mihaimasala commited on
Commit
60a24c6
·
verified ·
1 Parent(s): 4d0f767

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +711 -749
README.md CHANGED
@@ -1,750 +1,712 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- language:
4
- - ro
5
- base_model:
6
- - OpenLLM-Ro/RoMistral-7b-Instruct-2024-10-09
7
- datasets:
8
- - OpenLLM-Ro/ro_dpo_helpsteer
9
- model-index:
10
- - name: OpenLLM-Ro/RoMistral-7b-Instruct-DPO-2024-10-09
11
- results:
12
- - task:
13
- type: text-generation
14
- dataset:
15
- name: RoMT-Bench
16
- type: RoMT-Bench
17
- metrics:
18
- - name: Score
19
- type: Score
20
- value: 5.88
21
- - task:
22
- type: text-generation
23
- dataset:
24
- name: RoCulturaBench
25
- type: RoCulturaBench
26
- metrics:
27
- - name: Score
28
- type: Score
29
- value: 4.72
30
- - task:
31
- type: text-generation
32
- dataset:
33
- name: Romanian_Academic_Benchmarks
34
- type: Romanian_Academic_Benchmarks
35
- metrics:
36
- - name: Average accuracy
37
- type: accuracy
38
- value: 51.95
39
- - task:
40
- type: text-generation
41
- dataset:
42
- name: OpenLLM-Ro/ro_arc_challenge
43
- type: OpenLLM-Ro/ro_arc_challenge
44
- metrics:
45
- - name: Average accuracy
46
- type: accuracy
47
- value: 50.73
48
- - task:
49
- type: text-generation
50
- dataset:
51
- name: OpenLLM-Ro/ro_mmlu
52
- type: OpenLLM-Ro/ro_mmlu
53
- metrics:
54
- - name: Average accuracy
55
- type: accuracy
56
- value: 47.88
57
- - task:
58
- type: text-generation
59
- dataset:
60
- name: OpenLLM-Ro/ro_winogrande
61
- type: OpenLLM-Ro/ro_winogrande
62
- metrics:
63
- - name: Average accuracy
64
- type: accuracy
65
- value: 68.41
66
- - task:
67
- type: text-generation
68
- dataset:
69
- name: OpenLLM-Ro/ro_hellaswag
70
- type: OpenLLM-Ro/ro_hellaswag
71
- metrics:
72
- - name: Average accuracy
73
- type: accuracy
74
- value: 62.27
75
- - task:
76
- type: text-generation
77
- dataset:
78
- name: OpenLLM-Ro/ro_gsm8k
79
- type: OpenLLM-Ro/ro_gsm8k
80
- metrics:
81
- - name: Average accuracy
82
- type: accuracy
83
- value: 32.27
84
- - task:
85
- type: text-generation
86
- dataset:
87
- name: OpenLLM-Ro/ro_truthfulqa
88
- type: OpenLLM-Ro/ro_truthfulqa
89
- metrics:
90
- - name: Average accuracy
91
- type: accuracy
92
- value: 50.12
93
- - task:
94
- type: text-generation
95
- dataset:
96
- name: LaRoSeDa_binary
97
- type: LaRoSeDa_binary
98
- metrics:
99
- - name: Average macro-f1
100
- type: macro-f1
101
- value: 82.13
102
- - task:
103
- type: text-generation
104
- dataset:
105
- name: LaRoSeDa_multiclass
106
- type: LaRoSeDa_multiclass
107
- metrics:
108
- - name: Average macro-f1
109
- type: macro-f1
110
- value: 65.24
111
- - task:
112
- type: text-generation
113
- dataset:
114
- name: LaRoSeDa_binary_finetuned
115
- type: LaRoSeDa_binary_finetuned
116
- metrics:
117
- - name: Average macro-f1
118
- type: macro-f1
119
- value: 0.00
120
- - task:
121
- type: text-generation
122
- dataset:
123
- name: LaRoSeDa_multiclass_finetuned
124
- type: LaRoSeDa_multiclass_finetuned
125
- metrics:
126
- - name: Average macro-f1
127
- type: macro-f1
128
- value: 0.00
129
- - task:
130
- type: text-generation
131
- dataset:
132
- name: WMT_EN-RO
133
- type: WMT_EN-RO
134
- metrics:
135
- - name: Average bleu
136
- type: bleu
137
- value: 26.25
138
- - task:
139
- type: text-generation
140
- dataset:
141
- name: WMT_RO-EN
142
- type: WMT_RO-EN
143
- metrics:
144
- - name: Average bleu
145
- type: bleu
146
- value: 6.09
147
- - task:
148
- type: text-generation
149
- dataset:
150
- name: WMT_EN-RO_finetuned
151
- type: WMT_EN-RO_finetuned
152
- metrics:
153
- - name: Average bleu
154
- type: bleu
155
- value: 0.00
156
- - task:
157
- type: text-generation
158
- dataset:
159
- name: WMT_RO-EN_finetuned
160
- type: WMT_RO-EN_finetuned
161
- metrics:
162
- - name: Average bleu
163
- type: bleu
164
- value: 0.00
165
- - task:
166
- type: text-generation
167
- dataset:
168
- name: XQuAD
169
- type: XQuAD
170
- metrics:
171
- - name: Average exact_match
172
- type: exact_match
173
- value: 23.40
174
- - task:
175
- type: text-generation
176
- dataset:
177
- name: XQuAD
178
- type: XQuAD
179
- metrics:
180
- - name: Average f1
181
- type: f1
182
- value: 45.80
183
- - task:
184
- type: text-generation
185
- dataset:
186
- name: XQuAD_finetuned
187
- type: XQuAD_finetuned
188
- metrics:
189
- - name: Average exact_match
190
- type: exact_match
191
- value: 0.00
192
- - task:
193
- type: text-generation
194
- dataset:
195
- name: XQuAD_finetuned
196
- type: XQuAD_finetuned
197
- metrics:
198
- - name: Average f1
199
- type: f1
200
- value: 0.00
201
- - task:
202
- type: text-generation
203
- dataset:
204
- name: STS
205
- type: STS
206
- metrics:
207
- - name: Average spearman
208
- type: spearman
209
- value: 77.33
210
- - task:
211
- type: text-generation
212
- dataset:
213
- name: STS
214
- type: STS
215
- metrics:
216
- - name: Average pearson
217
- type: pearson
218
- value: 76.60
219
- - task:
220
- type: text-generation
221
- dataset:
222
- name: STS_finetuned
223
- type: STS_finetuned
224
- metrics:
225
- - name: Average spearman
226
- type: spearman
227
- value: 0.00
228
- - task:
229
- type: text-generation
230
- dataset:
231
- name: STS_finetuned
232
- type: STS_finetuned
233
- metrics:
234
- - name: Average pearson
235
- type: pearson
236
- value: 0.00
237
- - task:
