File size: 11,122 Bytes
d51ece7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
---
widget:
- text: "The patient presented with chronic lymphocytic leukemia symptoms."
- text: "B-cell proliferation was observed in bone marrow samples."
- text: "Treatment with ibrutinib showed promising results."
- text: "Flow cytometry confirmed the diagnosis of chronic lymphocytic leukemia."
- text: "The patient had del(17p), a high-risk feature in CLL."
tags:
- token-classification
- named-entity-recognition
- biomedical-nlp
- transformers
- leukemia
- hematology
- cancer
- clinical-medicine
- cl
language:
- en
license: apache-2.0
---

# 🧬 [OpenMed-NER-BloodCancerDetect-BigMed-278M](https://huggingface.co/OpenMed/OpenMed-NER-BloodCancerDetect-BigMed-278M)

**Specialized model for Clinical Entity Recognition - Clinical entities related to Chronic Lymphocytic Leukemia**

[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
[![Python](https://img.shields.io/badge/Python-3.8%2B-blue)]()
[![Transformers](https://img.shields.io/badge/πŸ€—-Transformers-yellow)]()
[![OpenMed](https://img.shields.io/badge/πŸ₯-OpenMed-green)](https://huggingface.co/OpenMed)

## πŸ“‹ Model Overview

This model is a **state-of-the-art** fine-tuned transformer engineered to deliver **enterprise-grade accuracy** for clinical entity recognition - clinical entities related to chronic lymphocytic leukemia. This specialized model excels at identifying and extracting biomedical entities from clinical texts, research papers, and healthcare documents, enabling applications such as **drug interaction detection**, **medication extraction from patient records**, **adverse event monitoring**, **literature mining for drug discovery**, and **biomedical knowledge graph construction** with **production-ready reliability** for clinical and research applications.

### 🎯 Key Features
- **High Precision**: Optimized for biomedical entity recognition
- **Domain-Specific**: Trained on curated CLL dataset
- **Production-Ready**: Validated on clinical benchmarks
- **Easy Integration**: Compatible with Hugging Face Transformers ecosystem

### 🏷️ Supported Entity Types

This model can identify and classify the following biomedical entities:

- `B-CL`
- `I-CL`

## πŸ“Š Dataset

CLL corpus is specialized for chronic lymphocytic leukemia entity recognition in hematology and cancer research.

The CLL (Chronic Lymphocytic Leukemia) corpus is a domain-specific biomedical NER dataset focused on entities related to chronic lymphocytic leukemia, a type of blood cancer. This specialized corpus contains annotations for CLL-specific terminology, biomarkers, treatment entities, and clinical concepts relevant to hematology and oncology research. The dataset is designed to support the development of clinical NLP systems for leukemia research, hematological disorder analysis, and cancer informatics applications. It is particularly valuable for identifying disease-specific entities, therapeutic interventions, and prognostic factors mentioned in CLL research literature. The corpus serves as a benchmark for evaluating NER models in specialized medical domains and clinical research.


