mihaimasala commited on
Commit
6fb9dfc
·
verified ·
1 Parent(s): 8e3f3d1

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +695 -732
README.md CHANGED
@@ -1,733 +1,696 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- language:
4
- - ro
5
- base_model:
6
- - OpenLLM-Ro/RoLlama3.1-8b-Instruct-2024-10-09
7
- datasets:
8
- - OpenLLM-Ro/ro_dpo_helpsteer
9
- model-index:
10
- - name: OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-2024-10-09
11
- results:
12
- - task:
13
- type: text-generation
14
- dataset:
15
- name: RoMT-Bench
16
- type: RoMT-Bench
17
- metrics:
18
- - name: Score
19
- type: Score
20
- value: 6.21
21
- - task:
22
- type: text-generation
23
- dataset:
24
- name: RoCulturaBench
25
- type: RoCulturaBench
26
- metrics:
27
- - name: Score
28
- type: Score
29
- value: 4.42
30
- - task:
31
- type: text-generation
32
- dataset:
33
- name: Romanian_Academic_Benchmarks
34
- type: Romanian_Academic_Benchmarks
35
- metrics:
36
- - name: Average accuracy
37
- type: accuracy
38
- value: 52.74
39
- - task:
40
- type: text-generation
41
- dataset:
42
- name: OpenLLM-Ro/ro_arc_challenge
43
- type: OpenLLM-Ro/ro_arc_challenge
44
- metrics:
45
- - name: Average accuracy
46
- type: accuracy
47
- value: 44.84
48
- - task:
49
- type: text-generation
50
- dataset:
51
- name: OpenLLM-Ro/ro_mmlu
52
- type: OpenLLM-Ro/ro_mmlu
53
- metrics:
54
- - name: Average accuracy
55
- type: accuracy
56
- value: 55.06
57
- - task:
58
- type: text-generation
59
- dataset:
60
- name: OpenLLM-Ro/ro_winogrande
61
- type: OpenLLM-Ro/ro_winogrande
62
- metrics:
63
- - name: Average accuracy
64
- type: accuracy
65
- value: 65.87
66
- - task:
67
- type: text-generation
68
- dataset:
69
- name: OpenLLM-Ro/ro_hellaswag
70
- type: OpenLLM-Ro/ro_hellaswag
71
- metrics:
72
- - name: Average accuracy
73
- type: accuracy
74
- value: 58.67
75
- - task:
76
- type: text-generation
77
- dataset:
78
- name: OpenLLM-Ro/ro_gsm8k
79
- type: OpenLLM-Ro/ro_gsm8k
80
- metrics:
81
- - name: Average accuracy
82
- type: accuracy
83
- value: 44.17
84
- - task:
85
- type: text-generation
86
- dataset:
87
- name: OpenLLM-Ro/ro_truthfulqa
88
- type: OpenLLM-Ro/ro_truthfulqa
89
- metrics:
90
- - name: Average accuracy
91
- type: accuracy
92
- value: 47.82
93
- - task:
94
- type: text-generation
95
- dataset:
96
- name: LaRoSeDa_binary
97
- type: LaRoSeDa_binary
98
- metrics:
99
- - name: Average macro-f1
100
- type: macro-f1
101
- value: 96.10
102
- - task:
103
- type: text-generation
104
- dataset:
105
- name: LaRoSeDa_multiclass
106
- type: LaRoSeDa_multiclass
107
- metrics:
108
- - name: Average macro-f1
109
- type: macro-f1
110
- value: 55.37
111
- - task:
112
- type: text-generation
113
- dataset:
114
- name: LaRoSeDa_binary_finetuned
115
- type: LaRoSeDa_binary_finetuned
116
- metrics:
117
- - name: Average macro-f1
118
- type: macro-f1
119
- value: 0.00
120
- - task:
121
- type: text-generation
122
- dataset:
123
- name: LaRoSeDa_multiclass_finetuned
124
- type: LaRoSeDa_multiclass_finetuned
125
- metrics:
126
- - name: Average macro-f1
127
- type: macro-f1
128
- value: 0.00
129
- - task:
130
- type: text-generation
131
- dataset:
132
- name: WMT_EN-RO
133
- type: WMT_EN-RO
134
- metrics:
135
- - name: Average bleu
136
- type: bleu
137
- value: 21.29
138
- - task:
139
- type: text-generation
140
- dataset:
141
- name: WMT_RO-EN
142
- type: WMT_RO-EN
143
- metrics:
144
- - name: Average bleu
145
- type: bleu
146
- value: 21.86
147
- - task:
148
- type: text-generation
149
- dataset:
150
- name: WMT_EN-RO_finetuned
151
- type: WMT_EN-RO_finetuned
152
- metrics:
153
- - name: Average bleu
154
- type: bleu
155
- value: 0.00
156
- - task:
157
- type: text-generation
158
- dataset:
159
- name: WMT_RO-EN_finetuned
160
- type: WMT_RO-EN_finetuned
161
- metrics:
162
- - name: Average bleu
163
- type: bleu
164
- value: 0.00
165
- - task:
166
- type: text-generation
167
- dataset:
168
- name: XQuAD
169
- type: XQuAD
170
- metrics:
171
- - name: Average exact_match
172
- type: exact_match
173
- value: 21.58
174
- - task:
175
- type: text-generation
176
- dataset:
177
- name: XQuAD
178
- type: XQuAD
179
- metrics:
180
- - name: Average f1
181
- type: f1
182
- value: 36.54
183
- - task:
184
- type: text-generation
185
- dataset:
186
- name: XQuAD_finetuned
187
- type: XQuAD_finetuned
188
- metrics:
189
- - name: Average exact_match
190
- type: exact_match
191
- value: 0.00
192
- - task:
193
- type: text-generation
194
- dataset:
195
- name: XQuAD_finetuned
196
- type: XQuAD_finetuned
197
- metrics:
198
- - name: Average f1
199
- type: f1
200
- value: 0.00
201
- - task:
202
- type: text-generation
203
- dataset:
204
- name: STS
205
- type: STS
206
- metrics:
207
- - name: Average spearman
208
- type: spearman
209
- value: 78.01
210
- - task:
211
- type: text-generation
212
- dataset:
213
- name: STS
214
- type: STS
215
- metrics:
216
- - name: Average pearson
217
- type: pearson
218
- value: 77.98
219
- - task:
220
- type: text-generation
221
- dataset:
222
- name: STS_finetuned
223
- type: STS_finetuned
224
- metrics:
225
- - name: Average spearman
226
- type: spearman
227
- value: 0.00
228
- - task:
229
- type: text-generation
230
- dataset:
231
- name: STS_finetuned
232
- type: STS_finetuned
233
- metrics:
234
- - name: Average pearson
235
- type: pearson
