <td><center><strong>(Spearman)</strong></center></td>
592
- <td><center><strong>(Pearson)</strong></center></td>
593
- </tr>
594
- <tr>
595
- <td>Llama-3.1-8B-Instruct</td><td><center><strong>44.96</strong></center></td><td><center><strong>64.45</strong></center></td><td><center><strong>69.50</strong></center></td><td><center><strong>84.31</strong></center></td><td><center>72.11</center></td><td><center>71.64</center></td><td><center>84.59</center></td><td><center>84.96</center></td>
596
- </tr>
597
- <tr>
598
- <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>13.59</center></td><td><center>23.56</center></td><td><center>49.41</center></td><td><center>62.93</center></td><td><center>75.89</center></td><td><center>76.00</center></td><td><center><strong>86.86</strong></center></td><td><center><strong>87.05</strong></center></td>
599
- </tr>
600
- <tr>
601
- <td>RoLlama3.1-8b-Instruct-2025-04-23</td><td><center>10.74</center></td><td><center>19.75</center></td><td><center>-</center></td><td><center>-</center></td><td><center>73.53</center></td><td><center>74.93</center></td><td><center>-</center></td><td><center>-</center></td>
602
- </tr>
603
- <tr>
604
- <td>RoLlama3.1-8b-Instruct-DPO-2024-10-09</td><td><center>21.58</center></td><td><center>36.54</center></td><td><center>-</center></td><td><center>-</center></td><td><center><strong>78.01</strong></center></td><td><center><strong>77.98</strong></center></td><td><center>-</center></td><td><center>-</center></td>
605
- </tr>
606
- <tr>
607
- <td><em>RoLlama3.1-8b-Instruct-DPO-2025-04-23</em></td><td><center><em>9.22</em></center></td><td><center><em>22.75</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>30.82</em></center></td><td><center><em>20.25</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
608
- </tr>
609
- </tbody>
610
- </table>
611
-
612
- ## MT-Bench
613
-
614
- <table>
615
- <tbody>
616
- <tr>
617
- <td><strong>Model</strong></td>
618
- <td><strong><center>Average</center></strong></td>
619
- <td><strong><center>1st turn</center></strong></td>
620
- <td><strong><center>2nd turn</center></strong></td>
621
- <td><strong><center>Answers in Ro</center></strong></td>
622
- </tr>
623
- <tr>
624
- <td>Llama-3.1-8B-Instruct</td><td><center>5.69</center></td><td><center>5.85</center></td><td><center>5.53</center></td><td><center><strong>160/160</strong></center></td>
625
- </tr>
626
- <tr>
627
- <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>5.42</center></td><td><center>5.95</center></td><td><center>4.89</center></td><td><center><strong>160/160</strong></center></td>
628
- </tr>
629
- <tr>
630
- <td>RoLlama3.1-8b-Instruct-2025-04-23</td><td><center>6.43</center></td><td><center>6.78</center></td><td><center>6.09</center></td><td><center><strong>160/160</strong></center></td>
631
- </tr>
632
- <tr>
633
- <td>RoLlama3.1-8b-Instruct-DPO-2024-10-09</td><td><center>6.21</center></td><td><center>6.74</center></td><td><center>5.69</center></td><td><center><strong>160/160</strong></center></td>
634
- </tr>
635
- <tr>
636
- <td><em>RoLlama3.1-8b-Instruct-DPO-2025-04-23</em></td><td><center><em><strong>7.00</strong></em></center></td><td><center><em><strong>7.30</strong></em></center></td><td><center><em><strong>6.70</strong></em></center></td><td><center><em><strong>160/160</strong></em></center></td>
