mihaimasala commited on
Commit
e2f72ac
·
verified ·
1 Parent(s): 7c39535

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +702 -701
README.md CHANGED
@@ -1,702 +1,703 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- language:
4
- - ro
5
- base_model:
6
- - meta-llama/Llama-3.1-8B-Instruct
7
- datasets:
8
- - OpenLLM-Ro/ro_sft_alpaca
9
- - OpenLLM-Ro/ro_sft_alpaca_gpt4
10
- - OpenLLM-Ro/ro_sft_dolly
11
- - OpenLLM-Ro/ro_sft_selfinstruct_gpt4
12
- - OpenLLM-Ro/ro_sft_norobots
13
- - OpenLLM-Ro/ro_sft_orca
14
- - OpenLLM-Ro/ro_sft_camel
15
- - OpenLLM-Ro/ro_sft_oasst
16
- - OpenLLM-Ro/ro_sft_ultrachat
17
- - OpenLLM-Ro/ro_sft_magpie_mt
18
- - OpenLLM-Ro/ro_sft_magpie_reasoning
19
- model-index:
20
- - name: OpenLLM-Ro/RoLlama3.1-8b-Instruct-2025-04-23
21
- results:
22
- - task:
23
- type: text-generation
24
- dataset:
25
- name: RoMT-Bench
26
- type: RoMT-Bench
27
- metrics:
28
- - name: Score
29
- type: Score
30
- value: 6.43
31
- - task:
32
- type: text-generation
33
- dataset:
34
- name: RoCulturaBench
35
- type: RoCulturaBench
36
- metrics:
37
- - name: Score
38
- type: Score
39
- value: 4.28
40
- - task:
41
- type: text-generation
42
- dataset:
43
- name: Romanian_Academic_Benchmarks
44
- type: Romanian_Academic_Benchmarks
45
- metrics:
46
- - name: Average accuracy
47
- type: accuracy
48
- value: 53.36
49
- - task:
50
- type: text-generation
51
- dataset:
52
- name: OpenLLM-Ro/ro_arc_challenge
53
- type: OpenLLM-Ro/ro_arc_challenge
54
- metrics:
55
- - name: Average accuracy
56
- type: accuracy
57
- value: 48.97
58
- - task:
59
- type: text-generation
60
- dataset:
61
- name: OpenLLM-Ro/ro_mmlu
62
- type: OpenLLM-Ro/ro_mmlu
63
- metrics:
64
- - name: Average accuracy
65
- type: accuracy
66
- value: 55.17
67
- - task:
68
- type: text-generation
69
- dataset:
70
- name: OpenLLM-Ro/ro_winogrande
71
- type: OpenLLM-Ro/ro_winogrande
72
- metrics:
73
- - name: Average accuracy
74
- type: accuracy
75
- value: 66.52
76
- - task:
77
- type: text-generation
78
- dataset:
79
- name: OpenLLM-Ro/ro_hellaswag
80
- type: OpenLLM-Ro/ro_hellaswag
81
- metrics:
82
- - name: Average accuracy
83
- type: accuracy
84
- value: 60.73
85
- - task:
86
- type: text-generation
87
- dataset:
88
- name: OpenLLM-Ro/ro_gsm8k
89
- type: OpenLLM-Ro/ro_gsm8k
90
- metrics:
91
- - name: Average accuracy
92
- type: accuracy
93
- value: 42.03
94
- - task:
95
- type: text-generation
96
- dataset:
97
- name: OpenLLM-Ro/ro_truthfulqa
98
- type: OpenLLM-Ro/ro_truthfulqa
99
- metrics:
100
- - name: Average accuracy
101
- type: accuracy
102
- value: 46.71
103
- - task:
104
- type: text-generation
105
- dataset:
106
- name: LaRoSeDa_binary
107
- type: LaRoSeDa_binary
108
- metrics:
109
- - name: Average macro-f1
110
- type: macro-f1
111
- value: 95.32
112
- - task:
113
- type: text-generation
114
- dataset:
115
- name: LaRoSeDa_multiclass
116
- type: LaRoSeDa_multiclass
117
- metrics:
118
- - name: Average macro-f1
119
- type: macro-f1
120
- value: 60.84
121
- - task:
122
- type: text-generation
123
- dataset:
124
- name: WMT_EN-RO
125
- type: WMT_EN-RO
126
- metrics:
127
- - name: Average bleu
128
- type: bleu
129
- value: 23.18
130
- - task:
131
- type: text-generation
132
- dataset:
133
- name: WMT_RO-EN
134
- type: WMT_RO-EN
135
- metrics:
136
- - name: Average bleu
137
- type: bleu
138
- value: 25.11
139
- - task:
140
- type: text-generation
141
- dataset:
142
- name: XQuAD
143
- type: XQuAD
144
- metrics:
145
- - name: Average exact_match
146
- type: exact_match
147
- value: 10.74
148
- - task:
149
- type: text-generation
150
- dataset:
151
- name: XQuAD
152
- type: XQuAD
153
- metrics:
154
- - name: Average f1
155
- type: f1
156
- value: 19.75
157
- - task:
158
- type: text-generation
159
- dataset:
160
- name: STS
161
- type: STS
162
- metrics:
163
- - name: Average spearman
164
- type: spearman
165
- value: 73.53
166
- - task:
167
- type: text-generation
168
- dataset:
169
- name: STS
170
- type: STS
171
- metrics:
172
- - name: Average pearson
173
- type: pearson
174
- value: 74.93
175
- - task:
176
- type: text-generation
177
- dataset:
178
- name: RoMT-Bench
179
- type: RoMT-Bench
180
- metrics:
181
- - name: First turn
182
- type: Score
183
- value: 6.78
184
- - name: Second turn
185
- type: Score
186
- value: 6.09
187
- - task:
188
- type: text-generation
189
- dataset:
190
- name: OpenLLM-Ro/ro_arc_challenge
191
- type: OpenLLM-Ro/ro_arc_challenge
192
- metrics:
193
- - name: 0-shot
194
- type: accuracy
195
- value: 45.24
196
- - name: 1-shot
197
- type: accuracy
198
- value: 47.67
199
- - name: 3-shot
200
- type: accuracy
201
- value: 49.36
202
- - name: 5-shot
203
- type: accuracy
204
- value: 50.13
205
- - name: 10-shot
206
- type: accuracy
207
- value: 50.81
208
- - name: 25-shot
209
- type: accuracy
210
- value: 50.64
211
- - task:
212
- type: text-generation
213
- dataset:
214
- name: OpenLLM-Ro/ro_mmlu
215
- type: OpenLLM-Ro/ro_mmlu
216
- metrics:
217
- - name: 0-shot
218
- type: accuracy
219
- value: 54.23
220
- - name: 1-shot
221
- type: accuracy
222
- value: 56.36
223
- - name: 3-shot
224
- type: accuracy
225
- value: 55.34
226
- - name: 5-shot
227
- type: accuracy
228
- value: 54.74
229
- - task:
230
- type: text-generation
231
- dataset:
232
- name: OpenLLM-Ro/ro_winogrande
233
- type: OpenLLM-Ro/ro_winogrande
234
- metrics:
235
- - name: 0-shot
236
- type: accuracy
237
- value: 64.96
238
- - name: 1-shot
239
- type: accuracy
240
- value: 66.77
241
- - name: 3-shot
242
- type: accuracy
243
- value: 67.09
244
- - name: 5-shot