238
- type: text-generation
239
- dataset:
240
- name: RoMT-Bench
241
- type: RoMT-Bench
242
- metrics:
243
- - name: First turn
244
- type: Score
245
- value: 6.44
246
- - name: Second turn
247
- type: Score
248
- value: 5.33
249
- - task:
250
- type: text-generation
251
- dataset:
252
- name: OpenLLM-Ro/ro_arc_challenge
253
- type: OpenLLM-Ro/ro_arc_challenge
254
- metrics:
255
- - name: 0-shot
256
- type: accuracy
257
- value: 51.67
258
- - name: 1-shot
259
- type: accuracy
260
- value: 45.59
261
- - name: 3-shot
262
- type: accuracy
263
- value: 48.24
264
- - name: 5-shot
265
- type: accuracy
266
- value: 50.21
267
- - name: 10-shot
268
- type: accuracy
269
- value: 54.07
270
- - name: 25-shot
271
- type: accuracy
272
- value: 54.58
273
- - task:
274
- type: text-generation
275
- dataset:
276
- name: OpenLLM-Ro/ro_mmlu
277
- type: OpenLLM-Ro/ro_mmlu
278
- metrics:
279
- - name: 0-shot
280
- type: accuracy
281
- value: 40.86
282
- - name: 1-shot
283
- type: accuracy
284
- value: 48.67
285
- - name: 3-shot
286
- type: accuracy
287
- value: 51.26
288
- - name: 5-shot
289
- type: accuracy
290
- value: 50.75
291
- - task:
292
- type: text-generation
293
- dataset:
294
- name: OpenLLM-Ro/ro_winogrande
295
- type: OpenLLM-Ro/ro_winogrande
296
- metrics:
297
- - name: 0-shot
298
- type: accuracy
299
- value: 64.80
300
- - name: 1-shot
301
- type: accuracy
302
- value: 68.19
303
- - name: 3-shot
304
- type: accuracy
305
- value: 70.09
306
- - name: 5-shot
307
- type: accuracy
308
- value: 70.56
309
- - task:
310
- type: text-generation
311
- dataset:
312
- name: OpenLLM-Ro/ro_hellaswag
313
- type: OpenLLM-Ro/ro_hellaswag
314
- metrics:
315
- - name: 0-shot
316
- type: accuracy
317
- value: 61.96
318
- - name: 1-shot
319
- type: accuracy
320
- value: 60.88
321
- - name: 3-shot
322
- type: accuracy
323
- value: 61.86
324
- - name: 5-shot
325
- type: accuracy
326
- value: 62.73
327
- - name: 10-shot
328
- type: accuracy
329
- value: 63.93
330
- - task:
331
- type: text-generation
332
- dataset:
333
- name: OpenLLM-Ro/ro_gsm8k
334
- type: OpenLLM-Ro/ro_gsm8k
335
- metrics:
336
- - name: 1-shot
337
- type: accuracy
338
- value: 23.28
339
- - name: 3-shot
340
- type: accuracy
341
- value: 34.95
342
- - name: 5-shot
343
- type: accuracy
344
- value: 38.59
345
- - task:
346
- type: text-generation
347
- dataset:
348
- name: LaRoSeDa_binary
349
- type: LaRoSeDa_binary
350
- metrics:
351
- - name: 0-shot
352
- type: macro-f1
353
- value: 34.36
354
- - name: 1-shot
355
- type: macro-f1
356
- value: 97.87
357
- - name: 3-shot
358
- type: macro-f1
359
- value: 98.40
360
- - name: 5-shot
361
- type: macro-f1
362
- value: 97.90
363
- - task:
364
- type: text-generation
365
- dataset:
366
- name: LaRoSeDa_multiclass
367
- type: LaRoSeDa_multiclass
368
- metrics:
369
- - name: 0-shot
370
- type: macro-f1
371
- value: 66.17
372
- - name: 1-shot
373
- type: macro-f1
374
- value: 65.93
375
- - name: 3-shot
376
- type: macro-f1
377
- value: 61.86
378
- - name: 5-shot
379
- type: macro-f1
380
- value: 66.99
381
- - task:
382
- type: text-generation
383
- dataset:
384
- name: WMT_EN-RO
385
- type: WMT_EN-RO
386
- metrics:
387
- - name: 0-shot
388
- type: bleu
389
- value: 18.43
390
- - name: 1-shot
391
- type: bleu
392
- value: 28.25
393
- - name: 3-shot
394
- type: bleu
395
- value: 29.45
396
- - name: 5-shot
397
- type: bleu
398
- value: 28.88
399
- - task:
400
- type: text-generation
401
- dataset:
402
- name: WMT_RO-EN
403
- type: WMT_RO-EN
404
- metrics:
405
- - name: 0-shot
406
- type: bleu
407
- value: 2.80
408
- - name: 1-shot
409
- type: bleu
410
- value: 2.90
411
- - name: 3-shot
412
- type: bleu
413
- value: 6.63
414
- - name: 5-shot
415
- type: bleu
416
- value: 12.04
417
- - task:
418
- type: text-generation
419
- dataset:
420
- name: XQuAD_EM
421
- type: XQuAD_EM
422
- metrics:
423
- - name: 0-shot
424
- type: exact_match
425
- value: 5.04
426
- - name: 1-shot
427
- type: exact_match
428
- value: 22.44
429
- - name: 3-shot
430
- type: exact_match
431
- value: 30.42
432
- - name: 5-shot
433
- type: exact_match
434
- value: 35.71
435
- - task:
436
- type: text-generation
437
- dataset:
438
- name: XQuAD_F1
439
- type: XQuAD_F1
440
- metrics:
441
- - name: 0-shot
442
- type: f1
443
- value: 23.36
444
- - name: 1-shot
445
- type: f1
446
- value: 44.63
447
- - name: 3-shot
448
- type: f1
449
- value: 54.78
450
- - name: 5-shot
451
- type: f1
452
- value: 60.43
453
- - task:
454
- type: text-generation
455
- dataset:
456
- name: STS_Spearman
457
- type: STS_Spearman
458
- metrics:
459
- - name: 1-shot
460
- type: spearman
461
- value: 73.38
462
- - name: 3-shot
463
- type: spearman
464
- value: 78.93
465
- - name: 5-shot
466
- type: spearman
467
- value: 79.68
468
- - task:
469
- type: text-generation
470
- dataset:
471
- name: STS_Pearson
472
- type: STS_Pearson
473
- metrics:
474
- - name: 1-shot
475
- type: pearson
476
- value: 73.93
477
- - name: 3-shot
478
- type: pearson
479
- value: 77.69
480
- - name: 5-shot
481
- type: pearson
482
- value: 78.17
483
-
484
- ---
485
-
486
- # Model Card for Model ID
487
-
488
- <!-- Provide a quick summary of what the model is/does. -->
489
-
490
- This model points/is identical to [RoMistral-7b-Instruct-DPO-2024-10-09](https://huggingface.co/OpenLLM-Ro/RoMistral-7b-Instruct-DPO-2024-10-09).