637
- </tr>
638
- </tbody>
639
- </table>
640
-
641
-
642
- ## RoCulturaBench
643
-
644
- <table>
645
- <tbody>
646
- <tr>
647
- <td><strong>Model</strong></td>
648
- <td><strong><center>Average</center></strong></td>
649
- <td><strong><center>Answers in Ro</center></strong></td>
650
- </tr>
651
- <tr>
652
- <td>Llama-3.1-8B-Instruct</td><td><center>3.54</center></td><td><center><strong>100/100</strong></center></td>
653
- </tr>
654
- <tr>
655
- <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>3.55</center></td><td><center><strong>100/100</strong></center></td>
656
- </tr>
657
- <tr>
658
- <td>RoLlama3.1-8b-Instruct-2025-04-23</td><td><center>4.28</center></td><td><center><strong>100/100</strong></center></td>
659
- </tr>
660
- <tr>
661
- <td>RoLlama3.1-8b-Instruct-DPO-2024-10-09</td><td><center>4.42</center></td><td><center><strong>100/100</strong></center></td>
662
- </tr>
663
- <tr>
664
- <td><em>RoLlama3.1-8b-Instruct-DPO-2025-04-23</em></td><td><center><em><strong>4.73</strong></em></center></td><td><center><em><strong>100/100</strong></em></center></td>
665
- </tr>
666
- </tbody>
667
- </table>
668
-
669
-
670
-
671
- ## RoLlama3.1 Model Family
672
-
673
- | Model | Link |
674
- |--------------------|:--------:|
675
- |RoLlama3.1-8b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-2024-10-09) |
676
- |RoLlama3.1-8b-Instruct-2025-04-23| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-2025-04-23) |
677
- |RoLlama3.1-8b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-2024-10-09) |
678
- |*RoLlama3.1-8b-Instruct-DPO-2025-04-23*| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-2025-04-23) |
679
-
680
-
681
- ## Citation
682
-
683
- ```
684
- @misc{masala2024vorbecstiromanecsterecipetrain,
685
- title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
686
- author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
687
- year={2024},
688
- eprint={2406.18266},
689
- archivePrefix={arXiv},
690
- primaryClass={cs.CL},
691
- url={https://arxiv.org/abs/2406.18266},
692
- }
693
- ```
694
- <!-- **APA:**
695
-
 
696
  [More Information Needed] -->
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ language:
4
+ - ro
5
+ base_model:
6
+ - OpenLLM-Ro/RoLlama3.1-8b-Instruct-2025-04-23
7
+ datasets:
8
+ - OpenLLM-Ro/ro_dpo_helpsteer
9
+ - OpenLLM-Ro/ro_dpo_ultrafeedback
10
+ - OpenLLM-Ro/ro_dpo_magpie
11
+ - OpenLLM-Ro/ro_dpo_argilla_magpie
12
+ - OpenLLM-Ro/ro_dpo_helpsteer2
13
+ model-index:
14
+ - name: OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-2025-04-23
15
+ results:
16
+ - task:
17
+ type: text-generation
18
+ dataset:
19
+ name: RoMT-Bench
20
+ type: RoMT-Bench
21
+ metrics:
22
+ - name: Score
23
+ type: Score
24
+ value: 7.00
25
+ - task:
26
+ type: text-generation
27
+ dataset:
28
+ name: RoCulturaBench
29
+ type: RoCulturaBench
30
+ metrics:
31
+ - name: Score
32
+ type: Score
33
+ value: 4.73
34
+ - task:
35
+ type: text-generation
36
+ dataset:
37
+ name: Romanian_Academic_Benchmarks
38
+ type: Romanian_Academic_Benchmarks
39
+ metrics:
40
+ - name: Average accuracy
41
+ type: accuracy
42
+ value: 53.76
43
+ - task:
44
+ type: text-generation
45
+ dataset:
46
+ name: OpenLLM-Ro/ro_arc_challenge
47
+ type: OpenLLM-Ro/ro_arc_challenge