245
- type: accuracy
246
- value: 67.25
247
- - task:
248
- type: text-generation
249
- dataset:
250
- name: OpenLLM-Ro/ro_hellaswag
251
- type: OpenLLM-Ro/ro_hellaswag
252
- metrics:
253
- - name: 0-shot
254
- type: accuracy
255
- value: 59.72
256
- - name: 1-shot
257
- type: accuracy
258
- value: 60.30
259
- - name: 3-shot
260
- type: accuracy
261
- value: 60.87
262
- - name: 5-shot
263
- type: accuracy
264
- value: 61.14
265
- - name: 10-shot
266
- type: accuracy
267
- value: 61.63
268
- - task:
269
- type: text-generation
270
- dataset:
271
- name: OpenLLM-Ro/ro_gsm8k
272
- type: OpenLLM-Ro/ro_gsm8k
273
- metrics:
274
- - name: 1-shot
275
- type: accuracy
276
- value: 30.86
277
- - name: 3-shot
278
- type: accuracy
279
- value: 43.90
280
- - name: 5-shot
281
- type: accuracy
282
- value: 51.33
283
- - task:
284
- type: text-generation
285
- dataset:
286
- name: LaRoSeDa_binary
287
- type: LaRoSeDa_binary
288
- metrics:
289
- - name: 0-shot
290
- type: macro-f1
291
- value: 90.97
292
- - name: 1-shot
293
- type: macro-f1
294
- value: 95.53
295
- - name: 3-shot
296
- type: macro-f1
297
- value: 97.10
298
- - name: 5-shot
299
- type: macro-f1
300
- value: 97.67
301
- - task:
302
- type: text-generation
303
- dataset:
304
- name: LaRoSeDa_multiclass
305
- type: LaRoSeDa_multiclass
306
- metrics:
307
- - name: 0-shot
308
- type: macro-f1
309
- value: 63.20
310
- - name: 1-shot
311
- type: macro-f1
312
- value: 64.47
313
- - name: 3-shot
314
- type: macro-f1
315
- value: 55.88
316
- - name: 5-shot
317
- type: macro-f1
318
- value: 59.80
319
- - task:
320
- type: text-generation
321
- dataset:
322
- name: WMT_EN-RO
323
- type: WMT_EN-RO
324
- metrics:
325
- - name: 0-shot
326
- type: bleu
327
- value: 4.92
328
- - name: 1-shot
329
- type: bleu
330
- value: 28.01
331
- - name: 3-shot
332
- type: bleu
333
- value: 30.16
334
- - name: 5-shot
335
- type: bleu
336
- value: 29.61
337
- - task:
338
- type: text-generation
339
- dataset:
340
- name: WMT_RO-EN
341
- type: WMT_RO-EN
342
- metrics:
343
- - name: 0-shot
344
- type: bleu
345
- value: 1.43
346
- - name: 1-shot
347
- type: bleu
348
- value: 24.78
349
- - name: 3-shot
350
- type: bleu
351
- value: 37.31
352
- - name: 5-shot
353
- type: bleu
354
- value: 36.93
355
- - task:
356
- type: text-generation
357
- dataset:
358
- name: XQuAD_EM
359
- type: XQuAD_EM
360
- metrics:
361
- - name: 0-shot
362
- type: exact_match
363
- value: 11.18
364
- - name: 1-shot
365
- type: exact_match
366
- value: 26.47
367
- - name: 3-shot
368
- type: exact_match
369
- value: 3.95
370
- - name: 5-shot
371
- type: exact_match
372
- value: 1.34
373
- - task:
374
- type: text-generation
375
- dataset:
376
- name: XQuAD_F1
377
- type: XQuAD_F1
378
- metrics:
379
- - name: 0-shot
380
- type: f1
381
- value: 25.76
382
- - name: 1-shot
383
- type: f1
384
- value: 39.25
385
- - name: 3-shot
386
- type: f1
387
- value: 8.40
388
- - name: 5-shot
389
- type: f1
390
- value: 5.58
391
- - task:
392
- type: text-generation
393
- dataset:
394
- name: STS_Spearman
395
- type: STS_Spearman
396
- metrics:
397
- - name: 1-shot
398
- type: spearman
399
- value: 73.52
400
- - name: 3-shot
401
- type: spearman
402
- value: 74.02
403
- - name: 5-shot
404
- type: spearman
405
- value: 73.06
406
- - task:
407
- type: text-generation
408
- dataset:
409
- name: STS_Pearson
410
- type: STS_Pearson
411
- metrics:
412
- - name: 1-shot
413
- type: pearson
414
- value: 75.81
415
- - name: 3-shot
416
- type: pearson
417
- value: 74.54
418
- - name: 5-shot
419
- type: pearson
420
- value: 74.43
421
-
422
- ---
423
-
424
- # Model Card for Model ID
425
-
426
- *Built with Meta Llama 3.1*
427
-
428
-
429
- <!-- Provide a quick summary of what the model is/does. -->
430
-
431
- RoLlama3.1 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **instruct 8B model**. Links to other models can be found at the bottom of this page.
432
-
433
-
434
- ## Model Details
435
-
436
- ### Model Description
437
-
438
- <!-- Provide a longer summary of what this model is. -->
439
- OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
440
-
441
-
442
- - **Developed by:** OpenLLM-Ro
443
- <!-- - **Funded by [optional]:** [More Information Needed] -->
444
- <!-- - **Shared by [optional]:** [More Information Needed] -->
445
- <!-- - **Model type:** [More Information Needed] -->
446
- - **Language(s):** Romanian
447
- - **License:** cc-by-nc-4.0
448
- - **Finetuned from model:** [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)
449
- - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel), [RoOpenAssistant](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_oasst), [RoUltraChat](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_ultrachat), [RoMagpiePro](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_magpie_mt), [RoMagpieReasoning](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_magpie_reasoning)
450
-
451
-
452
- ### Model Sources
453
-
454
- <!-- Provide the basic links for the model. -->
455
-
456
- - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
457
- - **Paper:** https://arxiv.org/abs/2406.18266
458
-
459
- ## Intended Use
460
-
461
- ### Intended Use Cases
462
-
463
- RoLlama3.1 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
464
-
465
- ### Out-of-Scope Use
466
-
467
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
468
-
469
- Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
470
-
471
-
472
-
473
- ## How to Get Started with the Model
474
-
475
- Use the code below to get started with the model.