491
-
492
-
493
-
494
- RoMistral is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **human aligned instruct 7B model**. Links to other models can be found at the bottom of this page.
495
-
496
- ## Model Details
497
-
498
- ### Model Description
499
-
500
- <!-- Provide a longer summary of what this model is. -->
501
- OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
502
-
503
-
504
- - **Developed by:** OpenLLM-Ro
505
- <!-- - **Funded by [optional]:** [More Information Needed] -->
506
- <!-- - **Shared by [optional]:** [More Information Needed] -->
507
- <!-- - **Model type:** [More Information Needed] -->
508
- - **Language(s):** Romanian
509
- - **License:** cc-by-nc-4.0
510
- - **Finetuned from model:** [RoMistral-7b-Instruct-2024-10-09](https://huggingface.co/OpenLLM-Ro/RoMistral-7b-Instruct-2024-10-09)
511
- - **Trained using:** [RoHelpSteer](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_helpsteer)
512
-
513
-
514
- <!-- - **Finetuned from model [optional]:** [More Information Needed] -->
515
-
516
- ### Model Sources
517
-
518
- <!-- Provide the basic links for the model. -->
519
-
520
- - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
521
- - **Paper:** https://arxiv.org/abs/2406.18266
522
-
523
- ## Intended Use
524
-
525
- ### Intended Use Cases
526
-
527
- RoMistral is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
528
-
529
- ### Out-of-Scope Use
530
-
531
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
532
-
533
- Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
534
-
535
-
536
-
537
- ## How to Get Started with the Model
538
-
539
- Use the code below to get started with the model.
540
-
541
- ```python
542
- from transformers import AutoTokenizer, AutoModelForCausalLM
543
-
544
- tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoMistral-7b-Instruct-DPO")
545
- model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoMistral-7b-Instruct-DPO")
546
-
547
- instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
548
- chat = [
549
- {"role": "user", "content": instruction},
550
- ]
551
- prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
552
-
553
- inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
554
- outputs = model.generate(input_ids=inputs, max_new_tokens=128)
555
- print(tokenizer.decode(outputs[0]))
556
- ```
557
-
558
- ## Academic Benchmarks
559
-
560
-
561
- <table>
562
- <tbody>
563
- <tr>
564
- <td><strong>Model</strong></td>
565
- <td><strong><center>Average</center></strong></td>
566
- <td><strong><center>ARC</center></strong></td>
567
- <td><strong><center>MMLU</center></strong></td>
568
- <td><strong><center>Winogrande</center></strong></td>
569
- <td><strong><center>Hellaswag</center></strong></td>
570
- <td><strong><center>GSM8k</center></strong></td>
571
- <td><strong><center>TruthfulQA</center></strong></td>
572
- </tr>
573
- <tr>
574
- <td>Mistral-7B-Instruct-v0.2</td><td><center>47.40</center></td><td><center>46.29</center></td><td><center>47.00</center></td><td><center>58.78</center></td><td><center>54.27</center></td><td><center>13.47</center></td><td><center><strong>64.59</strong></center></td>
575
- </tr>
576
- <tr>
577
- <td>RoMistral-7b-Instruct-2024-05-17</td><td><center>52.54</center></td><td><center>50.41</center></td><td><center><strong>51.61</strong></center></td><td><center>66.48</center></td><td><center>60.27</center></td><td><center><strong>34.19</strong></center></td><td><center>52.30</center></td>
578
- </tr>
579
- <tr>
580
- <td>RoMistral-7b-Instruct-2024-10-09</td><td><center><strong>52.91</strong></center></td><td><center><strong>52.27</strong></center></td><td><center>49.33</center></td><td><center><strong>70.03</strong></center></td><td><center><strong>62.88</strong></center></td><td><center>32.42</center></td><td><center>50.51</center></td>
581
- </tr>
582
- <tr>
583
- <td><em>RoMistral-7b-Instruct-DPO-2024-10-09</em></td><td><center><em>51.95</em></center></td><td><center><em>50.73</em></center></td><td><center><em>47.88</em></center></td><td><center><em>68.41</em></center></td><td><center><em>62.27</em></center></td><td><center><em>32.27</em></center></td><td><center><em>50.12</em></center></td>
584
- </tr>
585
- </tbody>
586
- </table>
587
-
588
- ## Downstream tasks
589
-
590
- <table>
591
- <tbody>
592
- <tr>
593
- <td></td>
594
- <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
595
- <td colspan="4"><center><strong>WMT</strong></center></td>
596
- </tr>
597
- <tr>
598
- <td></td>
599
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
600
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
601
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
602
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
603
- </tr>
604
- <tr>
605
- <td><strong>Model</strong></td>
606
- <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
607
- <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
608
- <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
609
- <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
610
- <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
611
- <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
612
- <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
613
- <td><center><strong>RO-EN<br>(Bleu)</strong></center>
614
- </tr>
615
- <tr>
616
- <td>Mistral-7B-Instruct-v0.2</td><td><center>96.97</center></td><td><center>56.66</center></td><td><center>98.83</center></td><td><center>87.32</center></td><td><center>18.60</center></td><td><center><strong>33.99</strong></center></td><td><center>26.19</center></td><td><center>39.88</center></td>
617
- </tr>
618
- <tr>
619