48
+ metrics:
49
+ - name: Average accuracy
50
+ type: accuracy
51
+ value: 51.09
52
+ - task:
53
+ type: text-generation
54
+ dataset:
55
+ name: OpenLLM-Ro/ro_mmlu
56
+ type: OpenLLM-Ro/ro_mmlu
57
+ metrics:
58
+ - name: Average accuracy
59
+ type: accuracy
60
+ value: 56.22
61
+ - task:
62
+ type: text-generation
63
+ dataset:
64
+ name: OpenLLM-Ro/ro_winogrande
65
+ type: OpenLLM-Ro/ro_winogrande
66
+ metrics:
67
+ - name: Average accuracy
68
+ type: accuracy
69
+ value: 66.77
70
+ - task:
71
+ type: text-generation
72
+ dataset:
73
+ name: OpenLLM-Ro/ro_hellaswag
74
+ type: OpenLLM-Ro/ro_hellaswag
75
+ metrics:
76
+ - name: Average accuracy
77
+ type: accuracy
78
+ value: 59.38
79
+ - task:
80
+ type: text-generation
81
+ dataset:
82
+ name: OpenLLM-Ro/ro_gsm8k
83
+ type: OpenLLM-Ro/ro_gsm8k
84
+ metrics:
85
+ - name: Average accuracy
86
+ type: accuracy
87
+ value: 31.54
88
+ - task:
89
+ type: text-generation
90
+ dataset:
91
+ name: OpenLLM-Ro/ro_truthfulqa
92
+ type: OpenLLM-Ro/ro_truthfulqa
93
+ metrics:
94
+ - name: Average accuracy
95
+ type: accuracy
96
+ value: 57.56
97
+ - task:
98
+ type: text-generation
99
+ dataset:
100
+ name: LaRoSeDa_binary
101
+ type: LaRoSeDa_binary
102
+ metrics:
103
+ - name: Average macro-f1
104
+ type: macro-f1
105
+ value: 96.87
106
+ - task:
107
+ type: text-generation
108
+ dataset:
109
+ name: LaRoSeDa_multiclass
110
+ type: LaRoSeDa_multiclass
111
+ metrics:
112
+ - name: Average macro-f1
113
+ type: macro-f1
114
+ value: 60.75
115
+ - task:
116
+ type: text-generation
117
+ dataset:
118
+ name: WMT_EN-RO
119
+ type: WMT_EN-RO
120
+ metrics:
121
+ - name: Average bleu
122
+ type: bleu
123
+ value: 20.30
124
+ - task:
125
+ type: text-generation
126
+ dataset:
127
+ name: WMT_RO-EN
128
+ type: WMT_RO-EN
129
+ metrics:
130
+ - name: Average bleu
131
+ type: bleu
132
+ value: 18.57
133
+ - task:
134
+ type: text-generation
135
+ dataset:
136
+ name: XQuAD
137
+ type: XQuAD
138
+ metrics:
139
+ - name: Average exact_match
140
+ type: exact_match
141
+ value: 9.22
142
+ - task:
143
+ type: text-generation
144
+ dataset:
145
+ name: XQuAD
146
+ type: XQuAD
147
+ metrics:
148
+ - name: Average f1
149
+ type: f1
150
+ value: 22.75
151
+ - task:
152
+ type: text-generation
153
+ dataset:
154
+ name: STS
155
+ type: STS
156
+ metrics:
157
+ - name: Average spearman
158
+ type: spearman
159
+ value: 30.82
160
+ - task:
161
+ type: text-generation
162
+ dataset:
163
+ name: STS
164
+ type: STS
165
+ metrics:
166
+ - name: Average pearson
167
+ type: pearson
168
+ value: 20.25
169
+ - task:
170
+ type: text-generation
171
+ dataset:
172
+ name: RoMT-Bench
173
+ type: RoMT-Bench
174
+ metrics:
175
+ - name: First turn
176
+ type: Score
177
+ value: 7.30
178
+ - name: Second turn
179
+ type: Score
180
+ value: 6.70
181
+ - task:
182
+ type: text-generation
183
+ dataset:
184
+ name: OpenLLM-Ro/ro_arc_challenge
185
+ type: OpenLLM-Ro/ro_arc_challenge
186
+ metrics:
187
+ - name: 0-shot
188
+ type: accuracy
189
+ value: 51.59
190
+ - name: 1-shot
191
+ type: accuracy
192
+ value: 52.10
193
+ - name: 3-shot
194
+ type: accuracy
195
+ value: 50.99
196
+ - name: 5-shot
197
+ type: accuracy
198
+ value: 50.81
199
+ - name: 10-shot
200
+ type: accuracy
201
+ value: 49.70
202