236
- value: 0.00
237
- - task:
238
- type: text-generation
239
- dataset:
240
- name: RoMT-Bench
241
- type: RoMT-Bench
242
- metrics:
243
- - name: First turn
244
- type: Score
245
- value: 6.74
246
- - name: Second turn
247
- type: Score
248
- value: 5.69
249
- - task:
250
- type: text-generation
251
- dataset:
252
- name: OpenLLM-Ro/ro_arc_challenge
253
- type: OpenLLM-Ro/ro_arc_challenge
254
- metrics:
255
- - name: 0-shot
256
- type: accuracy
257
- value: 41.82
258
- - name: 1-shot
259
- type: accuracy
260
- value: 43.70
261
- - name: 3-shot
262
- type: accuracy
263
- value: 45.33
264
- - name: 5-shot
265
- type: accuracy
266
- value: 46.10
267
- - name: 10-shot
268
- type: accuracy
269
- value: 45.76
270
- - name: 25-shot
271
- type: accuracy
272
- value: 46.36
273
- - task:
274
- type: text-generation
275
- dataset:
276
- name: OpenLLM-Ro/ro_mmlu
277
- type: OpenLLM-Ro/ro_mmlu
278
- metrics:
279
- - name: 0-shot
280
- type: accuracy
281
- value: 53.75
282
- - name: 1-shot
283
- type: accuracy
284
- value: 54.94
285
- - name: 3-shot
286
- type: accuracy
287
- value: 56.07
288
- - name: 5-shot
289
- type: accuracy
290
- value: 55.47
291
- - task:
292
- type: text-generation
293
- dataset:
294
- name: OpenLLM-Ro/ro_winogrande
295
- type: OpenLLM-Ro/ro_winogrande
296
- metrics:
297
- - name: 0-shot
298
- type: accuracy
299
- value: 64.40
300
- - name: 1-shot
301
- type: accuracy
302
- value: 66.22
303
- - name: 3-shot
304
- type: accuracy
305
- value: 65.75
306
- - name: 5-shot
307
- type: accuracy
308
- value: 67.09
309
- - task:
310
- type: text-generation
311
- dataset:
312
- name: OpenLLM-Ro/ro_hellaswag
313
- type: OpenLLM-Ro/ro_hellaswag
314
- metrics:
315
- - name: 0-shot
316
- type: accuracy
317
- value: 57.25
318
- - name: 1-shot
319
- type: accuracy
320
- value: 58.00
321
- - name: 3-shot
322
- type: accuracy
323
- value: 59.23
324
- - name: 5-shot
325
- type: accuracy
326
- value: 59.30
327
- - name: 10-shot
328
- type: accuracy
329
- value: 59.56
330
- - task:
331
- type: text-generation
332
- dataset:
333
- name: OpenLLM-Ro/ro_gsm8k
334
- type: OpenLLM-Ro/ro_gsm8k
335
- metrics:
336
- - name: 1-shot
337
- type: accuracy
338
- value: 36.47
339
- - name: 3-shot
340
- type: accuracy
341
- value: 45.94
342
- - name: 5-shot
343
- type: accuracy
344
- value: 50.11
345
- - task:
346
- type: text-generation
347
- dataset:
348
- name: LaRoSeDa_binary
349
- type: LaRoSeDa_binary
350
- metrics:
351
- - name: 0-shot
352
- type: macro-f1
353
- value: 93.11
354
- - name: 1-shot
355
- type: macro-f1
356
- value: 96.06
357
- - name: 3-shot
358
- type: macro-f1
359
- value: 97.53
360
- - name: 5-shot
361
- type: macro-f1
362
- value: 97.70
363
- - task:
364
- type: text-generation
365
- dataset:
366
- name: LaRoSeDa_multiclass
367
- type: LaRoSeDa_multiclass
368
- metrics:
369
- - name: 0-shot
370
- type: macro-f1
371
- value: 65.61
372
- - name: 1-shot
373
- type: macro-f1
374
- value: 55.73
375
- - name: 3-shot
376
- type: macro-f1
377
- value: 46.33
378
- - name: 5-shot
379
- type: macro-f1
380
- value: 53.82
381
- - task:
382
- type: text-generation
383
- dataset:
384
- name: WMT_EN-RO
385
- type: WMT_EN-RO
386
- metrics:
387
- - name: 0-shot
388
- type: bleu
389
- value: 6.89
390
- - name: 1-shot
391
- type: bleu
392
- value: 26.62
393
- - name: 3-shot
394
- type: bleu
395
- value: 25.70
396
- - name: 5-shot
397
- type: bleu
398
- value: 25.94
399
- - task:
400
- type: text-generation
401
- dataset:
402
- name: WMT_RO-EN
403
- type: WMT_RO-EN
404
- metrics:
405
- - name: 0-shot
406
- type: bleu
407
- value: 2.16
408
- - name: 1-shot
409
- type: bleu
410
- value: 16.65
411
- - name: 3-shot
412
- type: bleu
413
- value: 33.41
414
- - name: 5-shot
415
- type: bleu
416
- value: 35.22
417
- - task:
418
- type: text-generation
419
- dataset:
420
- name: XQuAD_EM
421
- type: XQuAD_EM
422
- metrics:
423
- - name: 0-shot
424
- type: exact_match
425
- value: 8.99
426
- - name: 1-shot
427
- type: exact_match
428
- value: 35.88
429
- - name: 3-shot
430
- type: exact_match
431
- value: 31.26
432
- - name: 5-shot
433
- type: exact_match
434
- value: 10.17
435
- - task:
436
- type: text-generation
437
- dataset:
438
- name: XQuAD_F1
439
- type: XQuAD_F1
440
- metrics:
441
- - name: 0-shot
442
- type: f1
443
- value: 20.00
444
- - name: 1-shot
445
- type: f1
446
- value: 59.41
447
- - name: 3-shot
448
- type: f1
449
- value: 48.41
450
- - name: 5-shot
451
- type: f1
452
- value: 18.33
453
- - task:
454
- type: text-generation
455
- dataset:
456
- name: STS_Spearman
457
- type: STS_Spearman
458
- metrics:
459
- - name: 1-shot
460
- type: spearman
461
- value: 78.10
462
- - name: 3-shot
463
- type: spearman
464
- value: 77.81
465
- - name: 5-shot
466
- type: spearman
467
- value: 78.11
468
- - task:
469
- type: text-generation
470
- dataset:
471
- name: STS_Pearson
472
- type: STS_Pearson
473
- metrics:
474
- - name: 1-shot
475
- type: pearson
476
- value: 78.30
477
- - name: 3-shot
478
- type: pearson
479
- value: 77.58
480
- - name: 5-shot
481
- type: pearson
482
- value: 78.06
483
-
484
- ---
485
-
486
- # Model Card for Model ID
487
-
488
- *Built with Meta Llama 3.1*
489
-
490
- This model points/is identical to [RoLlama3.1-8b-Instruct-DPO-2024-10-09](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-2024-10-09).