- <td>RoMistral-7b-Instruct-2024-05-17</td><td><center><strong>97.36</strong></center></td><td><center>67.55</center></td><td><center>98.80</center></td><td><center><strong>88.28</strong></center></td><td><center>27.93</center></td><td><center>13.21</center></td><td><center><strong>28.72</strong></center></td><td><center><strong>40.86</strong></center></td>
620
- </tr>
621
- <tr>
622
- <td>RoMistral-7b-Instruct-2024-10-09</td><td><center>95.56</center></td><td><center><strong>67.83</strong></center></td><td><center><strong>99.00</strong></center></td><td><center>87.57</center></td><td><center><strong>28.28</strong></center></td><td><center>6.10</center></td><td><center>27.70</center></td><td><center>40.36</center></td>
623
- </tr>
624
- <tr>
625
- <td><em>RoMistral-7b-Instruct-DPO-2024-10-09</em></td><td><center><em>82.13</em></center></td><td><center><em>65.24</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>26.25</em></center></td><td><center><em>6.09</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
626
- </tr>
627
- </tbody>
628
- </table>
629
-
630
-
631
- <table>
632
- <tbody>
633
- <tr>
634
- <td></td>
635
- <td colspan="4"><center><strong>XQuAD</strong></center></td>
636
- <td colspan="4"><center><strong>STS</strong></center></td>
637
- </tr>
638
- <tr>
639
- <td></td>
640
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
641
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
642
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
643
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
644
- </tr>
645
- <tr>
646
- <td><strong>Model</strong></td>
647
- <td><center><strong>(EM)</strong></center></td>
648
- <td><center><strong>(F1)</strong></center></td>
649
- <td><center><strong>(EM)</strong></center></td>
650
- <td><center><strong>(F1)</strong></center></td>
651
- <td><center><strong>(Spearman)</strong></center></td>
652
- <td><center><strong>(Pearson)</strong></center></td>
653
- <td><center><strong>(Spearman)</strong></center></td>
654
- <td><center><strong>(Pearson)</strong></center></td>
655
- </tr>
656
- <tr>
657
- <td>Mistral-7B-Instruct-v0.2</td><td><center>27.92</center></td><td><center>50.71</center></td><td><center><strong>65.46</strong></center></td><td><center><strong>79.73</strong></center></td><td><center>62.62</center></td><td><center>60.86</center></td><td><center>84.92</center></td><td><center>85.44</center></td>
658
- </tr>
659
- <tr>
660
- <td>RoMistral-7b-Instruct-2024-05-17</td><td><center><strong>43.66</strong></center></td><td><center><strong>63.70</strong></center></td><td><center>55.04</center></td><td><center>72.31</center></td><td><center>77.43</center></td><td><center><strong>78.43</strong></center></td><td><center>87.25</center></td><td><center>87.79</center></td>
661
- </tr>
662
- <tr>
663
- <td>RoMistral-7b-Instruct-2024-10-09</td><td><center>41.09</center></td><td><center>63.21</center></td><td><center>47.56</center></td><td><center>62.69</center></td><td><center><strong>78.47</strong></center></td><td><center>77.24</center></td><td><center><strong>87.28</strong></center></td><td><center><strong>87.88</strong></center></td>
664
- </tr>
665
- <tr>
666
- <td><em>RoMistral-7b-Instruct-DPO-2024-10-09</em></td><td><center><em>23.40</em></center></td><td><center><em>45.80</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>77.33</em></center></td><td><center><em>76.60</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
667
- </tr>
668
- </tbody>
669
- </table>
670
-
671
-
672
- ## MT-Bench
673
-
674
- <table>
675
- <tbody>
676
- <tr>
677
- <td><strong>Model</strong></td>
678
- <td><strong><center>Average</center></strong></td>
679
- <td><strong><center>1st turn</center></strong></td>
680
- <td><strong><center>2nd turn</center></strong></td>
681
- <td><strong><center>Answers in Ro</center></strong></td>
682
- </tr>
683
- <tr>
684
- <td>Mistral-7B-Instruct-v0.2</td><td><center>5.03</center></td><td><center>5.05</center></td><td><center>5.00</center></td><td><center>154/160</center></td>
685
- </tr>
686
- <tr>
687
- <td>RoMistral-7b-Instruct-2024-05-17</td><td><center>4.99</center></td><td><center>5.46</center></td><td><center>4.53</center></td><td><center><strong>160/160</strong></center></td>
688
- </tr>
689
- <tr>
690
- <td>RoMistral-7b-Instruct-2024-10-09</td><td><center>5.29</center></td><td><center>5.86</center></td><td><center>4.72</center></td><td><center><strong>160/160</strong></center></td>
691
- </tr>
692
- <tr>
693
- <td><em>RoMistral-7b-Instruct-DPO-2024-10-09</em></td><td><center><em><strong>5.88</strong></em></center></td><td><center><em><strong>6.44</strong></em></center></td><td><center><em><strong>5.33</strong></em></center></td><td><center><em><strong>160/160</strong></em></center></td>
694
- </tr>
695
- </tbody>
696
- </table>
697
-
698
-
699
- ## RoCulturaBench
700
-
701
- <table>
702
- <tbody>
703
- <tr>
704
- <td><strong>Model</strong></td>
705
- <td><strong><center>Average</center></strong></td>
706
- <td><strong><center>Answers in Ro</center></strong></td>
707
- </tr>
708
- <tr>
709
- <td>Mistral-7B-Instruct-v0.2</td><td><center>3.68</center></td><td><center>97/100</center></td>
710
- </tr>
711
- <tr>
712
- <td>RoMistral-7b-Instruct-2024-05-17</td><td><center>3.38</center></td><td><center><strong>100/100</strong></center></td>
713
- </tr>
714
- <tr>
715
- <td>RoMistral-7b-Instruct-2024-10-09</td><td><center>3.99</center></td><td><center><strong>100/100</strong></center></td>
716
- </tr>
717
- <tr>
718
- <td><em>RoMistral-7b-Instruct-DPO-2024-10-09</em></td><td><center><em><strong>4.72</strong></em></center></td><td><center><em><strong>100/100</strong></em></center></td>
719
- </tr>
720
- </tbody>
721
- </table>
722
-
723
-
724
-
725
-
726
- ## RoMistral Model Family
727
-
728
- | Model | Link |
729
- |--------------------|:--------:|
730
- |RoMistral-7b-Instruct-2024-05-17| [link](https://huggingface.co/OpenLLM-Ro/RoMistral-7b-Instruct-2024-05-17) |