+ - name: 25-shot
203
+ type: accuracy
204
+ value: 51.33
205
+ - task:
206
+ type: text-generation
207
+ dataset:
208
+ name: OpenLLM-Ro/ro_mmlu
209
+ type: OpenLLM-Ro/ro_mmlu
210
+ metrics:
211
+ - name: 0-shot
212
+ type: accuracy
213
+ value: 56.88
214
+ - name: 1-shot
215
+ type: accuracy
216
+ value: 55.61
217
+ - name: 3-shot
218
+ type: accuracy
219
+ value: 56.06
220
+ - name: 5-shot
221
+ type: accuracy
222
+ value: 56.31
223
+ - task:
224
+ type: text-generation
225
+ dataset:
226
+ name: OpenLLM-Ro/ro_winogrande
227
+ type: OpenLLM-Ro/ro_winogrande
228
+ metrics:
229
+ - name: 0-shot
230
+ type: accuracy
231
+ value: 65.67
232
+ - name: 1-shot
233
+ type: accuracy
234
+ value: 66.30
235
+ - name: 3-shot
236
+ type: accuracy
237
+ value: 67.40
238
+ - name: 5-shot
239
+ type: accuracy
240
+ value: 67.72
241
+ - task:
242
+ type: text-generation
243
+ dataset:
244
+ name: OpenLLM-Ro/ro_hellaswag
245
+ type: OpenLLM-Ro/ro_hellaswag
246
+ metrics:
247
+ - name: 0-shot
248
+ type: accuracy
249
+ value: 60.53
250
+ - name: 1-shot
251
+ type: accuracy
252
+ value: 60.37
253
+ - name: 3-shot
254
+ type: accuracy
255
+ value: 58.20
256
+ - name: 5-shot
257
+ type: accuracy
258
+ value: 58.18
259
+ - name: 10-shot
260
+ type: accuracy
261
+ value: 59.61
262
+ - task:
263
+ type: text-generation
264
+ dataset:
265
+ name: OpenLLM-Ro/ro_gsm8k
266
+ type: OpenLLM-Ro/ro_gsm8k
267
+ metrics:
268
+ - name: 1-shot
269
+ type: accuracy
270
+ value: 25.09
271
+ - name: 3-shot
272
+ type: accuracy
273
+ value: 30.02
274
+ - name: 5-shot
275
+ type: accuracy
276
+ value: 39.50
277
+ - task:
278
+ type: text-generation
279
+ dataset:
280
+ name: LaRoSeDa_binary
281
+ type: LaRoSeDa_binary
282
+ metrics:
283
+ - name: 0-shot
284
+ type: macro-f1
285
+ value: 95.39
286
+ - name: 1-shot
287
+ type: macro-f1
288
+ value: 95.90
289
+ - name: 3-shot
290
+ type: macro-f1
291
+ value: 98.00
292
+ - name: 5-shot
293
+ type: macro-f1
294
+ value: 98.17
295
+ - task:
296
+ type: text-generation
297
+ dataset:
298
+ name: LaRoSeDa_multiclass
299
+ type: LaRoSeDa_multiclass
300
+ metrics:
301
+ - name: 0-shot
302
+ type: macro-f1
303
+ value: 60.30
304
+ - name: 1-shot
305
+ type: macro-f1
306
+ value: 64.73
307
+ - name: 3-shot
308
+ type: macro-f1
309
+ value: 58.69
310
+ - name: 5-shot
311
+ type: macro-f1
312
+ value: 59.30
313
+ - task:
314
+ type: text-generation
315
+ dataset:
316
+ name: WMT_EN-RO
317
+ type: WMT_EN-RO
318
+ metrics:
319
+ - name: 0-shot
320
+ type: bleu
321
+ value: 5.46
322
+ - name: 1-shot
323
+ type: bleu
324
+ value: 26.08
325
+ - name: 3-shot
326
+ type: bleu
327
+ value: 25.90
328
+ - name: 5-shot
329
+ type: bleu
330
+ value: 23.76
331
+ - task:
332
+ type: text-generation
333
+ dataset:
334
+ name: WMT_RO-EN
335
+ type: WMT_RO-EN
336
+ metrics:
337
+ - name: 0-shot
338
+ type: bleu
339
+ value: 2.74
340
+ - name: 1-shot
341
+ type: bleu
342
+ value: 20.95
343
+ - name: 3-shot
344
+ type: bleu
345
+ value: 31.53
346
+ - name: 5-shot
347
+ type: bleu
348
+ value: 19.05
349
+ - task:
350
+ type: text-generation
351
+ dataset:
352
+ name: XQuAD_EM
353
+ type: XQuAD_EM
354
+ metrics:
355
+ - name: 0-shot
356
+ type: exact_match
357
+ value: 12.27
358
+ - name: 1-shot
359
+ type: exact_match
360
+ value: 17.98
361