491
-
492
-
493
- <!-- Provide a quick summary of what the model is/does. -->
494
-
495
- RoLlama3.1 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **human aligned instruct 8B model**. Links to other models can be found at the bottom of this page.
496
-
497
-
498
- ## Model Details
499
-
500
- ### Model Description
501
-
502
- <!-- Provide a longer summary of what this model is. -->
503
- OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
504
-
505
-
506
- - **Developed by:** OpenLLM-Ro
507
- <!-- - **Funded by [optional]:** [More Information Needed] -->
508
- <!-- - **Shared by [optional]:** [More Information Needed] -->
509
- <!-- - **Model type:** [More Information Needed] -->
510
- - **Language(s):** Romanian
511
- - **License:** cc-by-nc-4.0
512
- - **Finetuned from model:** [RoLlama3.1-8b-Instruct-2024-10-09](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-2024-10-09)
513
- - **Trained using:** [RoHelpSteer](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_helpsteer)
514
-
515
-
516
- ### Model Sources
517
-
518
- <!-- Provide the basic links for the model. -->
519
-
520
- - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
521
- - **Paper:** https://arxiv.org/abs/2406.18266
522
-
523
- ## Intended Use
524
-
525
- ### Intended Use Cases
526
-
527
- RoLlama3.1 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
528
-
529
- ### Out-of-Scope Use
530
-
531
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
532
-
533
- Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
534
-
535
-
536
-
537
- ## How to Get Started with the Model
538
-
539
- Use the code below to get started with the model.
540
-
541
- ```python
542
- from transformers import AutoTokenizer, AutoModelForCausalLM
543
-
544
- tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO")
545
- model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO")
546
-
547
- instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
548
- chat = [
549
- {"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."},
550
- {"role": "user", "content": instruction},
551
- ]
552
- prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
553
-
554
- inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
555
- outputs = model.generate(input_ids=inputs, max_new_tokens=128)
556
- print(tokenizer.decode(outputs[0]))
557
- ```
558
-
559
- ## Academic Benchmarks
560
-
561
- <table>
562
- <tbody>
563
- <tr>
564
- <td><strong>Model</strong></td>
565
- <td><strong><center>Average</center></strong></td>
566
- <td><strong><center>ARC</center></strong></td>
567
- <td><strong><center>MMLU</center></strong></td>
568
- <td><strong><center>Winogrande</center></strong></td>
569
- <td><strong><center>Hellaswag</center></strong></td>
570
- <td><strong><center>GSM8k</center></strong></td>
571
- <td><strong><center>TruthfulQA</center></strong></td>
572
- </tr>
573
- <tr>
574
- <td>Llama-3.1-8B-Instruct</td><td><center>49.87</center></td><td><center>42.86</center></td><td><center>53.73</center></td><td><center>59.71</center></td><td><center>56.82</center></td><td><center>35.56</center></td><td><center><strong>50.54</strong></center></td>
575
- </tr>
576
- <tr>
577
- <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center><strong>53.03</strong></center></td><td><center><strong>47.69</strong></center></td><td><center>54.57</center></td><td><center>65.84</center></td><td><center><strong>59.94</strong></center></td><td><center><strong>44.30</strong></center></td><td><center>45.82</center></td>
578
- </tr>
579
- <tr>
580
- <td><em>RoLlama3.1-8b-Instruct-DPO-2024-10-09</em></td><td><center><em>52.74</em></center></td><td><center><em>44.84</em></center></td><td><center><em><strong>55.06</strong></em></center></td><td><center><em><strong>65.87</strong></em></center></td><td><center><em>58.67</em></center></td><td><center><em>44.17</em></center></td><td><center><em>47.82</em></center></td>
581
- </tr>
582
- </tbody>
583
- </table>
584
-
585
-
586
- ## Downstream tasks
587
-
588
- <table>
589
- <tbody>
590
- <tr>
591
- <td></td>
592
- <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
593
- <td colspan="4"><center><strong>WMT</strong></center></td>
594
- </tr>
595
- <tr>
596
- <td></td>
597
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
598
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
599
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
600
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
601
- </tr>
602
- <tr>
603
- <td><strong>Model</strong></td>
604
- <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
605
- <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
606
- <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
607
- <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
608
- <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
609
- <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
610
- <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
611
- <td><center><strong>RO-EN<br>(Bleu)</strong></center>
612
- </tr>
613
- <tr>
614
- <td>Llama-3.1-8B-Instruct</td><td><center>95.74</center></td><td><center>59.49</center></td><td><center><strong>98.57</strong></center></td><td><center>82.41</center></td><td><center>19.01</center></td><td><center><strong>27.77</strong></center></td><td><center><strong>29.02</strong></center></td><td><center>39.80</center></td>
615
- </tr>
616
- <tr>
617