## πŸ“Š Performance Metrics

### Current Model Performance
- **F1 Score**: `0.84`
- **Precision**: `0.98`
- **Recall**: `0.74`
- **Accuracy**: `0.94`

### πŸ† Comparative Performance on CLL Dataset

| Rank | Model | F1 Score | Precision | Recall | Accuracy |
|------|-------|----------|-----------|--------|-----------|
| πŸ₯‡ 1 | [OpenMed-NER-BloodCancerDetect-ElectraMed-560M](https://huggingface.co/OpenMed/OpenMed-NER-BloodCancerDetect-ElectraMed-560M) | **0.9575** | 0.9264 | 0.9907 | 0.9843 |
| πŸ₯ˆ 2 | [OpenMed-NER-BloodCancerDetect-SuperClinical-434M](https://huggingface.co/OpenMed/OpenMed-NER-BloodCancerDetect-SuperClinical-434M) | **0.8902** | 0.8652 | 0.9167 | 0.9701 |
| πŸ₯‰ 3 | [OpenMed-NER-BloodCancerDetect-TinyMed-82M](https://huggingface.co/OpenMed/OpenMed-NER-BloodCancerDetect-TinyMed-82M) | **0.8793** | 0.7904 | 0.9908 | 0.9449 |
|  4 | [OpenMed-NER-BloodCancerDetect-TinyMed-135M](https://huggingface.co/OpenMed/OpenMed-NER-BloodCancerDetect-TinyMed-135M) | **0.8792** | 0.8750 | 0.8835 | 0.9668 |
|  5 | [OpenMed-NER-BloodCancerDetect-TinyMed-65M](https://huggingface.co/OpenMed/OpenMed-NER-BloodCancerDetect-TinyMed-65M) | **0.8547** | 0.7812 | 0.9434 | 0.9686 |
|  6 | [OpenMed-NER-BloodCancerDetect-SuperMedical-125M](https://huggingface.co/OpenMed/OpenMed-NER-BloodCancerDetect-SuperMedical-125M) | **0.8488** | 1.0000 | 0.7373 | 0.9274 |
|  7 | [OpenMed-NER-BloodCancerDetect-SnowMed-568M](https://huggingface.co/OpenMed/OpenMed-NER-BloodCancerDetect-SnowMed-568M) | **0.8443** | 0.9816 | 0.7407 | 0.9372 |
|  8 | [OpenMed-NER-BloodCancerDetect-BigMed-278M](https://huggingface.co/OpenMed/OpenMed-NER-BloodCancerDetect-BigMed-278M) | **0.8443** | 0.9816 | 0.7407 | 0.9372 |
|  9 | [OpenMed-NER-BloodCancerDetect-SuperMedical-355M](https://huggingface.co/OpenMed/OpenMed-NER-BloodCancerDetect-SuperMedical-355M) | **0.8421** | 0.9816 | 0.7373 | 0.9248 |
|  10 | [OpenMed-NER-BloodCancerDetect-ElectraMed-335M](https://huggingface.co/OpenMed/OpenMed-NER-BloodCancerDetect-ElectraMed-335M) | **0.8364** | 0.7302 | 0.9787 | 0.9581 |


*Rankings based on F1-score performance across all models trained on this dataset.*

![OpenMed (open-source) vs. latest closed-source SOTA](https://huggingface.co/spaces/OpenMed/README/resolve/main/openmed_vs_sota_performance.png)

*Figure: OpenMed (Open-Source) vs. Latest SOTA (Closed-Source) performance comparison across biomedical NER datasets.*

## πŸš€ Quick Start

### Installation

```bash
pip install transformers torch
```

### Usage

```python
from transformers import pipeline

# Load the model and tokenizer
# Model: https://huggingface.co/OpenMed/OpenMed-NER-BloodCancerDetect-BigMed-278M
model_name = "OpenMed/OpenMed-NER-BloodCancerDetect-BigMed-278M"

# Create a pipeline
medical_ner_pipeline = pipeline(
    model=model_name,
    aggregation_strategy="simple"
)

# Example usage
text = "The patient presented with chronic lymphocytic leukemia symptoms."
entities = medical_ner_pipeline(text)

print(entities)

token = entities[0]
print(text[token["start"] : token["end"]])
```

NOTE: The `aggregation_strategy` parameter defines how token predictions are grouped into entities. For a detailed explanation, please refer to the [Hugging Face documentation](https://huggingface.co/docs/transformers/en/main_classes/pipelines#transformers.TokenClassificationPipeline.aggregation_strategy).

Here is a summary of the available strategies:
- **`none`**: Returns raw token predictions without any aggregation.
- **`simple`**: Groups adjacent tokens with the same entity type (e.g., `B-LOC` followed by `I-LOC`).
- **`first`**: For word-based models, if tokens within a word have different entity tags, the tag of the first token is assigned to the entire word.
- **`average`**: For word-based models, this strategy averages the scores of tokens within a word and applies the label with the highest resulting score.
- **`max`**: For word-based models, the entity label from the token with the highest score within a word is assigned to the entire word.