+ - name: 3-shot
362
+ type: exact_match
363
+ value: 5.04
364
+ - name: 5-shot
365
+ type: exact_match
366
+ value: 1.60
367
+ - task:
368
+ type: text-generation
369
+ dataset:
370
+ name: XQuAD_F1
371
+ type: XQuAD_F1
372
+ metrics:
373
+ - name: 0-shot
374
+ type: f1
375
+ value: 26.24
376
+ - name: 1-shot
377
+ type: f1
378
+ value: 32.54
379
+ - name: 3-shot
380
+ type: f1
381
+ value: 18.00
382
+ - name: 5-shot
383
+ type: f1
384
+ value: 14.22
385
+ - task:
386
+ type: text-generation
387
+ dataset:
388
+ name: STS_Spearman
389
+ type: STS_Spearman
390
+ metrics:
391
+ - name: 1-shot
392
+ type: spearman
393
+ value: 76.70
394
+ - name: 3-shot
395
+ type: spearman
396
+ value: 2.82
397
+ - name: 5-shot
398
+ type: spearman
399
+ value: 12.95
400
+ - task:
401
+ type: text-generation
402
+ dataset:
403
+ name: STS_Pearson
404
+ type: STS_Pearson
405
+ metrics:
406
+ - name: 1-shot
407
+ type: pearson
408
+ value: 77.30
409
+ - name: 3-shot
410
+ type: pearson
411
+ value: -14.56
412
+ - name: 5-shot
413
+ type: pearson
414
+ value: -1.99
415
+
416
+ ---
417
+
418
+ # Model Card for Model ID
419
+
420
+ *Built with Meta Llama 3.1*
421
+
422
+ This model points/is identical to [RoLlama3.1-8b-Instruct-DPO-2025-04-23](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-2025-04-23).
423
+
424
+ <!-- Provide a quick summary of what the model is/does. -->
425
+
426
+ RoLlama3.1 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **human aligned instruct 8B model**. Links to other models can be found at the bottom of this page.
427
+
428
+
429
+ ## Model Details
430
+
431
+ ### Model Description
432
+
433
+ <!-- Provide a longer summary of what this model is. -->
434
+ OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
435
+
436
+
437
+ - **Developed by:** OpenLLM-Ro
438
+ <!-- - **Funded by [optional]:** [More Information Needed] -->
439
+ <!-- - **Shared by [optional]:** [More Information Needed] -->
440
+ <!-- - **Model type:** [More Information Needed] -->
441
+ - **Language(s):** Romanian
442
+ - **License:** cc-by-nc-4.0
443
+ - **Finetuned from model:** [RoLlama3.1-8b-Instruct-2025-04-23](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-2025-04-23)
444
+ - **Trained using:** [RoHelpSteer](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_helpsteer), [RoUltraFeedback](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_ultrafeedback), [RoMagpieDPO](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_magpie), [RoArgillaMagpie](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_argilla_magpie), [RoHelpSteer2](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_helpsteer2)
445
+
446
+ ### Model Sources
447
+
448
+ <!-- Provide the basic links for the model. -->
449
+
450
+ - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
451
+ - **Paper:** https://arxiv.org/abs/2406.18266
452
+
453
+ ## Intended Use
454
+
455
+ ### Intended Use Cases
456
+
457
+ RoLlama3.1 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
458
+
459
+ ### Out-of-Scope Use
460
+
461
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
462
+
463
+ Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
464
+
465
+
466
+
467
+ ## How to Get Started with the Model
468
+
469
+ Use the code below to get started with the model.