731
- |RoMistral-7b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoMistral-7b-Instruct-2024-10-09) |
732
- |*RoMistral-7b-Instruct-DPO-2024-10-09*| [link](https://huggingface.co/OpenLLM-Ro/RoMistral-7b-Instruct-DPO-2024-10-09) |
733
-
734
-
735
- ## Citation
736
-
737
- ```
738
- @misc{masala2024vorbecstiromanecsterecipetrain,
739
- title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
740
- author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
741
- year={2024},
742
- eprint={2406.18266},
743
- archivePrefix={arXiv},
744
- primaryClass={cs.CL},
745
- url={https://arxiv.org/abs/2406.18266},
746
- }
747
- ```
748
- <!-- **APA:**
749
-
750
  [More Information Needed] -->
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ language:
4
+ - ro
5
+ base_model:
6
+ - OpenLLM-Ro/RoMistral-7b-Instruct-2025-04-23
7
+ datasets:
8
+ - OpenLLM-Ro/ro_dpo_helpsteer
9
+ - OpenLLM-Ro/ro_dpo_ultrafeedback
10
+ - OpenLLM-Ro/ro_dpo_magpie
11
+ - OpenLLM-Ro/ro_dpo_argilla_magpie
12
+ - OpenLLM-Ro/ro_dpo_helpsteer2
13
+ model-index:
14
+ - name: OpenLLM-Ro/RoMistral-7b-Instruct-DPO-2025-04-23
15
+ results:
16
+ - task:
17
+ type: text-generation
18
+ dataset:
19
+ name: RoMT-Bench
20
+ type: RoMT-Bench
21
+ metrics:
22
+ - name: Score
23
+ type: Score
24
+ value: 6.61
25
+ - task:
26
+ type: text-generation
27
+ dataset:
28
+ name: RoCulturaBench
29
+ type: RoCulturaBench
30
+ metrics:
31
+ - name: Score
32
+ type: Score
33
+ value: 4.93
34
+ - task:
35
+ type: text-generation
36
+ dataset:
37
+ name: Romanian_Academic_Benchmarks
38
+ type: Romanian_Academic_Benchmarks
39
+ metrics:
40
+ - name: Average accuracy
41
+ type: accuracy
42
+ value: 56.62
43
+ - task:
44
+ type: text-generation
45
+ dataset:
46
+ name: OpenLLM-Ro/ro_arc_challenge
47
+ type: OpenLLM-Ro/ro_arc_challenge
48
+ metrics:
49
+ - name: Average accuracy
50
+ type: accuracy
51
+ value: 55.51
52
+ - task:
53
+ type: text-generation
54
+ dataset:
55
+ name: OpenLLM-Ro/ro_mmlu
56
+ type: OpenLLM-Ro/ro_mmlu
57
+ metrics:
58
+ - name: Average accuracy
59
+ type: accuracy
60
+ value: 52.61
61
+ - task:
62
+ type: text-generation
63
+ dataset:
64
+ name: OpenLLM-Ro/ro_winogrande
65
+ type: OpenLLM-Ro/ro_winogrande
66
+ metrics:
67
+ - name: Average accuracy
68
+ type: accuracy
69
+ value: 68.04
70
+ - task:
71
+ type: text-generation
72
+ dataset:
73
+ name: OpenLLM-Ro/ro_hellaswag
74
+ type: OpenLLM-Ro/ro_hellaswag
75
+ metrics:
76
+ - name: Average accuracy
77
+ type: accuracy
78
+ value: 64.97
79
+ - task:
80
+ type: text-generation
81
+ dataset:
82
+ name: OpenLLM-Ro/ro_gsm8k
83
+ type: OpenLLM-Ro/ro_gsm8k
84
+ metrics:
85
+ - name: Average accuracy
86
+ type: accuracy
87
+ value: 41.07
88
+ - task:
89
+ type: text-generation
90
+ dataset:
91
+ name: OpenLLM-Ro/ro_truthfulqa
92
+ type: OpenLLM-Ro/ro_truthfulqa
93
+ metrics:
94
+ - name: Average accuracy
95
+ type: accuracy
96
+ value: 57.55
97
+ - task:
98
+ type: text-generation
99
+ dataset:
100
+ name: LaRoSeDa_binary
101
+ type: LaRoSeDa_binary
102
+ metrics:
103
+ - name: Average macro-f1
104
+ type: macro-f1
105
+ value: 97.94
106
+ - task:
107
+ type: text-generation
108
+ dataset:
109
+ name: LaRoSeDa_multiclass
110
+ type: LaRoSeDa_multiclass
111
+ metrics:
112
+ - name: Average macro-f1
113
+ type: macro-f1
114
+ value: 66.13
115
+ - task:
116
+ type: text-generation
117
+ dataset:
118
+ name: WMT_EN-RO
119
+ type: WMT_EN-RO
120
+ metrics:
121
+ - name: Average bleu
122
+ type: bleu
123
+ value: 27.24
124
+ - task:
125
+ type: text-generation
126
+ dataset:
127
+ name: WMT_RO-EN
128
+ type: WMT_RO-EN
129
+ metrics:
130
+ - name: Average bleu
131
+ type: bleu
132
+ value: 18.41
133
+ - task:
134
+ type: text-generation
135
+ dataset:
136
+ name: XQuAD
137
+ type: XQuAD
138
+ metrics:
139
+ - name: Average exact_match
140
+ type: exact_match
141
+ value: 40.86
142
+ - task:
143
+ type: text-generation
144
+ dataset:
145
+ name: XQuAD
146
+ type: XQuAD
147
+ metrics:
148
+ - name: Average f1
149
+ type: f1
150
+ value: 62.24
151
+ - task:
152
+ type: text-generation
153
+ dataset:
154
+ name: STS
155
+ type: STS
156
+ metrics:
157
+ - name: Average spearman
158
+ type: spearman
159
+ value: 77.89
160
+ - task:
161
+ type: text-generation
162
+ dataset:
163
+ name: STS
164
+ type: STS
165
+ metrics:
166
+ - name: Average pearson
167
+ type: pearson
168
+ value: 76.40
169
+ - task:
170
+ type: text-generation
171
+ dataset:
172
+ name: RoMT-Bench
173
+ type: RoMT-Bench
174
+ metrics:
175
+ - name: First turn
176
+ type: Score
177
+ value: 6.86
178
+ - name: Second turn
179
+ type: Score
180
+ value: 6.35
181
+ - task:
182
+ type: text-generation
183
+ dataset:
184
+ name: OpenLLM-Ro/ro_arc_challenge
185
+ type: OpenLLM-Ro/ro_arc_challenge
186
+ metrics:
187
+ - name: 0-shot
188
+ type: accuracy
189
+ value: 53.56
190
+ - name: 1-shot
191
+ type: accuracy
192
+ value: 52.96
193
+ - name: 3-shot
194
+ type: accuracy
195
+ value: 55.01
196
+ - name: 5-shot
197
+ type: accuracy
198
+ value: 56.64
199
+ - name: 10-shot
200
+ type: accuracy
201
+ value: 57.07
202
+ - name: 25-shot
203
+ type: accuracy
204
+ value: 57.84
205
+ - task:
206
+ type: text-generation
207
+ dataset:
208
+ name: OpenLLM-Ro/ro_mmlu
209
+ type: OpenLLM-Ro/ro_mmlu
210
+ metrics:
211
+ - name: 0-shot
212
+ type: accuracy
213
+ value: 53.37
214
+ - name: 1-shot
215
+ type: accuracy
216
+ value: 51.73
217
+ - name: 3-shot
218
+ type: accuracy
219
+ value: 52.64
220
+ - name: 5-shot
221
+ type: accuracy
222
+ value: 52.68
223
+ - task:
224
+ type: text-generation
225
+ dataset:
226
+ name: OpenLLM-Ro/ro_winogrande
227
+ type: OpenLLM-Ro/ro_winogrande
228
+ metrics:
229
+ - name: 0-shot
230
+ type: accuracy
231
+ value: 67.09
232
+ - name: 1-shot
233
+ type: accuracy
