File size: 1,420 Bytes
d0dc5eb 119ef8b d0dc5eb f2bab5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: mit
datasets:
- fka/awesome-chatgpt-prompts
language:
- en
library_name: cloud-agents
metrics:
- accuracy
- code_eval
base_model:
- OpenPeerAI/OpenPeerLLM
tags:
- agent
- cloud
- computing
- distributed
- distributed-learning
- decentralized
- grid
- grid-computing
- machine-learning
- ml
---
# Cloud Agents for Distributed Model Training
A lightweight and horizontally scalable distributed computing system for training large language models, specifically designed for OpenPeerLLM.
## Features
- Distributed tensor operations for model training
- CouchDB-based coordination layer
- Automatic agent discovery and load balancing
- Horizontal scaling capabilities
- Fault tolerance and recovery
- Integration with OpenPeerAI's OpenPeerLLM
## Installation
```bash
pip install -r requirements.txt
```
## Configuration
1. Set up CouchDB instance
2. Copy `.env.example` to `.env` and configure your settings
3. Start the coordinator node
4. Launch agent nodes
## Quick Start
```bash
# Start coordinator
python -m cloud_agents.coordinator
# Start agent (on each machine)
python -m cloud_agents.agent
```
## Architecture
- `coordinator`: Manages job distribution and agent coordination
- `agent`: Handles tensor operations and model training
- `couchdb_client`: Interface for CouchDB communication
- `tensor_ops`: Distributed tensor operations
- `utils`: Helper functions and utilities
## License
MIT |