470
+
471
+ ```python
472
+ from transformers import AutoTokenizer, AutoModelForCausalLM
473
+
474
+ tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO")
475
+ model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO")
476
+
477
+ instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
478
+ chat = [
479
+ {"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."},
480
+ {"role": "user", "content": instruction},
481
+ ]
482
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
483
+
484
+ inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
485
+ outputs = model.generate(input_ids=inputs, max_new_tokens=128)
486
+ print(tokenizer.decode(outputs[0]))
487
+ ```
488
+
489
+ ## Academic Benchmarks
490
+
491
+
492
+ <table>
493
+ <tbody>
494
+ <tr>
495
+ <td><strong>Model</strong></td>
496
+ <td><strong><center>Average</center></strong></td>
497
+ <td><strong><center>ARC</center></strong></td>
498
+ <td><strong><center>MMLU</center></strong></td>
499
+ <td><strong><center>Winogrande</center></strong></td>
500
+ <td><strong><center>Hellaswag</center></strong></td>
501
+ <td><strong><center>GSM8k</center></strong></td>
502
+ <td><strong><center>TruthfulQA</center></strong></td>
503
+ </tr>
504
+ <tr>
505
+ <td>Llama-3.1-8B-Instruct</td><td><center>49.87</center></td><td><center>42.86</center></td><td><center>53.73</center></td><td><center>59.71</center></td><td><center>56.82</center></td><td><center>35.56</center></td><td><center>50.54</center></td>
506
+ </tr>
507
+ <tr>
508
+ <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>53.03</center></td><td><center>47.69</center></td><td><center>54.57</center></td><td><center>65.84</center></td><td><center>59.94</center></td><td><center><strong>44.30</strong></center></td><td><center>45.82</center></td>
509
+ </tr>
510
+ <tr>
511
+ <td>RoLlama3.1-8b-Instruct-2025-04-23</td><td><center>53.36</center></td><td><center>48.97</center></td><td><center>55.17</center></td><td><center>66.52</center></td><td><center><strong>60.73</strong></center></td><td><center>42.03</center></td><td><center>46.71</center></td>
512
+ </tr>
513
+ <tr>
514
+ <td>RoLlama3.1-8b-Instruct-DPO-2024-10-09</td><td><center>52.74</center></td><td><center>44.84</center></td><td><center>55.06</center></td><td><center>65.87</center></td><td><center>58.67</center></td><td><center>44.17</center></td><td><center>47.82</center></td>
515
+ </tr>
516
+ <tr>
517
+ <td><em>RoLlama3.1-8b-Instruct-DPO-2025-04-23</em></td><td><center><em><strong>53.76</strong></em></center></td><td><center><em><strong>51.09</strong></em></center></td><td><center><em><strong>56.22</strong></em></center></td><td><center><em><strong>66.77</strong></em></center></td><td><center><em>59.38</em></center></td><td><center><em>31.54</em></center></td><td><center><em><strong>57.56</strong></em></center></td>
518
+ </tr>
519
+ </tbody>
520
+ </table>
521
+
522
+
523
+
524
+ ## Downstream tasks
525
+
526
+ <table>
527
+ <tbody>
528
+ <tr>
529
+ <td></td>
530
+ <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
531
+ <td colspan="4"><center><strong>WMT</strong></center></td>
532
+ </tr>
533
+ <tr>
534
+ <td></td>
535
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
536
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
537
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
538
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
539
+ </tr>
540
+ <tr>
541
+ <td><strong>Model</strong></td>
542
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
543
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
544
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
545
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
546
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
547
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
548
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
549
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center>
550
+ </tr>
551
+ <tr>
552