234
+ value: 67.72
235
+ - name: 3-shot
236
+ type: accuracy
237
+ value: 67.96
238
+ - name: 5-shot
239
+ type: accuracy
240
+ value: 69.38
241
+ - task:
242
+ type: text-generation
243
+ dataset:
244
+ name: OpenLLM-Ro/ro_hellaswag
245
+ type: OpenLLM-Ro/ro_hellaswag
246
+ metrics:
247
+ - name: 0-shot
248
+ type: accuracy
249
+ value: 65.04
250
+ - name: 1-shot
251
+ type: accuracy
252
+ value: 64.00
253
+ - name: 3-shot
254
+ type: accuracy
255
+ value: 64.82
256
+ - name: 5-shot
257
+ type: accuracy
258
+ value: 65.37
259
+ - name: 10-shot
260
+ type: accuracy
261
+ value: 65.60
262
+ - task:
263
+ type: text-generation
264
+ dataset:
265
+ name: OpenLLM-Ro/ro_gsm8k
266
+ type: OpenLLM-Ro/ro_gsm8k
267
+ metrics:
268
+ - name: 1-shot
269
+ type: accuracy
270
+ value: 34.19
271
+ - name: 3-shot
272
+ type: accuracy
273
+ value: 42.76
274
+ - name: 5-shot
275
+ type: accuracy
276
+ value: 46.25
277
+ - task:
278
+ type: text-generation
279
+ dataset:
280
+ name: LaRoSeDa_binary
281
+ type: LaRoSeDa_binary
282
+ metrics:
283
+ - name: 0-shot
284
+ type: macro-f1
285
+ value: 97.47
286
+ - name: 1-shot
287
+ type: macro-f1
288
+ value: 98.00
289
+ - name: 3-shot
290
+ type: macro-f1
291
+ value: 98.20
292
+ - name: 5-shot
293
+ type: macro-f1
294
+ value: 98.10
295
+ - task:
296
+ type: text-generation
297
+ dataset:
298
+ name: LaRoSeDa_multiclass
299
+ type: LaRoSeDa_multiclass
300
+ metrics:
301
+ - name: 0-shot
302
+ type: macro-f1
303
+ value: 56.61
304
+ - name: 1-shot
305
+ type: macro-f1
306
+ value: 68.50
307
+ - name: 3-shot
308
+ type: macro-f1
309
+ value: 68.86
310
+ - name: 5-shot
311
+ type: macro-f1
312
+ value: 70.57
313
+ - task:
314
+ type: text-generation
315
+ dataset:
316
+ name: WMT_EN-RO
317
+ type: WMT_EN-RO
318
+ metrics:
319
+ - name: 0-shot
320
+ type: bleu
321
+ value: 26.03
322
+ - name: 1-shot
323
+ type: bleu
324
+ value: 27.66
325
+ - name: 3-shot
326
+ type: bleu
327
+ value: 27.81
328
+ - name: 5-shot
329
+ type: bleu
330
+ value: 27.46
331
+ - task:
332
+ type: text-generation
333
+ dataset:
334
+ name: WMT_RO-EN
335
+ type: WMT_RO-EN
336
+ metrics:
337
+ - name: 0-shot
338
+ type: bleu
339
+ value: 2.80
340
+ - name: 1-shot
341
+ type: bleu
342
+ value: 8.45
343
+ - name: 3-shot
344
+ type: bleu
345
+ value: 28.81
346
+ - name: 5-shot
347
+ type: bleu
348
+ value: 33.58
349
+ - task:
350
+ type: text-generation
351
+ dataset:
352
+ name: XQuAD_EM
353
+ type: XQuAD_EM
354
+ metrics:
355
+ - name: 0-shot
356
+ type: exact_match
357
+ value: 26.05
358
+ - name: 1-shot
359
+ type: exact_match
360
+ value: 41.93
361
+ - name: 3-shot
362
+ type: exact_match
363
+ value: 47.31
364
+ - name: 5-shot
365
+ type: exact_match
366
+ value: 48.15
367
+ - task:
368
+ type: text-generation
369
+ dataset:
370
+ name: XQuAD_F1
371
+ type: XQuAD_F1
372
+ metrics:
373
+ - name: 0-shot
374
+ type: f1
375
+ value: 49.68
376
+ - name: 1-shot
377
+ type: f1
378
+ value: 62.52
379
+ - name: 3-shot
380
+ type: f1
381
+ value: 67.35
382
+ - name: 5-shot
383
+ type: f1
384
+ value: 69.42
385
+ - task:
386
+ type: text-generation
387
+ dataset:
388
+ name: STS_Spearman
389
+ type: STS_Spearman
390
+ metrics:
391
+ - name: 1-shot
392
+ type: spearman
393
+ value: 77.24
394
+ - name: 3-shot
395
+ type: spearman
396
+ value: 77.10
397
+ - name: 5-shot
398
+ type: spearman
399
+ value: 79.34
400
+ - task:
401
+ type: text-generation
402
+ dataset:
403
+ name: STS_Pearson
404
+ type: STS_Pearson
405
+ metrics:
406
+ - name: 1-shot
407
+ type: pearson
408
+ value: 76.32
409
+ - name: 3-shot
410
+ type: pearson
411
+ value: 75.51
412
+ - name: 5-shot
413
+ type: pearson
414
+ value: 77.36
415
+
416
+ ---
417
+
418
+ # Model Card for Model ID
419
+
420
+ <!-- Provide a quick summary of what the model is/does. -->
421
+
422
+ RoMistral is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **human aligned instruct 7B model**. Links to other models can be found at the bottom of this page.
423
+
424
+ ## Model Details
425
+
426
+ ### Model Description
427
+
428
+ <!-- Provide a longer summary of what this model is. -->
429
+ OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
430
+
431
+
432
+ - **Developed by:** OpenLLM-Ro
433
+ <!-- - **Funded by [optional]:** [More Information Needed] -->
434
+ <!-- - **Shared by [optional]:** [More Information Needed] -->
435
+ <!-- - **Model type:** [More Information Needed] -->
436
+ - **Language(s):** Romanian
437
+ - **License:** cc-by-nc-4.0
438
+ - **Finetuned from model:** [RoMistral-7b-Instruct-2025-04-23](https://huggingface.co/OpenLLM-Ro/RoMistral-7b-Instruct-2025-04-23)
439
+ - **Trained using:** [RoHelpSteer](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_helpsteer), [RoUltraFeedback](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_ultrafeedback), [RoMagpieDPO](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_magpie), [RoArgillaMagpie](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_argilla_magpie), [RoHelpSteer2](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_helpsteer2)
440
+
441
+
442
+ <!-- - **Finetuned from model [optional]:** [More Information Needed] -->
443
+
444
+ ### Model Sources
445
+
446
+ <!-- Provide the basic links for the model. -->
447
+
448
+ - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
449
+ - **Paper:** https://arxiv.org/abs/2406.18266
450
+
451
+ ## Intended Use
452
+
453
+ ### Intended Use Cases
454
+
455
+ RoMistral is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
456
+
457
+ ### Out-of-Scope Use
458
+
459
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
460
+
461
+ Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
462
+
463
+
464
+
465
+ ## How to Get Started with the Model
466
+
467
+ Use the code below to get started with the model.