476
-
477
- ```python
478
- from transformers import AutoTokenizer, AutoModelForCausalLM
479
-
480
- tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama3.1-8b-Instruct-2025-04-23")
481
- model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama3.1-8b-Instruct-2025-04-23")
482
-
483
- instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
484
- chat = [
485
- {"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."},
486
- {"role": "user", "content": instruction},
487
- ]
488
- prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
489
-
490
- inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
491
- outputs = model.generate(input_ids=inputs, max_new_tokens=128)
492
- print(tokenizer.decode(outputs[0]))
493
- ```
494
-
495
- ## Academic Benchmarks
496
-
497
- <table>
498
- <tbody>
499
- <tr>
500
- <td><strong>Model</strong></td>
501
- <td><strong><center>Average</center></strong></td>
502
- <td><strong><center>ARC</center></strong></td>
503
- <td><strong><center>MMLU</center></strong></td>
504
- <td><strong><center>Winogrande</center></strong></td>
505
- <td><strong><center>Hellaswag</center></strong></td>
506
- <td><strong><center>GSM8k</center></strong></td>
507
- <td><strong><center>TruthfulQA</center></strong></td>
508
- </tr>
509
- <tr>
510
- <td>Llama-3.1-8B-Instruct</td><td><center>49.87</center></td><td><center>42.86</center></td><td><center>53.73</center></td><td><center>59.71</center></td><td><center>56.82</center></td><td><center>35.56</center></td><td><center>50.54</center></td>
511
- </tr>
512
- <tr>
513
- <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>53.03</center></td><td><center>47.69</center></td><td><center>54.57</center></td><td><center>65.84</center></td><td><center>59.94</center></td><td><center><strong>44.30</strong></center></td><td><center>45.82</center></td>
514
- </tr>
515
- <tr>
516
- <td><em>RoLlama3.1-8b-Instruct-2025-04-23</em></td><td><center><em>53.36</em></center></td><td><center><em>48.97</em></center></td><td><center><em>55.17</em></center></td><td><center><em>66.52</em></center></td><td><center><em><strong>60.73</strong></em></center></td><td><center><em>42.03</em></center></td><td><center><em>46.71</em></center></td>
517
- </tr>
518
- <tr>
519
- <td>RoLlama3.1-8b-Instruct-DPO-2024-10-09</td><td><center>52.74</center></td><td><center>44.84</center></td><td><center>55.06</center></td><td><center>65.87</center></td><td><center>58.67</center></td><td><center>44.17</center></td><td><center>47.82</center></td>
520
- </tr>
521
- <tr>
522
- <td>RoLlama3.1-8b-Instruct-DPO-2025-04-23</td><td><center><strong>53.76</strong></center></td><td><center><strong>51.09</strong></center></td><td><center><strong>56.22</strong></center></td><td><center><strong>66.77</strong></center></td><td><center>59.38</center></td><td><center>31.54</center></td><td><center><strong>57.56</strong></center></td>
523
- </tr>
524
- </tbody>
525
- </table>
526
-
527
-
528
-
529
- ## Downstream tasks
530
-
531
- <table>
532
- <tbody>
533
- <tr>
534
- <td></td>
535
- <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
536
- <td colspan="4"><center><strong>WMT</strong></center></td>
537
- </tr>
538
- <tr>
539
- <td></td>
540
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
541
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
542
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
543
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
544
- </tr>
545
- <tr>
546
- <td><strong>Model</strong></td>
547
- <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
548
- <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
549
- <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
550
- <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
551
- <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
552
- <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
553
- <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
554
- <td><center><strong>RO-EN<br>(Bleu)</strong></center>
555
- </tr>
556
- <tr>
557
- <td>Llama-3.1-8B-Instruct</td><td><center>95.74</center></td><td><center>59.49</center></td><td><center><strong>98.57</strong></center></td><td><center>82.41</center></td><td><center>19.01</center></td><td><center><strong>27.77</strong></center></td><td><center><strong>29.02</strong></center></td><td><center>39.80</center></td>
558
- </tr>
559
- <tr>
560
- <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>94.56</center></td><td><center>60.10</center></td><td><center>95.12</center></td><td><center><strong>87.53</strong></center></td><td><center>21.88</center></td><td><center>23.99</center></td><td><center>28.27</center></td><td><center><strong>40.44</strong></center></td>
561
- </tr>
562
- <tr>
563
- <td><em>RoLlama3.1-8b-Instruct-2025-04-23</em></td><td><center><em>95.32</em></center></td><td><center><em><strong>60.84</strong></em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em><strong>23.18</strong></em></center></td><td><center><em>25.11</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
564
- </tr>
565
- <tr>
566
- <td>RoLlama3.1-8b-Instruct-DPO-2024-10-09</td><td><center>96.10</center></td><td><center>55.37</center></td><td><center>-</center></td><td><center>-</center></td><td><center>21.29</center></td><td><center>21.86</center></td><td><center>-</center></td><td><center>-</center></td>
567