+ <td>Llama-3.1-8B-Instruct</td><td><center>95.74</center></td><td><center>59.49</center></td><td><center><strong>98.57</strong></center></td><td><center>82.41</center></td><td><center>19.01</center></td><td><center><strong>27.77</strong></center></td><td><center><strong>29.02</strong></center></td><td><center>39.80</center></td>
553
+ </tr>
554
+ <tr>
555
+ <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>94.56</center></td><td><center>60.10</center></td><td><center>95.12</center></td><td><center><strong>87.53</strong></center></td><td><center>21.88</center></td><td><center>23.99</center></td><td><center>28.27</center></td><td><center><strong>40.44</strong></center></td>
556
+ </tr>
557
+ <tr>
558
+ <td>RoLlama3.1-8b-Instruct-2025-04-23</td><td><center>95.32</center></td><td><center><strong>60.84</strong></center></td><td><center>-</center></td><td><center>-</center></td><td><center><strong>23.18</strong></center></td><td><center>25.11</center></td><td><center>-</center></td><td><center>-</center></td>
559
+ </tr>
560
+ <tr>
561
+ <td>RoLlama3.1-8b-Instruct-DPO-2024-10-09</td><td><center>96.10</center></td><td><center>55.37</center></td><td><center>-</center></td><td><center>-</center></td><td><center>21.29</center></td><td><center>21.86</center></td><td><center>-</center></td><td><center>-</center></td>
562
+ </tr>
563
+ <tr>
564
+ <td><em>RoLlama3.1-8b-Instruct-DPO-2025-04-23</em></td><td><center><em><strong>96.87</strong></em></center></td><td><center><em>60.75</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>20.30</em></center></td><td><center><em>18.57</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
565
+ </tr>
566
+ </tbody>
567
+ </table>
568
+
569
+
570
+ <table>
571
+ <tbody>
572
+ <tr>
573
+ <td></td>
574
+ <td colspan="4"><center><strong>XQuAD</strong></center></td>
575
+ <td colspan="4"><center><strong>STS</strong></center></td>
576
+ </tr>
577
+ <tr>
578
+ <td></td>
579
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
580
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
581
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
582
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
583
+ </tr>
584
+ <tr>
585
+ <td><strong>Model</strong></td>
586
+ <td><center><strong>(EM)</strong></center></td>
587
+ <td><center><strong>(F1)</strong></center></td>
588
+ <td><center><strong>(EM)</strong></center></td>
589
+ <td><center><strong>(F1)</strong></center></td>
590
+ <td><center><strong>(Spearman)</strong></center></td>
591
+ <td><center><strong>(Pearson)</strong></center></td>
592
+ <td><center><strong>(Spearman)</strong></center></td>
593
+ <td><center><strong>(Pearson)</strong></center></td>
594
+ </tr>
595
+ <tr>
596
+ <td>Llama-3.1-8B-Instruct</td><td><center><strong>44.96</strong></center></td><td><center><strong>64.45</strong></center></td><td><center><strong>69.50</strong></center></td><td><center><strong>84.31</strong></center></td><td><center>72.11</center></td><td><center>71.64</center></td><td><center>84.59</center></td><td><center>84.96</center></td>
597
+ </tr>
598
+ <tr>
599
+ <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>13.59</center></td><td><center>23.56</center></td><td><center>49.41</center></td><td><center>62.93</center></td><td><center>75.89</center></td><td><center>76.00</center></td><td><center><strong>86.86</strong></center></td><td><center><strong>87.05</strong></center></td>
600
+ </tr>
601
+ <tr>
602
+ <td>RoLlama3.1-8b-Instruct-2025-04-23</td><td><center>10.74</center></td><td><center>19.75</center></td><td><center>-</center></td><td><center>-</center></td><td><center>73.53</center></td><td><center>74.93</center></td><td><center>-</center></td><td><center>-</center></td>
603
+ </tr>
604
+ <tr>
605
+ <td>RoLlama3.1-8b-Instruct-DPO-2024-10-09</td><td><center>21.58</center></td><td><center>36.54</center></td><td><center>-</center></td><td><center>-</center></td><td><center><strong>78.01</strong></center></td><td><center><strong>77.98</strong></center></td><td><center>-</center></td><td><center>-</center></td>