468
+
469
+ ```python
470
+ from transformers import AutoTokenizer, AutoModelForCausalLM
471
+
472
+ tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoMistral-7b-Instruct-DPO-2025-04-23")
473
+ model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoMistral-7b-Instruct-DPO-2025-04-23")
474
+
475
+ instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
476
+ chat = [
477
+ {"role": "user", "content": instruction},
478
+ ]
479
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
480
+
481
+ inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
482
+ outputs = model.generate(input_ids=inputs, max_new_tokens=128)
483
+ print(tokenizer.decode(outputs[0]))
484
+ ```
485
+
486
+ ## Academic Benchmarks
487
+
488
+
489
+ <table>
490
+ <tbody>
491
+ <tr>
492
+ <td><strong>Model</strong></td>
493
+ <td><strong><center>Average</center></strong></td>
494
+ <td><strong><center>ARC</center></strong></td>
495
+ <td><strong><center>MMLU</center></strong></td>
496
+ <td><strong><center>Winogrande</center></strong></td>
497
+ <td><strong><center>Hellaswag</center></strong></td>
498
+ <td><strong><center>GSM8k</center></strong></td>
499
+ <td><strong><center>TruthfulQA</center></strong></td>
500
+ </tr>
501
+ <tr>
502
+ <td>Mistral-7B-Instruct-v0.2</td><td><center>47.40</center></td><td><center>46.29</center></td><td><center>47.00</center></td><td><center>58.78</center></td><td><center>54.27</center></td><td><center>13.47</center></td><td><center><strong>64.59</strong></center></td>
503
+ </tr>
504
+ <tr>
505
+ <td>RoMistral-7b-Instruct-2024-05-17</td><td><center>52.54</center></td><td><center>50.41</center></td><td><center>51.61</center></td><td><center>66.48</center></td><td><center>60.27</center></td><td><center>34.19</center></td><td><center>52.30</center></td>
506
+ </tr>
507
+ <tr>
508
+ <td>RoMistral-7b-Instruct-2024-10-09</td><td><center>52.91</center></td><td><center>52.27</center></td><td><center>49.33</center></td><td><center><strong>70.03</strong></center></td><td><center>62.88</center></td><td><center>32.42</center></td><td><center>50.51</center></td>
509
+ </tr>
510
+ <tr>
511
+ <td>RoMistral-7b-Instruct-2025-04-23</td><td><center>54.40</center></td><td><center>52.86</center></td><td><center>52.33</center></td><td><center>68.57</center></td><td><center>63.50</center></td><td><center>38.15</center></td><td><center>51.01</center></td>
512
+ </tr>
513
+ <tr>
514
+ <td>RoMistral-7b-Instruct-DPO-2024-10-09</td><td><center>51.95</center></td><td><center>50.73</center></td><td><center>47.88</center></td><td><center>68.41</center></td><td><center>62.27</center></td><td><center>32.27</center></td><td><center>50.12</center></td>
515
+ </tr>
516
+ <tr>
517
+ <td><em>RoMistral-7b-Instruct-DPO-2025-04-23</em></td><td><center><em><strong>56.62</strong></em></center></td><td><center><em><strong>55.51</strong></em></center></td><td><center><em><strong>52.61</strong></em></center></td><td><center><em>68.04</em></center></td><td><center><em><strong>64.97</strong></em></center></td><td><center><em><strong>41.07</strong></em></center></td><td><center><em>57.55</em></center></td>
518
+ </tr>
519
+ </tbody>
520
+ </table>
521
+
522
+
523
+ ## Downstream tasks
524
+
525
+ <table>
526
+ <tbody>
527
+ <tr>
528
+ <td></td>
529
+ <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
530
+ <td colspan="4"><center><strong>WMT</strong></center></td>
531
+ </tr>
532
+ <tr>
533
+ <td></td>
534
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
535
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
536
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
537
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
538
+ </tr>
539
+ <tr>
540
+ <td><strong>Model</strong></td>
541
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
542
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
543
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
544
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
545
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
546
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
547
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
548
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center>
549
+ </tr>
550
+ <tr>
551
+ <td>Mistral-7B-Instruct-v0.2</td><td><center>96.97</center></td><td><center>56.66</center></td><td><center>98.83</center></td><td><center>87.32</center></td><td><center>18.60</center></td><td><center><strong>33.99</strong></center></td><td><center>26.19</center></td><td><center>39.88</center></td>
552
+ </tr>
553
+ <tr>
554
+ <td>RoMistral-7b-Instruct-2024-05-17</td><td><center>97.36</center></td><td><center>67.55</center></td><td><center>98.80</center></td><td><center><strong>88.28</strong></center></td><td><center>27.93</center></td><td><center>13.21</center></td><td><center><strong>28.72</strong></center></td><td><center><strong>40.86</strong></center></td>
555
+ </tr>
556
+ <tr>
557
+ <td>RoMistral-7b-Instruct-2024-10-09</td><td><center>95.56</center></td><td><center><strong>67.83</strong></center></td><td><center><strong>99.00</strong></center></td><td><center>87.57</center></td><td><center>28.28</center></td><td><center>6.10</center></td><td><center>27.70</center></td><td><center>40.36</center></td>
558
+ </tr>
559
+ <tr>
560
+ <td>RoMistral-7b-Instruct-2025-04-23</td><td><center>97.67</center></td><td><center>61.79</center></td><td><center>-</center></td><td><center>-</center></td><td><center><strong>28.69</strong></center></td><td><center>19.23</center></td><td><center>-</center></td><td><center>-</center></td>
561
+ </tr>
562
+ <tr>
563
+ <td>RoMistral-7b-Instruct-DPO-2024-10-09</td><td><center>82.13</center></td><td><center>65.24</center></td><td><center>-</center></td><td><center>-</center></td><td><center>26.25</center></td><td><center>6.09</center></td><td><center>-</center></td><td><center>-</center></td>
564
+ </tr>
565
+ <tr>
566
+ <td><em>RoMistral-7b-Instruct-DPO-2025-04-23</em></td><td><center><em><strong>97.94</strong></em></center></td><td><center><em>66.13</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>27.24</em></center></td><td><center><em>18.41</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
567
+ </tr>
568
+ </tbody>
569
+ </table>
570
+
571
+
572
+ <table>
573
+ <tbody>
574
+ <tr>
575
+ <td></td>
576
+ <td colspan="4"><center><strong>XQuAD</strong></center></td>
577
+ <td colspan="4"><center><strong>STS</strong></center></td>
578
+ </tr>
579
+ <tr>
580
+ <td></td>
581
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
582
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
583
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
584
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
585
+ </tr>