- </tr>
568
- <tr>
569
- <td>RoLlama3.1-8b-Instruct-DPO-2025-04-23</td><td><center><strong>96.87</strong></center></td><td><center>60.75</center></td><td><center>-</center></td><td><center>-</center></td><td><center>20.30</center></td><td><center>18.57</center></td><td><center>-</center></td><td><center>-</center></td>
570
- </tr>
571
- </tbody>
572
- </table>
573
-
574
-
575
- <table>
576
- <tbody>
577
- <tr>
578
- <td></td>
579
- <td colspan="4"><center><strong>XQuAD</strong></center></td>
580
- <td colspan="4"><center><strong>STS</strong></center></td>
581
- </tr>
582
- <tr>
583
- <td></td>
584
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
585
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
586
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
587
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
588
- </tr>
589
- <tr>
590
- <td><strong>Model</strong></td>
591
- <td><center><strong>(EM)</strong></center></td>
592
- <td><center><strong>(F1)</strong></center></td>
593
- <td><center><strong>(EM)</strong></center></td>
594
- <td><center><strong>(F1)</strong></center></td>
595
- <td><center><strong>(Spearman)</strong></center></td>
596
- <td><center><strong>(Pearson)</strong></center></td>
597
- <td><center><strong>(Spearman)</strong></center></td>
598
- <td><center><strong>(Pearson)</strong></center></td>
599
- </tr>
600
- <tr>
601
- <td>Llama-3.1-8B-Instruct</td><td><center><strong>44.96</strong></center></td><td><center><strong>64.45</strong></center></td><td><center><strong>69.50</strong></center></td><td><center><strong>84.31</strong></center></td><td><center>72.11</center></td><td><center>71.64</center></td><td><center>84.59</center></td><td><center>84.96</center></td>
602
- </tr>
603
- <tr>
604
- <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>13.59</center></td><td><center>23.56</center></td><td><center>49.41</center></td><td><center>62.93</center></td><td><center>75.89</center></td><td><center>76.00</center></td><td><center><strong>86.86</strong></center></td><td><center><strong>87.05</strong></center></td>
605
- </tr>
606
- <tr>
607
- <td><em>RoLlama3.1-8b-Instruct-2025-04-23</em></td><td><center><em>10.74</em></center></td><td><center><em>19.75</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>73.53</em></center></td><td><center><em>74.93</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
608
- </tr>
609
- <tr>
610
- <td>RoLlama3.1-8b-Instruct-DPO-2024-10-09</td><td><center>21.58</center></td><td><center>36.54</center></td><td><center>-</center></td><td><center>-</center></td><td><center><strong>78.01</strong></center></td><td><center><strong>77.98</strong></center></td><td><center>-</center></td><td><center>-</center></td>
611
- </tr>
612
- <tr>
613
- <td>RoLlama3.1-8b-Instruct-DPO-2025-04-23</td><td><center>9.22</center></td><td><center>22.75</center></td><td><center>-</center></td><td><center>-</center></td><td><center>30.82</center></td><td><center>20.25</center></td><td><center>-</center></td><td><center>-</center></td>
614
- </tr>
615
- </tbody>
616
- </table>
617
-
618
- ## MT-Bench
619
-
620
- <table>
621
- <tbody>
622
- <tr>
623
- <td><strong>Model</strong></td>
624
- <td><strong><center>Average</center></strong></td>
625
- <td><strong><center>1st turn</center></strong></td>
626
- <td><strong><center>2nd turn</center></strong></td>
627
- <td><strong><center>Answers in Ro</center></strong></td>
628
- </tr>
629
- <tr>
630
- <td>Llama-3.1-8B-Instruct</td><td><center>5.69</center></td><td><center>5.85</center></td><td><center>5.53</center></td><td><center><strong>160/160</strong></center></td>
631
- </tr>
632
- <tr>
633
- <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>5.42</center></td><td><center>5.95</center></td><td><center>4.89</center></td><td><center><strong>160/160</strong></center></td>
634
- </tr>
635
- <tr>
636
- <td><em>RoLlama3.1-8b-Instruct-2025-04-23</em></td><td><center><em>6.43</em></center></td><td><center><em>6.78</em></center></td><td><center><em>6.09</em></center></td><td><center><em><strong>160/160</strong></em></center></td>
637
- </tr>
638
- <tr>
639
- <td>RoLlama3.1-8b-Instruct-DPO-2024-10-09</td><td><center>6.21</center></td><td><center>6.74</center></td><td><center>5.69</center></td><td><center><strong>160/160</strong></center></td>
640
- </tr>
641
- <tr>
642
- <td>RoLlama3.1-8b-Instruct-DPO-2025-04-23</td><td><center><strong>7.00</strong></center></td><td><center><strong>7.30</strong></center></td><td><center><strong>6.70</strong></center></td><td><center><strong>160/160</strong></center></td>
643
- </tr>
644
- </tbody>
645
- </table>
646
-
647
-
648
- ## RoCulturaBench
649
-
650
- <table>
651
- <tbody>
652
- <tr>
653
- <td><strong>Model</strong></td>
654
- <td><strong><center>Average</center></strong></td>
655
- <td><strong><center>Answers in Ro</center></strong></td>
656
- </tr>
657
- <tr>
658
- <td>Llama-3.1-8B-Instruct</td><td><center>3.54</center></td><td><center><strong>100/100</strong></center></td>
659
- </tr>
660
- <tr>
661
- <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>3.55</center></td><td><center><strong>100/100</strong></center></td>
662
- </tr>
663
- <tr>
664
- <td><em>RoLlama3.1-8b-Instruct-2025-04-23</em></td><td><center><em>4.28</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
665
- </tr>
666
- <tr>
667