- <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>94.56</center></td><td><center><strong>60.10</strong></center></td><td><center>95.12</center></td><td><center><strong>87.53</strong></center></td><td><center><strong>21.88</strong></center></td><td><center>23.99</center></td><td><center>28.27</center></td><td><center><strong>40.44</strong></center></td>
618
- </tr>
619
- <tr>
620
- <td><em>RoLlama3.1-8b-Instruct-DPO-2024-10-09</em></td><td><center><em><strong>96.10</strong></em></center></td><td><center><em>55.37</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>21.29</em></center></td><td><center><em>21.86</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
621
- </tr>
622
- </tbody>
623
- </table>
624
-
625
-
626
- <table>
627
- <tbody>
628
- <tr>
629
- <td></td>
630
- <td colspan="4"><center><strong>XQuAD</strong></center></td>
631
- <td colspan="4"><center><strong>STS</strong></center></td>
632
- </tr>
633
- <tr>
634
- <td></td>
635
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
636
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
637
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
638
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
639
- </tr>
640
- <tr>
641
- <td><strong>Model</strong></td>
642
- <td><center><strong>(EM)</strong></center></td>
643
- <td><center><strong>(F1)</strong></center></td>
644
- <td><center><strong>(EM)</strong></center></td>
645
- <td><center><strong>(F1)</strong></center></td>
646
- <td><center><strong>(Spearman)</strong></center></td>
647
- <td><center><strong>(Pearson)</strong></center></td>
648
- <td><center><strong>(Spearman)</strong></center></td>
649
- <td><center><strong>(Pearson)</strong></center></td>
650
- </tr>
651
- <tr>
652
- <td>Llama-3.1-8B-Instruct</td><td><center><strong>44.96</strong></center></td><td><center><strong>64.45</strong></center></td><td><center><strong>69.50</strong></center></td><td><center><strong>84.31</strong></center></td><td><center>72.11</center></td><td><center>71.64</center></td><td><center>84.59</center></td><td><center>84.96</center></td>
653
- </tr>
654
- <tr>
655
- <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>13.59</center></td><td><center>23.56</center></td><td><center>49.41</center></td><td><center>62.93</center></td><td><center>75.89</center></td><td><center>76.00</center></td><td><center><strong>86.86</strong></center></td><td><center><strong>87.05</strong></center></td>
656
- </tr>
657
- <tr>
658
- <td><em>RoLlama3.1-8b-Instruct-DPO-2024-10-09</em></td><td><center><em>21.58</em></center></td><td><center><em>36.54</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em><strong>78.01</strong></em></center></td><td><center><em><strong>77.98</strong></em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
659
- </tr>
660
- </tbody>
661
- </table>
662
-
663
-
664
- ## MT-Bench
665
-
666
- <table>
667
- <tbody>
668
- <tr>
669
- <td><strong>Model</strong></td>
670
- <td><strong><center>Average</center></strong></td>
671
- <td><strong><center>1st turn</center></strong></td>
672
- <td><strong><center>2nd turn</center></strong></td>
673
- <td><strong><center>Answers in Ro</center></strong></td>
674
- </tr>
675
- <tr>
676
- <td>Llama-3.1-8B-Instruct</td><td><center>5.69</center></td><td><center>5.85</center></td><td><center>5.53</center></td><td><center><strong>160/160</strong></center></td>
677
- </tr>
678
- <tr>
679
- <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>5.42</center></td><td><center>5.95</center></td><td><center>4.89</center></td><td><center><strong>160/160</strong></center></td>
680
- </tr>
681
- <tr>
682
- <td><em>RoLlama3.1-8b-Instruct-DPO-2024-10-09</em></td><td><center><em><strong>6.21</strong></em></center></td><td><center><em><strong>6.74</strong></em></center></td><td><center><em><strong>5.69</strong></em></center></td><td><center><em><strong>160/160</strong></em></center></td>
683
- </tr>
684
- </tbody>
685
- </table>
686
-
687
-
688
- ## RoCulturaBench
689
-
690
- <table>
691
- <tbody>
692
- <tr>
693
- <td><strong>Model</strong></td>
694
- <td><strong><center>Average</center></strong></td>
695
- <td><strong><center>Answers in Ro</center></strong></td>
696
- </tr>
697
- <tr>
698
- <td>Llama-3.1-8B-Instruct</td><td><center>3.54</center></td><td><center><strong>100/100</strong></center></td>
699
- </tr>
700
- <tr>
701
- <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>3.55</center></td><td><center><strong>100/100</strong></center></td>
702
- </tr>
703
- <tr>
704
- <td><em>RoLlama3.1-8b-Instruct-DPO-2024-10-09</em></td><td><center><em><strong>4.42</strong></em></center></td><td><center><em><strong>100/100</strong></em></center></td>
705
- </tr>
706
- </tbody>
707
- </table>
708
-
709
-
710
- ## RoLlama3.1 Model Family
711
-
712
- | Model | Link |
713
- |--------------------|:--------:|
714
- |RoLlama3.1-8b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-2024-10-09) |
715
- |*RoLlama3.1-8b-Instruct-DPO-2024-10-09*| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-2024-10-09) |
716
-
717
-
718
- ## Citation
719
-
720
- ```
721
- @misc{masala2024vorbecstiromanecsterecipetrain,
722
- title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
723
- author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
724
- year={2024},
725
- eprint={2406.18266},
726
- archivePrefix={arXiv},
727
- primaryClass={cs.CL},
728
- url={https://arxiv.org/abs/2406.18266},
729
- }
730
- ```
731
- <!-- **APA:**
732
-
733