### Batch Processing

For efficient processing of large datasets, use proper batching with the `batch_size` parameter:

```python
texts = [
    "The patient presented with chronic lymphocytic leukemia symptoms.",
    "B-cell proliferation was observed in bone marrow samples.",
    "Treatment with ibrutinib showed promising results.",
    "Flow cytometry confirmed the diagnosis of chronic lymphocytic leukemia.",
    "The patient had del(17p), a high-risk feature in CLL.",
]

# Efficient batch processing with optimized batch size
# Adjust batch_size based on your GPU memory (typically 8, 16, 32, or 64)
results = medical_ner_pipeline(texts, batch_size=8)

for i, entities in enumerate(results):
    print(f"Text {i+1} entities:")
    for entity in entities:
        print(f"  - {entity['word']} ({entity['entity_group']}): {entity['score']:.4f}")
```

### Large Dataset Processing

For processing large datasets efficiently:

```python
from transformers.pipelines.pt_utils import KeyDataset
from datasets import Dataset
import pandas as pd

# Load your data
# Load a medical dataset from Hugging Face
from datasets import load_dataset

# Load a public medical dataset (using a subset for testing)
medical_dataset = load_dataset("BI55/MedText", split="train[:100]")  # Load first 100 examples
data = pd.DataFrame({"text": medical_dataset["Completion"]})
dataset = Dataset.from_pandas(data)

# Process with optimal batching for your hardware
batch_size = 16  # Tune this based on your GPU memory
results = []

for out in medical_ner_pipeline(KeyDataset(dataset, "text"), batch_size=batch_size):
    results.extend(out)

print(f"Processed {len(results)} texts with batching")

```

### Performance Optimization

**Batch Size Guidelines:**
- **CPU**: Start with batch_size=1-4
- **Single GPU**: Try batch_size=8-32 depending on GPU memory
- **High-end GPU**: Can handle batch_size=64 or higher
- **Monitor GPU utilization** to find the optimal batch size for your hardware

**Memory Considerations:**
```python
# For limited GPU memory, use smaller batches
medical_ner_pipeline = pipeline(
    model=model_name,
    aggregation_strategy="simple",
    device=0  # Specify GPU device
)

# Process with memory-efficient batching
for batch_start in range(0, len(texts), batch_size):
    batch = texts[batch_start:batch_start + batch_size]
    batch_results = medical_ner_pipeline(batch, batch_size=len(batch))
    results.extend(batch_results)
```

## πŸ“š Dataset Information

- **Dataset**: CLL
- **Description**: Clinical Entity Recognition - Clinical entities related to Chronic Lymphocytic Leukemia

### Training Details
- **Base Model**: xlm-roberta-base
- **Training Framework**: Hugging Face Transformers
- **Optimization**: AdamW optimizer with learning rate scheduling
- **Validation**: Cross-validation on held-out test set

## πŸ”¬ Model Architecture

- **Base Architecture**: xlm-roberta-base
- **Task**: Token Classification (Named Entity Recognition)
- **Labels**: Dataset-specific entity types
- **Input**: Tokenized biomedical text
- **Output**: BIO-tagged entity predictions

## πŸ’‘ Use Cases

This model is particularly useful for:
- **Clinical Text Mining**: Extracting entities from medical records
- **Biomedical Research**: Processing scientific literature
- **Drug Discovery**: Identifying chemical compounds and drugs
- **Healthcare Analytics**: Analyzing patient data and outcomes
- **Academic Research**: Supporting biomedical NLP research

## πŸ“œ License

Licensed under the Apache License 2.0. See [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) for details.

## 🀝 Contributing

We welcome contributions of all kinds! Whether you have ideas, feature requests, or want to join our mission to advance open-source Healthcare AI, we'd love to hear from you.

Follow [OpenMed Org](https://huggingface.co/OpenMed) on Hugging Face πŸ€— and click "Watch" to stay updated on our latest releases and developments.