- <td>RoLlama3.1-8b-Instruct-DPO-2024-10-09</td><td><center>4.42</center></td><td><center><strong>100/100</strong></center></td>
668
- </tr>
669
- <tr>
670
- <td>RoLlama3.1-8b-Instruct-DPO-2025-04-23</td><td><center><strong>4.73</strong></center></td><td><center><strong>100/100</strong></center></td>
671
- </tr>
672
- </tbody>
673
- </table>
674
-
675
-
676
-
677
- ## RoLlama3.1 Model Family
678
-
679
- | Model | Link |
680
- |--------------------|:--------:|
681
- |RoLlama3.1-8b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-2024-10-09) |
682
- |*RoLlama3.1-8b-Instruct-2025-04-23*| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-2025-04-23) |
683
- |RoLlama3.1-8b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-2024-10-09) |
684
- |RoLlama3.1-8b-Instruct-DPO-2025-04-23| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-2025-04-23) |
685
-
686
-
687
- ## Citation
688
-
689
- ```
690
- @misc{masala2024vorbecstiromanecsterecipetrain,
691
- title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
692
- author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
693
- year={2024},
694
- eprint={2406.18266},
695
- archivePrefix={arXiv},
696
- primaryClass={cs.CL},
697
- url={https://arxiv.org/abs/2406.18266},
698
- }
699
- ```
700
- <!-- **APA:**
701
-
 
702
  [More Information Needed] -->
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ language:
4
+ - ro
5
+ base_model:
6
+ - meta-llama/Llama-3.1-8B-Instruct
7
+ datasets:
8
+ - OpenLLM-Ro/ro_sft_alpaca
9
+ - OpenLLM-Ro/ro_sft_alpaca_gpt4
10
+ - OpenLLM-Ro/ro_sft_dolly
11
+ - OpenLLM-Ro/ro_sft_selfinstruct_gpt4
12
+ - OpenLLM-Ro/ro_sft_norobots
13
+ - OpenLLM-Ro/ro_sft_orca
14
+ - OpenLLM-Ro/ro_sft_camel
15
+ - OpenLLM-Ro/ro_sft_oasst
16
+ - OpenLLM-Ro/ro_sft_ultrachat
17
+ - OpenLLM-Ro/ro_sft_magpie_mt
18
+ - OpenLLM-Ro/ro_sft_magpie_reasoning
19
+ model-index:
20
+ - name: OpenLLM-Ro/RoLlama3.1-8b-Instruct-2025-04-23
21
+ results:
22
+ - task:
23
+ type: text-generation
24
+ dataset:
25
+ name: RoMT-Bench
26
+ type: RoMT-Bench
27
+ metrics:
28
+ - name: Score
29
+ type: Score
30
+ value: 6.43
31
+ - task:
32
+ type: text-generation
33
+ dataset:
34
+ name: RoCulturaBench
35
+ type: RoCulturaBench
36
+ metrics:
37
+ - name: Score
38
+ type: Score
39
+ value: 4.28
40
+ - task:
41
+ type: text-generation
42
+ dataset:
43
+ name: Romanian_Academic_Benchmarks
44
+ type: Romanian_Academic_Benchmarks
45
+ metrics:
46
+ - name: Average accuracy
47
+ type: accuracy
48
+ value: 53.36
49
+ - task:
50
+ type: text-generation
51
+ dataset:
52
+ name: OpenLLM-Ro/ro_arc_challenge
53
+ type: OpenLLM-Ro/ro_arc_challenge
54
+ metrics:
55
+ - name: Average accuracy
56
+ type: accuracy
57
+ value: 48.97
58
+ - task:
59
+ type: text-generation
60
+ dataset:
61
+ name: OpenLLM-Ro/ro_mmlu
62
+ type: OpenLLM-Ro/ro_mmlu
63
+ metrics:
64
+ - name: Average accuracy
65
+ type: accuracy
66
+ value: 55.17
67
+ - task:
68
+ type: text-generation
69
+ dataset:
70
+ name: OpenLLM-Ro/ro_winogrande
71
+ type: OpenLLM-Ro/ro_winogrande
72
+ metrics:
73
+ - name: Average accuracy
74
+ type: accuracy
75
+ value: 66.52
76
+ - task:
77
+ type: text-generation
78
+ dataset:
79
+ name: OpenLLM-Ro/ro_hellaswag
80
+ type: OpenLLM-Ro/ro_hellaswag
81
+ metrics:
82
+ - name: Average accuracy
83
+ type: accuracy
84
+ value: 60.73
85
+ - task:
86
+ type: text-generation
87
+ dataset:
88
+ name: OpenLLM-Ro/ro_gsm8k
89
+ type: OpenLLM-Ro/ro_gsm8k
90
+ metrics:
91
+ - name: Average accuracy
92
+ type: accuracy
93
+ value: 42.03
94
+ - task:
95
+ type: text-generation
96
+ dataset:
97
+ name: OpenLLM-Ro/ro_truthfulqa
98
+ type: OpenLLM-Ro/ro_truthfulqa
99
+ metrics:
100
+ - name: Average accuracy
101
+ type: accuracy
102
+ value: 46.71
103
+ - task:
104
+ type: text-generation
105
+ dataset:
106
+ name: LaRoSeDa_binary
107
+ type: LaRoSeDa_binary
108
+ metrics:
109
+ - name: Average macro-f1
110
+ type: macro-f1
111
+ value: 95.32
112
+ - task:
113
+ type: text-generation
114
+ dataset:
115
+ name: LaRoSeDa_multiclass
116
+ type: LaRoSeDa_multiclass
117
+ metrics:
118
+ - name: Average macro-f1
119
+ type: macro-f1
120
+ value: 60.84
121
+ - task:
122
+ type: text-generation
123
+ dataset:
124
+ name: WMT_EN-RO
125
+ type: WMT_EN-RO
126
+ metrics:
127
+ - name: Average bleu
128
+ type: bleu
129
+ value: 23.18
130
+ - task:
131
+ type: text-generation
132
+ dataset:
133
+ name: WMT_RO-EN
134
+ type: WMT_RO-EN
135
+ metrics:
136
+ - name: Average bleu
137
+ type: bleu
138
+ value: 25.11
139
+ - task:
140
+ type: text-generation
141
+ dataset:
142
+ name: XQuAD
143
+ type: XQuAD
144
+ metrics:
145
+ - name: Average exact_match
146
+ type: exact_match
147
+ value: 10.74
148
+ - task:
149
+ type: text-generation
150
+ dataset:
151
+ name: XQuAD
152
+ type: XQuAD
153
+ metrics:
154
+ - name: Average f1
155
+ type: f1
156
+ value: 19.75
157
+ - task:
158
+ type: text-generation
159
+ dataset:
160
+ name: STS
161
+ type: STS
162
+ metrics:
163
+ - name: Average spearman
164
+ type: spearman
165
+ value: 73.53
166
+ - task:
167
+ type: text-generation
168
+ dataset:
169
+ name: STS
170
+ type: STS
171
+ metrics:
172
+ - name: Average pearson
173
+ type: pearson
174
+ value: 74.93
175
+ - task:
176
+ type: text-generation
177
+ dataset:
178
+ name: RoMT-Bench
179
+ type: RoMT-Bench
180
+ metrics:
181
+ - name: First turn
182
+ type: Score
183
+ value: 6.78