  [More Information Needed] -->
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ language:
4
+ - ro
5
+ base_model:
6
+ - OpenLLM-Ro/RoLlama3.1-8b-Instruct-2025-04-23
7
+ datasets:
8
+ - OpenLLM-Ro/ro_dpo_helpsteer
9
+ - OpenLLM-Ro/ro_dpo_ultrafeedback
10
+ - OpenLLM-Ro/ro_dpo_magpie
11
+ - OpenLLM-Ro/ro_dpo_argilla_magpie
12
+ - OpenLLM-Ro/ro_dpo_helpsteer2
13
+ model-index:
14
+ - name: OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-2025-04-23
15
+ results:
16
+ - task:
17
+ type: text-generation
18
+ dataset:
19
+ name: RoMT-Bench
20
+ type: RoMT-Bench
21
+ metrics:
22
+ - name: Score
23
+ type: Score
24
+ value: 7.00
25
+ - task:
26
+ type: text-generation
27
+ dataset:
28
+ name: RoCulturaBench
29
+ type: RoCulturaBench
30
+ metrics:
31
+ - name: Score
32
+ type: Score
33
+ value: 4.73
34
+ - task:
35
+ type: text-generation
36
+ dataset:
37
+ name: Romanian_Academic_Benchmarks
38
+ type: Romanian_Academic_Benchmarks
39
+ metrics:
40
+ - name: Average accuracy
41
+ type: accuracy
42
+ value: 53.76
43
+ - task:
44
+ type: text-generation
45
+ dataset:
46
+ name: OpenLLM-Ro/ro_arc_challenge
47
+ type: OpenLLM-Ro/ro_arc_challenge
48
+ metrics:
49
+ - name: Average accuracy
50
+ type: accuracy
51
+ value: 51.09
52
+ - task:
53
+ type: text-generation
54
+ dataset:
55
+ name: OpenLLM-Ro/ro_mmlu
56
+ type: OpenLLM-Ro/ro_mmlu
57
+ metrics:
58
+ - name: Average accuracy
59
+ type: accuracy
60
+ value: 56.22
61
+ - task:
62
+ type: text-generation
63
+ dataset:
64
+ name: OpenLLM-Ro/ro_winogrande
65
+ type: OpenLLM-Ro/ro_winogrande
66
+ metrics:
67
+ - name: Average accuracy
68
+ type: accuracy
69
+ value: 66.77
70
+ - task:
71
+ type: text-generation
72
+ dataset:
73
+ name: OpenLLM-Ro/ro_hellaswag
74
+ type: OpenLLM-Ro/ro_hellaswag
75
+ metrics:
76
+ - name: Average accuracy
77
+ type: accuracy
78
+ value: 59.38
79
+ - task:
80
+ type: text-generation
81
+ dataset:
82
+ name: OpenLLM-Ro/ro_gsm8k
83
+ type: OpenLLM-Ro/ro_gsm8k
84
+ metrics:
85
+ - name: Average accuracy
86
+ type: accuracy
87
+ value: 31.54
88
+ - task:
89
+ type: text-generation
90
+ dataset:
91
+ name: OpenLLM-Ro/ro_truthfulqa
92
+ type: OpenLLM-Ro/ro_truthfulqa
93
+ metrics:
94
+ - name: Average accuracy
95
+ type: accuracy
96
+ value: 57.56
97
+ - task:
98
+ type: text-generation
99
+ dataset:
100
+ name: LaRoSeDa_binary
101
+ type: LaRoSeDa_binary
102
+ metrics:
103
+ - name: Average macro-f1
104
+ type: macro-f1
105
+ value: 96.87
106
+ - task:
107
+ type: text-generation
108
+ dataset:
109
+ name: LaRoSeDa_multiclass
110
+ type: LaRoSeDa_multiclass
111
+ metrics:
112
+ - name: Average macro-f1
113
+ type: macro-f1
114
+ value: 60.75
115
+ - task:
116
+ type: text-generation
117
+ dataset:
118
+ name: WMT_EN-RO
119
+ type: WMT_EN-RO
120
+ metrics:
121
+ - name: Average bleu
122
+ type: bleu
123
+ value: 20.30
124
+ - task:
125
+ type: text-generation
126
+ dataset:
127
+ name: WMT_RO-EN
128
+ type: WMT_RO-EN
129
+ metrics:
130
+ - name: Average bleu
131
+ type: bleu
132
+ value: 18.57
133
+ - task:
134
+ type: text-generation
135
+ dataset:
136
+ name: XQuAD
137
+ type: XQuAD
138
+ metrics:
139
+ - name: Average exact_match
140
+ type: exact_match
141
+ value: 9.22
142
+ - task:
143
+ type: text-generation
144
+ dataset:
145
+ name: XQuAD
146
+ type: XQuAD
147
+ metrics:
148
+ - name: Average f1
149
+ type: f1
150
+ value: 22.75
151
+ - task:
152
+ type: text-generation
153
+ dataset:
154
+ name: STS
155
+ type: STS
156
+ metrics:
157
+ - name: Average spearman
158
+ type: spearman
159
+ value: 30.82
160
+ - task:
161
+ type: text-generation
162
+ dataset:
163
+ name: STS
164
+ type: STS
165
+ metrics:
166
+ - name: Average pearson
167
+ type: pearson
168
+ value: 20.25
169
+ - task:
170
+ type: text-generation
171
+ dataset:
172
+ name: RoMT-Bench
173
+ type: RoMT-Bench
174
+ metrics:
175
+ - name: First turn
176
+ type: Score
177
+ value: 7.30
178
+ - name: Second turn
179
+ type: Score
180
+ value: 6.70
181
+ - task:
182
+ type: text-generation
183
+ dataset:
184
+ name: OpenLLM-Ro/ro_arc_challenge
185
+ type: OpenLLM-Ro/ro_arc_challenge
186
+ metrics:
187
+ - name: 0-shot
188
+ type: accuracy
189
+ value: 51.59
190
+ - name: 1-shot
191
+ type: accuracy
192
+ value: 52.10
193
+ - name: 3-shot
194
+ type: accuracy
195
+ value: 50.99
196
+ - name: 5-shot
197
+ type: accuracy
198
+ value: 50.81
199
+ - name: 10-shot
200
+ type: accuracy
201
+ value: 49.70
202
+ - name: 25-shot
203
+ type: accuracy
204
+ value: 51.33
205
+ - task:
206
+ type: text-generation
207
+ dataset:
208
+ name: OpenLLM-Ro/ro_mmlu
209
+ type: OpenLLM-Ro/ro_mmlu
210
+ metrics:
211
+ - name: 0-shot
212
+ type: accuracy
213
+ value: 56.88
214
+ - name: 1-shot
215
+ type: accuracy
216
+ value: 55.61
217
+ - name: 3-shot
218
+ type: accuracy
219
+ value: 56.06
220
+ - name: 5-shot
221
+ type: accuracy
222
+ value: 56.31
223
+ - task:
224
+ type: text-generation
225
+ dataset:
226
+ name: OpenLLM-Ro/ro_winogrande
227
+ type: OpenLLM-Ro/ro_winogrande
228
+ metrics:
229
+ - name: 0-shot
230
+ type: accuracy
231
+ value: 65.67
232
+ - name: 1-shot
233
+ type: accuracy
234
+ value: 66.30
235
+ - name: 3-shot
236
+ type: accuracy
237
+ value: 67.40
238
+ - name: 5-shot
239
+ type: accuracy
240
+ value: 67.72
241
+ - task:
242
+ type: text-generation
243
+ dataset:
244
+ name: OpenLLM-Ro/ro_hellaswag
245
+ type: OpenLLM-Ro/ro_hellaswag
246
+ metrics:
247
+ - name: 0-shot
248