586
+ <tr>
587
+ <td><strong>Model</strong></td>
588
+ <td><center><strong>(EM)</strong></center></td>
589
+ <td><center><strong>(F1)</strong></center></td>
590
+ <td><center><strong>(EM)</strong></center></td>
591
+ <td><center><strong>(F1)</strong></center></td>
592
+ <td><center><strong>(Spearman)</strong></center></td>
593
+ <td><center><strong>(Pearson)</strong></center></td>
594
+ <td><center><strong>(Spearman)</strong></center></td>
595
+ <td><center><strong>(Pearson)</strong></center></td>
596
+ </tr>
597
+ <tr>
598
+ <td>Mistral-7B-Instruct-v0.2</td><td><center>27.92</center></td><td><center>50.71</center></td><td><center><strong>65.46</strong></center></td><td><center><strong>79.73</strong></center></td><td><center>62.62</center></td><td><center>60.86</center></td><td><center>84.92</center></td><td><center>85.44</center></td>
599
+ </tr>
600
+ <tr>
601
+ <td>RoMistral-7b-Instruct-2024-05-17</td><td><center>43.66</center></td><td><center>63.70</center></td><td><center>55.04</center></td><td><center>72.31</center></td><td><center>77.43</center></td><td><center><strong>78.43</strong></center></td><td><center>87.25</center></td><td><center>87.79</center></td>
602
+ </tr>
603
+ <tr>
604
+ <td>RoMistral-7b-Instruct-2024-10-09</td><td><center>41.09</center></td><td><center>63.21</center></td><td><center>47.56</center></td><td><center>62.69</center></td><td><center>78.47</center></td><td><center>77.24</center></td><td><center><strong>87.28</strong></center></td><td><center><strong>87.88</strong></center></td>
605
+ </tr>
606
+ <tr>
607
+ <td>RoMistral-7b-Instruct-2025-04-23</td><td><center><strong>49.05</strong></center></td><td><center><strong>69.11</strong></center></td><td><center>-</center></td><td><center>-</center></td><td><center><strong>78.67</strong></center></td><td><center>77.08</center></td><td><center>-</center></td><td><center>-</center></td>
608
+ </tr>
609
+ <tr>
610
+ <td>RoMistral-7b-Instruct-DPO-2024-10-09</td><td><center>23.40</center></td><td><center>45.80</center></td><td><center>-</center></td><td><center>-</center></td><td><center>77.33</center></td><td><center>76.60</center></td><td><center>-</center></td><td><center>-</center></td>
611
+ </tr>
612
+ <tr>
613
+ <td><em>RoMistral-7b-Instruct-DPO-2025-04-23</em></td><td><center><em>40.86</em></center></td><td><center><em>62.24</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>77.89</em></center></td><td><center><em>76.40</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
614
+ </tr>
615
+ </tbody>
616
+ </table>
617
+
618
+
619
+ ## MT-Bench
620
+
621
+ <table>
622
+ <tbody>
623
+ <tr>
624
+ <td><strong>Model</strong></td>
625
+ <td><strong><center>Average</center></strong></td>
626
+ <td><strong><center>1st turn</center></strong></td>
627
+ <td><strong><center>2nd turn</center></strong></td>
628
+ <td><strong><center>Answers in Ro</center></strong></td>
629
+ </tr>
630
+ <tr>
631
+ <td>Mistral-7B-Instruct-v0.2</td><td><center>5.03</center></td><td><center>5.05</center></td><td><center>5.00</center></td><td><center>154/160</center></td>
632
+ </tr>
633
+ <tr>
634
+ <td>RoMistral-7b-Instruct-2024-05-17</td><td><center>4.99</center></td><td><center>5.46</center></td><td><center>4.53</center></td><td><center><strong>160/160</strong></center></td>
635
+ </tr>
636
+ <tr>
637
+ <td>RoMistral-7b-Instruct-2024-10-09</td><td><center>5.29</center></td><td><center>5.86</center></td><td><center>4.72</center></td><td><center><strong>160/160</strong></center></td>
638
+ </tr>
639
+ <tr>
640
+ <td>RoMistral-7b-Instruct-2025-04-23</td><td><center>6.24</center></td><td><center>6.78</center></td><td><center>5.70</center></td><td><center><strong>160/160</strong></center></td>
641
+ </tr>
642
+ <tr>
643
+ <td>RoMistral-7b-Instruct-DPO-2024-10-09</td><td><center>5.88</center></td><td><center>6.44</center></td><td><center>5.33</center></td><td><center><strong>160/160</strong></center></td>
644
+ </tr>
645
+ <tr>
646
+ <td><em>RoMistral-7b-Instruct-DPO-2025-04-23</em></td><td><center><em><strong>6.61</strong></em></center></td><td><center><em><strong>6.86</strong></em></center></td><td><center><em><strong>6.35</strong></em></center></td><td><center><em><strong>160/160</strong></em></center></td>
647
+ </tr>
648
+ </tbody>
649
+ </table>
650
+
651
+
652
+ ## RoCulturaBench
653
+
654
+ <table>
655
+ <tbody>
656
+ <tr>
657
+ <td><strong>Model</strong></td>
658
+ <td><strong><center>Average</center></strong></td>
659
+ <td><strong><center>Answers in Ro</center></strong></td>
660
+ </tr>
661
+ <tr>
662
+ <td>Mistral-7B-Instruct-v0.2</td><td><center>3.68</center></td><td><center>97/100</center></td>
663
+ </tr>
664
+ <tr>
665
+ <td>RoMistral-7b-Instruct-2024-05-17</td><td><center>3.38</center></td><td><center><strong>100/100</strong></center></td>
666
+ </tr>
667
+ <tr>
668
+ <td>RoMistral-7b-Instruct-2024-10-09</td><td><center>3.99</center></td><td><center><strong>100/100</strong></center></td>
669
+ </tr>
670
+ <tr>
671
+ <td>RoMistral-7b-Instruct-2025-04-23</td><td><center>4.36</center></td><td><center><strong>100/100</strong></center></td>
672
+ </tr>
673
+ <tr>
674
+ <td>RoMistral-7b-Instruct-DPO-2024-10-09</td><td><center>4.72</center></td><td><center><strong>100/100</strong></center></td>
675
+ </tr>
676
+ <tr>
677
+ <td><em>RoMistral-7b-Instruct-DPO-2025-04-23</em></td><td><center><em><strong>4.93</strong></em></center></td><td><center><em><strong>100/100</strong></em></center></td>
678
+ </tr>
679
+ </tbody>
680
+ </table>
681
+
682
+
683
+
684
+
685
+ ## RoMistral Model Family
686
+
687
+ | Model | Link |
688
+ |--------------------|:--------:|
689
+ |RoMistral-7b-Instruct-2024-05-17| [link](https://huggingface.co/OpenLLM-Ro/RoMistral-7b-Instruct-2024-05-17) |
690
+ |RoMistral-7b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoMistral-7b-Instruct-2024-10-09) |
691
+ |RoMistral-7b-Instruct-2025-04-23| [link](https://huggingface.co/OpenLLM-Ro/RoMistral-7b-Instruct-2025-04-23) |
692
+ |RoMistral-7b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoMistral-7b-Instruct-DPO-2024-10-09) |
693
+ |*RoMistral-7b-Instruct-DPO-2025-04-23*| [link](https://huggingface.co/OpenLLM-Ro/RoMistral-7b-Instruct-DPO-2025-04-23) |
694
+
695
+
696
+
697
+ ## Citation
698
+
699
+ ```
700
+ @misc{masala2024vorbecstiromanecsterecipetrain,
701
+ title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
702
+ author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
703
+ year={2024},
704
+ eprint={2406.18266},
705
+ archivePrefix={arXiv},
706
+ primaryClass={cs.CL},
707
+ url={https://arxiv.org/abs/2406.18266},
708
+ }
709
+ ```
710
+ <!-- **APA:**
711
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
712
  [More Information Needed] -->