184
+ - name: Second turn
185
+ type: Score
186
+ value: 6.09
187
+ - task:
188
+ type: text-generation
189
+ dataset:
190
+ name: OpenLLM-Ro/ro_arc_challenge
191
+ type: OpenLLM-Ro/ro_arc_challenge
192
+ metrics:
193
+ - name: 0-shot
194
+ type: accuracy
195
+ value: 45.24
196
+ - name: 1-shot
197
+ type: accuracy
198
+ value: 47.67
199
+ - name: 3-shot
200
+ type: accuracy
201
+ value: 49.36
202
+ - name: 5-shot
203
+ type: accuracy
204
+ value: 50.13
205
+ - name: 10-shot
206
+ type: accuracy
207
+ value: 50.81
208
+ - name: 25-shot
209
+ type: accuracy
210
+ value: 50.64
211
+ - task:
212
+ type: text-generation
213
+ dataset:
214
+ name: OpenLLM-Ro/ro_mmlu
215
+ type: OpenLLM-Ro/ro_mmlu
216
+ metrics:
217
+ - name: 0-shot
218
+ type: accuracy
219
+ value: 54.23
220
+ - name: 1-shot
221
+ type: accuracy
222
+ value: 56.36
223
+ - name: 3-shot
224
+ type: accuracy
225
+ value: 55.34
226
+ - name: 5-shot
227
+ type: accuracy
228
+ value: 54.74
229
+ - task:
230
+ type: text-generation
231
+ dataset:
232
+ name: OpenLLM-Ro/ro_winogrande
233
+ type: OpenLLM-Ro/ro_winogrande
234
+ metrics:
235
+ - name: 0-shot
236
+ type: accuracy
237
+ value: 64.96
238
+ - name: 1-shot
239
+ type: accuracy
240
+ value: 66.77
241
+ - name: 3-shot
242
+ type: accuracy
243
+ value: 67.09
244
+ - name: 5-shot
245
+ type: accuracy
246
+ value: 67.25
247
+ - task:
248
+ type: text-generation
249
+ dataset:
250
+ name: OpenLLM-Ro/ro_hellaswag
251
+ type: OpenLLM-Ro/ro_hellaswag
252
+ metrics:
253
+ - name: 0-shot
254
+ type: accuracy
255
+ value: 59.72
256
+ - name: 1-shot
257
+ type: accuracy
258
+ value: 60.30
259
+ - name: 3-shot
260
+ type: accuracy
261
+ value: 60.87
262
+ - name: 5-shot
263
+ type: accuracy
264
+ value: 61.14
265
+ - name: 10-shot
266
+ type: accuracy
267
+ value: 61.63
268
+ - task:
269
+ type: text-generation
270
+ dataset:
271
+ name: OpenLLM-Ro/ro_gsm8k
272
+ type: OpenLLM-Ro/ro_gsm8k
273
+ metrics:
274
+ - name: 1-shot
275
+ type: accuracy
276
+ value: 30.86
277
+ - name: 3-shot
278
+ type: accuracy
279
+ value: 43.90
280
+ - name: 5-shot
281
+ type: accuracy
282
+ value: 51.33
283
+ - task:
284
+ type: text-generation
285
+ dataset:
286
+ name: LaRoSeDa_binary
287
+ type: LaRoSeDa_binary
288
+ metrics:
289
+ - name: 0-shot
290
+ type: macro-f1
291
+ value: 90.97
292
+ - name: 1-shot
293
+ type: macro-f1
294
+ value: 95.53
295
+ - name: 3-shot
296
+ type: macro-f1
297
+ value: 97.10
298
+ - name: 5-shot
299
+ type: macro-f1
300
+ value: 97.67
301
+ - task:
302
+ type: text-generation
303
+ dataset:
304
+ name: LaRoSeDa_multiclass
305
+ type: LaRoSeDa_multiclass
306
+ metrics:
307
+ - name: 0-shot
308
+ type: macro-f1
309
+ value: 63.20
310
+ - name: 1-shot
311
+ type: macro-f1
312
+ value: 64.47
313
+ - name: 3-shot
314
+ type: macro-f1
315
+ value: 55.88
316
+ - name: 5-shot
317
+ type: macro-f1
318
+ value: 59.80
319
+ - task:
320
+ type: text-generation
321
+ dataset:
322
+ name: WMT_EN-RO
323
+ type: WMT_EN-RO
324
+ metrics:
325
+ - name: 0-shot
326
+ type: bleu
327
+ value: 4.92
328
+ - name: 1-shot
329
+ type: bleu
330
+ value: 28.01
331
+ - name: 3-shot
332
+ type: bleu
333
+ value: 30.16
334
+ - name: 5-shot
335
+ type: bleu
336
+ value: 29.61
337
+ - task:
338
+ type: text-generation
339
+ dataset:
340
+ name: WMT_RO-EN
341
+ type: WMT_RO-EN
342
+ metrics:
343
+ - name: 0-shot
344
+ type: bleu
345
+ value: 1.43
346
+ - name: 1-shot
347
+ type: bleu
348
+ value: 24.78
349
+ - name: 3-shot
350
+ type: bleu
351
+ value: 37.31
352
+ - name: 5-shot
353
+ type: bleu
354
+ value: 36.93
355
+ - task:
356
+ type: text-generation
357
+ dataset:
358
+ name: XQuAD_EM
359
+ type: XQuAD_EM
360
+ metrics:
361
+ - name: 0-shot
362
+ type: exact_match
363
+ value: 11.18
364
+ - name: 1-shot
365
+ type: exact_match
366
+ value: 26.47
367
+ - name: 3-shot
368
+ type: exact_match
369
+ value: 3.95
370
+ - name: 5-shot
371
+ type: exact_match
372
+ value: 1.34
373
+ - task:
374
+ type: text-generation
375
+ dataset:
376
+ name: XQuAD_F1
377
+ type: XQuAD_F1
378
+ metrics:
379
+ - name: 0-shot
380
+ type: f1
381
+ value: 25.76
382
+ - name: 1-shot
383
+ type: f1
384
+ value: 39.25
385
+ - name: 3-shot
386
+ type: f1
387
+ value: 8.40
388
+ - name: 5-shot
389
+ type: f1
390
+ value: 5.58
391
+ - task:
392
+ type: text-generation
393
+ dataset:
394
+ name: STS_Spearman
395
+ type: STS_Spearman
396
+ metrics:
397
+ - name: 1-shot
398
+ type: spearman
399
+ value: 73.52
400
+ - name: 3-shot
401
+ type: spearman
402
+ value: 74.02
403
+ - name: 5-shot
404
+ type: spearman
405
+ value: 73.06
406
+ - task:
407
+ type: text-generation
408
+ dataset:
409
+ name: STS_Pearson
410
+ type: STS_Pearson
411
+ metrics:
412
+ - name: 1-shot
413
+ type: pearson
414
+ value: 75.81
415
+ - name: 3-shot
416
+ type: pearson
417
+ value: 74.54
418
+ - name: 5-shot
419
+ type: pearson
420
+ value: 74.43
421
+
422
+ ---
423
+
424
+ # Model Card for Model ID
425
+
426
+ *Built with Meta Llama 3.1*
427
+
428
+ This model points/is identical to [RoLlama3.1-8b-Instruct-2025-04-23](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-2025-04-23).
429
+
430
+ <!-- Provide a quick summary of what the model is/does. -->
431
+
432
+ RoLlama3.1 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **instruct 8B model**. Links to other models can be found at the bottom of this page.