+ type: accuracy
249
+ value: 60.53
250
+ - name: 1-shot
251
+ type: accuracy
252
+ value: 60.37
253
+ - name: 3-shot
254
+ type: accuracy
255
+ value: 58.20
256
+ - name: 5-shot
257
+ type: accuracy
258
+ value: 58.18
259
+ - name: 10-shot
260
+ type: accuracy
261
+ value: 59.61
262
+ - task:
263
+ type: text-generation
264
+ dataset:
265
+ name: OpenLLM-Ro/ro_gsm8k
266
+ type: OpenLLM-Ro/ro_gsm8k
267
+ metrics:
268
+ - name: 1-shot
269
+ type: accuracy
270
+ value: 25.09
271
+ - name: 3-shot
272
+ type: accuracy
273
+ value: 30.02
274
+ - name: 5-shot
275
+ type: accuracy
276
+ value: 39.50
277
+ - task:
278
+ type: text-generation
279
+ dataset:
280
+ name: LaRoSeDa_binary
281
+ type: LaRoSeDa_binary
282
+ metrics:
283
+ - name: 0-shot
284
+ type: macro-f1
285
+ value: 95.39
286
+ - name: 1-shot
287
+ type: macro-f1
288
+ value: 95.90
289
+ - name: 3-shot
290
+ type: macro-f1
291
+ value: 98.00
292
+ - name: 5-shot
293
+ type: macro-f1
294
+ value: 98.17
295
+ - task:
296
+ type: text-generation
297
+ dataset:
298
+ name: LaRoSeDa_multiclass
299
+ type: LaRoSeDa_multiclass
300
+ metrics:
301
+ - name: 0-shot
302
+ type: macro-f1
303
+ value: 60.30
304
+ - name: 1-shot
305
+ type: macro-f1
306
+ value: 64.73
307
+ - name: 3-shot
308
+ type: macro-f1
309
+ value: 58.69
310
+ - name: 5-shot
311
+ type: macro-f1
312
+ value: 59.30
313
+ - task:
314
+ type: text-generation
315
+ dataset:
316
+ name: WMT_EN-RO
317
+ type: WMT_EN-RO
318
+ metrics:
319
+ - name: 0-shot
320
+ type: bleu
321
+ value: 5.46
322
+ - name: 1-shot
323
+ type: bleu
324
+ value: 26.08
325
+ - name: 3-shot
326
+ type: bleu
327
+ value: 25.90
328
+ - name: 5-shot
329
+ type: bleu
330
+ value: 23.76
331
+ - task:
332
+ type: text-generation
333
+ dataset:
334
+ name: WMT_RO-EN
335
+ type: WMT_RO-EN
336
+ metrics:
337
+ - name: 0-shot
338
+ type: bleu
339
+ value: 2.74
340
+ - name: 1-shot
341
+ type: bleu
342
+ value: 20.95
343
+ - name: 3-shot
344
+ type: bleu
345
+ value: 31.53
346
+ - name: 5-shot
347
+ type: bleu
348
+ value: 19.05
349
+ - task:
350
+ type: text-generation
351
+ dataset:
352
+ name: XQuAD_EM
353
+ type: XQuAD_EM
354
+ metrics:
355
+ - name: 0-shot
356
+ type: exact_match
357
+ value: 12.27
358
+ - name: 1-shot
359
+ type: exact_match
360
+ value: 17.98
361
+ - name: 3-shot
362
+ type: exact_match
363
+ value: 5.04
364
+ - name: 5-shot
365
+ type: exact_match
366
+ value: 1.60
367
+ - task:
368
+ type: text-generation
369
+ dataset:
370
+ name: XQuAD_F1
371
+ type: XQuAD_F1
372
+ metrics:
373
+ - name: 0-shot
374
+ type: f1
375
+ value: 26.24
376
+ - name: 1-shot
377
+ type: f1
378
+ value: 32.54
379
+ - name: 3-shot
380
+ type: f1
381
+ value: 18.00
382
+ - name: 5-shot
383
+ type: f1
384
+ value: 14.22
385
+ - task:
386
+ type: text-generation
387
+ dataset:
388
+ name: STS_Spearman
389
+ type: STS_Spearman
390
+ metrics:
391
+ - name: 1-shot
392
+ type: spearman
393
+ value: 76.70
394
+ - name: 3-shot
395
+ type: spearman
396
+ value: 2.82
397
+ - name: 5-shot
398
+ type: spearman
399
+ value: 12.95
400
+ - task:
401
+ type: text-generation
402
+ dataset:
403
+ name: STS_Pearson
404
+ type: STS_Pearson
405
+ metrics:
406
+ - name: 1-shot
407
+ type: pearson
408
+ value: 77.30
409
+ - name: 3-shot
410
+ type: pearson
411
+ value: -14.56
412
+ - name: 5-shot
413
+ type: pearson
414
+ value: -1.99
415
+
416
+ ---
417
+
418
+ # Model Card for Model ID
419
+
420
+ *Built with Meta Llama 3.1*
421
+
422
+
423
+ <!-- Provide a quick summary of what the model is/does. -->
424
+
425
+ RoLlama3.1 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **human aligned instruct 8B model**. Links to other models can be found at the bottom of this page.
426
+
427
+
428
+ ## Model Details
429
+
430
+ ### Model Description
431
+
432
+ <!-- Provide a longer summary of what this model is. -->
433
+ OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
434
+
435
+
436
+ - **Developed by:** OpenLLM-Ro
437
+ <!-- - **Funded by [optional]:** [More Information Needed] -->
438
+ <!-- - **Shared by [optional]:** [More Information Needed] -->
439
+ <!-- - **Model type:** [More Information Needed] -->
440
+ - **Language(s):** Romanian
441
+ - **License:** cc-by-nc-4.0
442
+ - **Finetuned from model:** [RoLlama3.1-8b-Instruct-2025-04-23](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-2025-04-23)
443
+ - **Trained using:** [RoHelpSteer](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_helpsteer), [RoUltraFeedback](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_ultrafeedback), [RoMagpieDPO](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_magpie), [RoArgillaMagpie](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_argilla_magpie), [RoHelpSteer2](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_helpsteer2)
444
+
445
+ ### Model Sources
446
+
447
+ <!-- Provide the basic links for the model. -->
448
+
449
+ - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
450
+ - **Paper:** https://arxiv.org/abs/2406.18266
451
+
452
+ ## Intended Use
453
+
454
+ ### Intended Use Cases
455
+
456
+ RoLlama3.1 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
457
+
458
+ ### Out-of-Scope Use
459
+
460
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
461
+
462
+ Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
463
+
464
+
465
+
466
+ ## How to Get Started with the Model
467
+
468
+ Use the code below to get started with the model.