606
+ </tr>
607
+ <tr>
608
+ <td><em>RoLlama3.1-8b-Instruct-DPO-2025-04-23</em></td><td><center><em>9.22</em></center></td><td><center><em>22.75</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>30.82</em></center></td><td><center><em>20.25</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
609
+ </tr>
610
+ </tbody>
611
+ </table>
612
+
613
+ ## MT-Bench
614
+
615
+ <table>
616
+ <tbody>
617
+ <tr>
618
+ <td><strong>Model</strong></td>
619
+ <td><strong><center>Average</center></strong></td>
620
+ <td><strong><center>1st turn</center></strong></td>
621
+ <td><strong><center>2nd turn</center></strong></td>
622
+ <td><strong><center>Answers in Ro</center></strong></td>
623
+ </tr>
624
+ <tr>
625
+ <td>Llama-3.1-8B-Instruct</td><td><center>5.69</center></td><td><center>5.85</center></td><td><center>5.53</center></td><td><center><strong>160/160</strong></center></td>
626
+ </tr>
627
+ <tr>
628
+ <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>5.42</center></td><td><center>5.95</center></td><td><center>4.89</center></td><td><center><strong>160/160</strong></center></td>
629
+ </tr>
630
+ <tr>
631
+ <td>RoLlama3.1-8b-Instruct-2025-04-23</td><td><center>6.43</center></td><td><center>6.78</center></td><td><center>6.09</center></td><td><center><strong>160/160</strong></center></td>
632
+ </tr>
633
+ <tr>
634
+ <td>RoLlama3.1-8b-Instruct-DPO-2024-10-09</td><td><center>6.21</center></td><td><center>6.74</center></td><td><center>5.69</center></td><td><center><strong>160/160</strong></center></td>
635
+ </tr>
636
+ <tr>
637
+ <td><em>RoLlama3.1-8b-Instruct-DPO-2025-04-23</em></td><td><center><em><strong>7.00</strong></em></center></td><td><center><em><strong>7.30</strong></em></center></td><td><center><em><strong>6.70</strong></em></center></td><td><center><em><strong>160/160</strong></em></center></td>
638
+ </tr>
639
+ </tbody>
640
+ </table>
641
+
642
+
643
+ ## RoCulturaBench
644
+
645
+ <table>
646
+ <tbody>
647
+ <tr>
648
+ <td><strong>Model</strong></td>
649
+ <td><strong><center>Average</center></strong></td>
650
+ <td><strong><center>Answers in Ro</center></strong></td>
651
+ </tr>
652
+ <tr>
653
+ <td>Llama-3.1-8B-Instruct</td><td><center>3.54</center></td><td><center><strong>100/100</strong></center></td>
654
+ </tr>
655
+ <tr>
656
+ <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>3.55</center></td><td><center><strong>100/100</strong></center></td>
657
+ </tr>
658
+ <tr>
659
+ <td>RoLlama3.1-8b-Instruct-2025-04-23</td><td><center>4.28</center></td><td><center><strong>100/100</strong></center></td>
660
+ </tr>
661
+ <tr>
662
+ <td>RoLlama3.1-8b-Instruct-DPO-2024-10-09</td><td><center>4.42</center></td><td><center><strong>100/100</strong></center></td>
663
+ </tr>
664
+ <tr>
665
+ <td><em>RoLlama3.1-8b-Instruct-DPO-2025-04-23</em></td><td><center><em><strong>4.73</strong></em></center></td><td><center><em><strong>100/100</strong></em></center></td>
666
+ </tr>
667
+ </tbody>
668
+ </table>
669
+
670
+
671
+
672
+ ## RoLlama3.1 Model Family
673
+
674
+ | Model | Link |
675
+ |--------------------|:--------:|
676
+ |RoLlama3.1-8b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-2024-10-09) |
677
+ |RoLlama3.1-8b-Instruct-2025-04-23| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-2025-04-23) |
678
+ |RoLlama3.1-8b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-2024-10-09) |
679
+ |*RoLlama3.1-8b-Instruct-DPO-2025-04-23*| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-2025-04-23) |
680
+
681
+
682
+ ## Citation
683
+
684
+ ```
685
+ @misc{masala2024vorbecstiromanecsterecipetrain,
686
+ title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
687
+ author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
688
+ year={2024},
689
+ eprint={2406.18266},
690
+ archivePrefix={arXiv},
691
+ primaryClass={cs.CL},
692
+ url={https://arxiv.org/abs/2406.18266},
693
+ }
694
+ ```
695
+ <!-- **APA:**
696
+
697
  [More Information Needed] -->