433
+
434
+
435
+ ## Model Details
436
+
437
+ ### Model Description
438
+
439
+ <!-- Provide a longer summary of what this model is. -->
440
+ OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
441
+
442
+
443
+ - **Developed by:** OpenLLM-Ro
444
+ <!-- - **Funded by [optional]:** [More Information Needed] -->
445
+ <!-- - **Shared by [optional]:** [More Information Needed] -->
446
+ <!-- - **Model type:** [More Information Needed] -->
447
+ - **Language(s):** Romanian
448
+ - **License:** cc-by-nc-4.0
449
+ - **Finetuned from model:** [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)
450
+ - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel), [RoOpenAssistant](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_oasst), [RoUltraChat](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_ultrachat), [RoMagpiePro](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_magpie_mt), [RoMagpieReasoning](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_magpie_reasoning)
451
+
452
+
453
+ ### Model Sources
454
+
455
+ <!-- Provide the basic links for the model. -->
456
+
457
+ - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
458
+ - **Paper:** https://arxiv.org/abs/2406.18266
459
+
460
+ ## Intended Use
461
+
462
+ ### Intended Use Cases
463
+
464
+ RoLlama3.1 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
465
+
466
+ ### Out-of-Scope Use
467
+
468
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
469
+
470
+ Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
471
+
472
+
473
+
474
+ ## How to Get Started with the Model
475
+
476
+ Use the code below to get started with the model.
477
+
478
+ ```python
479
+ from transformers import AutoTokenizer, AutoModelForCausalLM
480
+
481
+ tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama3.1-8b-Instruct")
482
+ model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama3.1-8b-Instruct")
483
+
484
+ instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
485
+ chat = [
486
+ {"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."},
487
+ {"role": "user", "content": instruction},
488
+ ]
489
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
490
+
491
+ inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
492
+ outputs = model.generate(input_ids=inputs, max_new_tokens=128)
493
+ print(tokenizer.decode(outputs[0]))
494
+ ```
495
+
496
+ ## Academic Benchmarks
497
+
498
+ <table>
499
+ <tbody>
500
+ <tr>
501
+ <td><strong>Model</strong></td>
502
+ <td><strong><center>Average</center></strong></td>
503
+ <td><strong><center>ARC</center></strong></td>
504
+ <td><strong><center>MMLU</center></strong></td>
505
+ <td><strong><center>Winogrande</center></strong></td>
506
+ <td><strong><center>Hellaswag</center></strong></td>
507
+ <td><strong><center>GSM8k</center></strong></td>
508
+ <td><strong><center>TruthfulQA</center></strong></td>
509
+ </tr>
510
+ <tr>
511
+ <td>Llama-3.1-8B-Instruct</td><td><center>49.87</center></td><td><center>42.86</center></td><td><center>53.73</center></td><td><center>59.71</center></td><td><center>56.82</center></td><td><center>35.56</center></td><td><center>50.54</center></td>
512
+ </tr>
513
+ <tr>
514
+ <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>53.03</center></td><td><center>47.69</center></td><td><center>54.57</center></td><td><center>65.84</center></td><td><center>59.94</center></td><td><center><strong>44.30</strong></center></td><td><center>45.82</center></td>
515
+ </tr>
516
+ <tr>
517
+ <td><em>RoLlama3.1-8b-Instruct-2025-04-23</em></td><td><center><em>53.36</em></center></td><td><center><em>48.97</em></center></td><td><center><em>55.17</em></center></td><td><center><em>66.52</em></center></td><td><center><em><strong>60.73</strong></em></center></td><td><center><em>42.03</em></center></td><td><center><em>46.71</em></center></td>
518
+ </tr>
519
+ <tr>
520
+ <td>RoLlama3.1-8b-Instruct-DPO-2024-10-09</td><td><center>52.74</center></td><td><center>44.84</center></td><td><center>55.06</center></td><td><center>65.87</center></td><td><center>58.67</center></td><td><center>44.17</center></td><td><center>47.82</center></td>
521
+ </tr>
522
+ <tr>
523
+ <td>RoLlama3.1-8b-Instruct-DPO-2025-04-23</td><td><center><strong>53.76</strong></center></td><td><center><strong>51.09</strong></center></td><td><center><strong>56.22</strong></center></td><td><center><strong>66.77</strong></center></td><td><center>59.38</center></td><td><center>31.54</center></td><td><center><strong>57.56</strong></center></td>
524
+ </tr>
525
+ </tbody>
526
+ </table>
527
+
528
+
529
+
530
+ ## Downstream tasks
531
+
532
+ <table>
533
+ <tbody>
534
+ <tr>
535
+ <td></td>
536
+ <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
537
+ <td colspan="4"><center><strong>WMT</strong></center></td>
538
+ </tr>
539
+ <tr>
540
+ <td></td>
541
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
542
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
543
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
544
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
545
+ </tr>
546
+ <tr>
547
+ <td><strong>Model</strong></td>
548
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
549
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
550
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
551
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
552
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
553
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
554
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
555
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center>
556
+ </tr>
557
+ <tr>
558
+ <td>Llama-3.1-8B-Instruct</td><td><center>95.74</center></td><td><center>59.49</center></td><td><center><strong>98.57</strong></center></td><td><center>82.41</center></td><td><center>19.01</center></td><td><center><strong>27.77</strong></center></td><td><center><strong>29.02</strong></center></td><td><center>39.80</center></td>
559
+ </tr>
560
+ <tr>
561
+ <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>94.56</center></td><td><center>60.10</center></td><td><center>95.12</center></td><td><center><strong>87.53</strong></center></td><td><center>21.88</center></td><td><center>23.99</center></td><td><center>28.27</center></td><td><center><strong>40.44</strong></center></td>
562
+ </tr>
563
+ <tr>
564
+ <td><em>RoLlama3.1-8b-Instruct-2025-04-23</em></td><td><center><em>95.32</em></center></td><td><center><em><strong>60.84</strong></em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em><strong>23.18</strong></em></center></td><td><center><em>25.11</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
565
+ </tr>
566
+ <tr>
567