469
+
470
+ ```python
471
+ from transformers import AutoTokenizer, AutoModelForCausalLM
472
+
473
+ tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-2025-04-23")
474
+ model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-2025-04-23")
475
+
476
+ instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
477
+ chat = [
478
+ {"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."},
479
+ {"role": "user", "content": instruction},
480
+ ]
481
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
482
+
483
+ inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
484
+ outputs = model.generate(input_ids=inputs, max_new_tokens=128)
485
+ print(tokenizer.decode(outputs[0]))
486
+ ```
487
+
488
+ ## Academic Benchmarks
489
+
490
+
491
+ <table>
492
+ <tbody>
493
+ <tr>
494
+ <td><strong>Model</strong></td>
495
+ <td><strong><center>Average</center></strong></td>
496
+ <td><strong><center>ARC</center></strong></td>
497
+ <td><strong><center>MMLU</center></strong></td>
498
+ <td><strong><center>Winogrande</center></strong></td>
499
+ <td><strong><center>Hellaswag</center></strong></td>
500
+ <td><strong><center>GSM8k</center></strong></td>
501
+ <td><strong><center>TruthfulQA</center></strong></td>
502
+ </tr>
503
+ <tr>
504
+ <td>Llama-3.1-8B-Instruct</td><td><center>49.87</center></td><td><center>42.86</center></td><td><center>53.73</center></td><td><center>59.71</center></td><td><center>56.82</center></td><td><center>35.56</center></td><td><center>50.54</center></td>
505
+ </tr>
506
+ <tr>
507
+ <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>53.03</center></td><td><center>47.69</center></td><td><center>54.57</center></td><td><center>65.84</center></td><td><center>59.94</center></td><td><center><strong>44.30</strong></center></td><td><center>45.82</center></td>
508
+ </tr>
509
+ <tr>
510
+ <td>RoLlama3.1-8b-Instruct-2025-04-23</td><td><center>53.36</center></td><td><center>48.97</center></td><td><center>55.17</center></td><td><center>66.52</center></td><td><center><strong>60.73</strong></center></td><td><center>42.03</center></td><td><center>46.71</center></td>
511
+ </tr>
512
+ <tr>
513
+ <td>RoLlama3.1-8b-Instruct-DPO-2024-10-09</td><td><center>52.74</center></td><td><center>44.84</center></td><td><center>55.06</center></td><td><center>65.87</center></td><td><center>58.67</center></td><td><center>44.17</center></td><td><center>47.82</center></td>
514
+ </tr>
515
+ <tr>
516
+ <td><em>RoLlama3.1-8b-Instruct-DPO-2025-04-23</em></td><td><center><em><strong>53.76</strong></em></center></td><td><center><em><strong>51.09</strong></em></center></td><td><center><em><strong>56.22</strong></em></center></td><td><center><em><strong>66.77</strong></em></center></td><td><center><em>59.38</em></center></td><td><center><em>31.54</em></center></td><td><center><em><strong>57.56</strong></em></center></td>
517
+ </tr>
518
+ </tbody>
519
+ </table>
520
+
521
+
522
+
523
+ ## Downstream tasks
524
+
525
+ <table>
526
+ <tbody>
527
+ <tr>
528
+ <td></td>
529
+ <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
530
+ <td colspan="4"><center><strong>WMT</strong></center></td>
531
+ </tr>
532
+ <tr>
533
+ <td></td>
534
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
535
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
536
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
537
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
538
+ </tr>
539
+ <tr>
540
+ <td><strong>Model</strong></td>
541
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
542
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
543
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
544
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
545
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
546
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
547
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
548
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center>
549
+ </tr>
550
+ <tr>
551
+ <td>Llama-3.1-8B-Instruct</td><td><center>95.74</center></td><td><center>59.49</center></td><td><center><strong>98.57</strong></center></td><td><center>82.41</center></td><td><center>19.01</center></td><td><center><strong>27.77</strong></center></td><td><center><strong>29.02</strong></center></td><td><center>39.80</center></td>
552
+ </tr>
553
+ <tr>
554
+ <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>94.56</center></td><td><center>60.10</center></td><td><center>95.12</center></td><td><center><strong>87.53</strong></center></td><td><center>21.88</center></td><td><center>23.99</center></td><td><center>28.27</center></td><td><center><strong>40.44</strong></center></td>
555
+ </tr>
556
+ <tr>
557
+ <td>RoLlama3.1-8b-Instruct-2025-04-23</td><td><center>95.32</center></td><td><center><strong>60.84</strong></center></td><td><center>-</center></td><td><center>-</center></td><td><center><strong>23.18</strong></center></td><td><center>25.11</center></td><td><center>-</center></td><td><center>-</center></td>
558
+ </tr>
559
+ <tr>
560
+ <td>RoLlama3.1-8b-Instruct-DPO-2024-10-09</td><td><center>96.10</center></td><td><center>55.37</center></td><td><center>-</center></td><td><center>-</center></td><td><center>21.29</center></td><td><center>21.86</center></td><td><center>-</center></td><td><center>-</center></td>
561
+ </tr>
562
+ <tr>
563
+ <td><em>RoLlama3.1-8b-Instruct-DPO-2025-04-23</em></td><td><center><em><strong>96.87</strong></em></center></td><td><center><em>60.75</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>20.30</em></center></td><td><center><em>18.57</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
564
+ </tr>
565
+ </tbody>
566
+ </table>
567
+
568
+
569
+ <table>
570
+ <tbody>
571
+ <tr>
572
+ <td></td>
573
+ <td colspan="4"><center><strong>XQuAD</strong></center></td>
574
+ <td colspan="4"><center><strong>STS</strong></center></td>
575
+ </tr>
576
+ <tr>
577
+ <td></td>
578
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
579
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