+ <td>RoLlama3.1-8b-Instruct-DPO-2024-10-09</td><td><center>96.10</center></td><td><center>55.37</center></td><td><center>-</center></td><td><center>-</center></td><td><center>21.29</center></td><td><center>21.86</center></td><td><center>-</center></td><td><center>-</center></td>
568
+ </tr>
569
+ <tr>
570
+ <td>RoLlama3.1-8b-Instruct-DPO-2025-04-23</td><td><center><strong>96.87</strong></center></td><td><center>60.75</center></td><td><center>-</center></td><td><center>-</center></td><td><center>20.30</center></td><td><center>18.57</center></td><td><center>-</center></td><td><center>-</center></td>
571
+ </tr>
572
+ </tbody>
573
+ </table>
574
+
575
+
576
+ <table>
577
+ <tbody>
578
+ <tr>
579
+ <td></td>
580
+ <td colspan="4"><center><strong>XQuAD</strong></center></td>
581
+ <td colspan="4"><center><strong>STS</strong></center></td>
582
+ </tr>
583
+ <tr>
584
+ <td></td>
585
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
586
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
587
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
588
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
589
+ </tr>
590
+ <tr>
591
+ <td><strong>Model</strong></td>
592
+ <td><center><strong>(EM)</strong></center></td>
593
+ <td><center><strong>(F1)</strong></center></td>
594
+ <td><center><strong>(EM)</strong></center></td>
595
+ <td><center><strong>(F1)</strong></center></td>
596
+ <td><center><strong>(Spearman)</strong></center></td>
597
+ <td><center><strong>(Pearson)</strong></center></td>
598
+ <td><center><strong>(Spearman)</strong></center></td>
599
+ <td><center><strong>(Pearson)</strong></center></td>
600
+ </tr>
601
+ <tr>
602
+ <td>Llama-3.1-8B-Instruct</td><td><center><strong>44.96</strong></center></td><td><center><strong>64.45</strong></center></td><td><center><strong>69.50</strong></center></td><td><center><strong>84.31</strong></center></td><td><center>72.11</center></td><td><center>71.64</center></td><td><center>84.59</center></td><td><center>84.96</center></td>
603
+ </tr>
604
+ <tr>
605
+ <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>13.59</center></td><td><center>23.56</center></td><td><center>49.41</center></td><td><center>62.93</center></td><td><center>75.89</center></td><td><center>76.00</center></td><td><center><strong>86.86</strong></center></td><td><center><strong>87.05</strong></center></td>
606
+ </tr>
607
+ <tr>
608
+ <td><em>RoLlama3.1-8b-Instruct-2025-04-23</em></td><td><center><em>10.74</em></center></td><td><center><em>19.75</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>73.53</em></center></td><td><center><em>74.93</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
609
+ </tr>
610
+ <tr>
611
+ <td>RoLlama3.1-8b-Instruct-DPO-2024-10-09</td><td><center>21.58</center></td><td><center>36.54</center></td><td><center>-</center></td><td><center>-</center></td><td><center><strong>78.01</strong></center></td><td><center><strong>77.98</strong></center></td><td><center>-</center></td><td><center>-</center></td>
612
+ </tr>
613
+ <tr>
614
+ <td>RoLlama3.1-8b-Instruct-DPO-2025-04-23</td><td><center>9.22</center></td><td><center>22.75</center></td><td><center>-</center></td><td><center>-</center></td><td><center>30.82</center></td><td><center>20.25</center></td><td><center>-</center></td><td><center>-</center></td>
615
+ </tr>
616
+ </tbody>
617
+ </table>
618
+
619
+ ## MT-Bench
620
+
621
+ <table>
622
+ <tbody>
623
+ <tr>
624
+ <td><strong>Model</strong></td>
625
+ <td><strong><center>Average</center></strong></td>
626
+ <td><strong><center>1st turn</center></strong></td>
627
+ <td><strong><center>2nd turn</center></strong></td>
628
+ <td><strong><center>Answers in Ro</center></strong></td>
629
+ </tr>
630
+ <tr>
631
+ <td>Llama-3.1-8B-Instruct</td><td><center>5.69</center></td><td><center>5.85</center></td><td><center>5.53</center></td><td><center><strong>160/160</strong></center></td>
632
+ </tr>
633
+ <tr>
634
+ <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>5.42</center></td><td><center>5.95</center></td><td><center>4.89</center></td><td><center><strong>160/160</strong></center></td>
635
+ </tr>
636
+ <tr>
637
+ <td><em>RoLlama3.1-8b-Instruct-2025-04-23</em></td><td><center><em>6.43</em></center></td><td><center><em>6.78</em></center></td><td><center><em>6.09</em></center></td><td><center><em><strong>160/160</strong></em></center></td>
638
+ </tr>
639
+ <tr>
640
+ <td>RoLlama3.1-8b-Instruct-DPO-2024-10-09</td><td><center>6.21</center></td><td><center>6.74</center></td><td><center>5.69</center></td><td><center><strong>160/160</strong></center></td>
641
+ </tr>
642
+ <tr>
643
+ <td>RoLlama3.1-8b-Instruct-DPO-2025-04-23</td><td><center><strong>7.00</strong></center></td><td><center><strong>7.30</strong></center></td><td><center><strong>6.70</strong></center></td><td><center><strong>160/160</strong></center></td>
644
+ </tr>
645
+ </tbody>
646
+ </table>
647
+
648
+
649
+ ## RoCulturaBench
650
+
651
+ <table>
652
+ <tbody>
653
+ <tr>
654
+ <td><strong>Model</strong></td>
655
+ <td><strong><center>Average</center></strong></td>
656
+ <td><strong><center>Answers in Ro</center></strong></td>
657
+ </tr>
658
+ <tr>
659
+ <td>Llama-3.1-8B-Instruct</td><td><center>3.54</center></td><td><center><strong>100/100</strong></center></td>
660
+ </tr>
661
+ <tr>
662
+ <td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>3.55</center></td><td><center><strong>100/100</strong></center></td>
663
+ </tr>
664
+ <tr>
665
+ <td><em>RoLlama3.1-8b-Instruct-2025-04-23</em></td><td><center><em>4.28</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
666
+ </tr>
667
+ <tr>
668
+ <td>RoLlama3.1-8b-Instruct-DPO-2024-10-09</td><td><center>4.42</center></td><td><center><strong>100/100</strong></center></td>
669
+ </tr>
670
+ <tr>
671
+ <td>RoLlama3.1-8b-Instruct-DPO-2025-04-23</td><td><center><strong>4.73</strong></center></td><td><center><strong>100/100</strong></center></td>
672
+ </tr>
673
+ </tbody>
674
+ </table>
675
+
676
+
677
+
678
+ ## RoLlama3.1 Model Family
679
+
680
+ | Model | Link |
681
+ |--------------------|:--------:|
682
+ |RoLlama3.1-8b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-2024-10-09) |
683
+ |*RoLlama3.1-8b-Instruct-2025-04-23*| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-2025-04-23) |
684
+ |RoLlama3.1-8b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-2024-10-09) |
685
+ |RoLlama3.1-8b-Instruct-DPO-2025-04-23| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-2025-04-23) |
686
+
687
+
688
+ ## Citation
689
+
690
+ ```
691
+ @misc{masala2024vorbecstiromanecsterecipetrain,
692
+ title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
693
+ author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
694
+ year={2024},
695
+ eprint={2406.18266},
696
+ archivePrefix={arXiv},
697
+ primaryClass={cs.CL},
698
+ url={https://arxiv.org/abs/2406.18266},
699
+ }
700
+ ```
701
+ <!-- **APA:**
702
+
703
  [More Information Needed] -->