580
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
581
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
582
+ </tr>
583
+ <tr>
584
+ <td><strong>Model</strong></td>
585
+ <td><center><strong>(EM)</strong></center></td>
586
+ <td><center><strong>(F1)</strong></center></td>
587
+ <td><center><strong>(EM)</strong></center></td>
588
+ <td><center><strong>(F1)</strong></center></td>
589
+ <td><center><strong>(Spearman)</strong></center></td>
590
+ <td><center><strong>(Pearson)</strong></center></td>
591
+ <td><center><strong>(Spearman)</strong></center></td>
592
+ <td><center><strong>(Pearson)</strong></center></td>
593
+ </tr>
594
+ <tr>
595
+ <td>Llama-3.1-8B-Instruct</td><td><center><strong>44.96</strong></center></td><td><center><strong>64.45</strong></center></td><td><center><strong>69.50</strong></center></td><td><center><strong>84.31</strong></center></td><td><center>72.11</center></td><td><center>71.64</center></td><td><center>84.59</center></td><td><center>84.96</center></td>
596
+ </tr>
597
+ <tr>
598
+ <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>13.59</center></td><td><center>23.56</center></td><td><center>49.41</center></td><td><center>62.93</center></td><td><center>75.89</center></td><td><center>76.00</center></td><td><center><strong>86.86</strong></center></td><td><center><strong>87.05</strong></center></td>
599
+ </tr>
600
+ <tr>
601
+ <td>RoLlama3.1-8b-Instruct-2025-04-23</td><td><center>10.74</center></td><td><center>19.75</center></td><td><center>-</center></td><td><center>-</center></td><td><center>73.53</center></td><td><center>74.93</center></td><td><center>-</center></td><td><center>-</center></td>
602
+ </tr>
603
+ <tr>
604
+ <td>RoLlama3.1-8b-Instruct-DPO-2024-10-09</td><td><center>21.58</center></td><td><center>36.54</center></td><td><center>-</center></td><td><center>-</center></td><td><center><strong>78.01</strong></center></td><td><center><strong>77.98</strong></center></td><td><center>-</center></td><td><center>-</center></td>
605
+ </tr>
606
+ <tr>
607
+ <td><em>RoLlama3.1-8b-Instruct-DPO-2025-04-23</em></td><td><center><em>9.22</em></center></td><td><center><em>22.75</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>30.82</em></center></td><td><center><em>20.25</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
608
+ </tr>
609
+ </tbody>
610
+ </table>
611
+
612
+ ## MT-Bench
613
+
614
+ <table>
615
+ <tbody>
616
+ <tr>
617
+ <td><strong>Model</strong></td>
618
+ <td><strong><center>Average</center></strong></td>
619
+ <td><strong><center>1st turn</center></strong></td>
620
+ <td><strong><center>2nd turn</center></strong></td>
621
+ <td><strong><center>Answers in Ro</center></strong></td>
622
+ </tr>
623
+ <tr>
624
+ <td>Llama-3.1-8B-Instruct</td><td><center>5.69</center></td><td><center>5.85</center></td><td><center>5.53</center></td><td><center><strong>160/160</strong></center></td>
625
+ </tr>
626
+ <tr>
627
+ <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>5.42</center></td><td><center>5.95</center></td><td><center>4.89</center></td><td><center><strong>160/160</strong></center></td>
628
+ </tr>
629
+ <tr>
630
+ <td>RoLlama3.1-8b-Instruct-2025-04-23</td><td><center>6.43</center></td><td><center>6.78</center></td><td><center>6.09</center></td><td><center><strong>160/160</strong></center></td>
631
+ </tr>
632
+ <tr>
633
+ <td>RoLlama3.1-8b-Instruct-DPO-2024-10-09</td><td><center>6.21</center></td><td><center>6.74</center></td><td><center>5.69</center></td><td><center><strong>160/160</strong></center></td>
634
+ </tr>
635
+ <tr>
636
+ <td><em>RoLlama3.1-8b-Instruct-DPO-2025-04-23</em></td><td><center><em><strong>7.00</strong></em></center></td><td><center><em><strong>7.30</strong></em></center></td><td><center><em><strong>6.70</strong></em></center></td><td><center><em><strong>160/160</strong></em></center></td>
637
+ </tr>
638
+ </tbody>
639
+ </table>
640
+
641
+
642
+ ## RoCulturaBench
643
+
644
+ <table>
645
+ <tbody>
646
+ <tr>
647
+ <td><strong>Model</strong></td>
648
+ <td><strong><center>Average</center></strong></td>
649
+ <td><strong><center>Answers in Ro</center></strong></td>
650
+ </tr>
651
+ <tr>
652
+ <td>Llama-3.1-8B-Instruct</td><td><center>3.54</center></td><td><center><strong>100/100</strong></center></td>
653
+ </tr>
654
+ <tr>
655
+ <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>3.55</center></td><td><center><strong>100/100</strong></center></td>
656
+ </tr>
657
+ <tr>
658
+ <td>RoLlama3.1-8b-Instruct-2025-04-23</td><td><center>4.28</center></td><td><center><strong>100/100</strong></center></td>
659
+ </tr>
660
+ <tr>
661
+ <td>RoLlama3.1-8b-Instruct-DPO-2024-10-09</td><td><center>4.42</center></td><td><center><strong>100/100</strong></center></td>
662
+ </tr>
663
+ <tr>
664
+ <td><em>RoLlama3.1-8b-Instruct-DPO-2025-04-23</em></td><td><center><em><strong>4.73</strong></em></center></td><td><center><em><strong>100/100</strong></em></center></td>
665
+ </tr>
666
+ </tbody>
667
+ </table>
668
+
669
+
670
+
671
+ ## RoLlama3.1 Model Family
672
+
673
+ | Model | Link |
674
+ |--------------------|:--------:|
675
+ |RoLlama3.1-8b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-2024-10-09) |
676
+ |RoLlama3.1-8b-Instruct-2025-04-23| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-2025-04-23) |
677
+ |RoLlama3.1-8b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-2024-10-09) |
678
+ |*RoLlama3.1-8b-Instruct-DPO-2025-04-23*| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-2025-04-23) |
679
+
680
+
681
+ ## Citation
682
+
683
+ ```
684
+ @misc{masala2024vorbecstiromanecsterecipetrain,
685
+ title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
686
+ author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
687
+ year={2024},
688
+ eprint={2406.18266},
689
+ archivePrefix={arXiv},
690
+ primaryClass={cs.CL},
691
+ url={https://arxiv.org/abs/2406.18266},
692
+ }
693
+ ```
694
+ <!-- **APA:**
695
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
696
  [More Information Needed] -->