--- license: apache-2.0 language: - multilingual base_model: - Qwen/Qwen2-VL-7B-Instruct tags: - mmeb - vidore - colpali - multimodal-embedding pipeline_tag: feature-extraction --- # Ops-MM-embedding-v1-7B **Ops-MM-embedding-v1-7B** is a dense, large-scale multimodal embedding model developed and open-sourced by the Alibaba Cloud OpenSearch-AI team, fine-tuned from Qwen2-VL. ## **Key Features** ### Unified Multimodal Embeddings - Encodes text, images, text-image pairs, visual documents, and videos (by treating video frames as multiple image inputs) into a unified embedding space for cross-modal retrieval. ### High Performance on MMEB - Achieves **SOTA results** among models of similar scale on **MMEB-V2** and **MMEB-Image** benchmark (until 2025-07-03). ### Multilingual Capabilities - **Ops-MM-embedding-v1-7B** achieves SOTA performance among dense models on the ViDoRe-v2 benchmark, demonstrating strong cross-lingual generalization. ## Training data MMEB-train, CC-3M, colpali training set. ## Performance ### MMEB-V2 | Model | Model Size (B) | Overall | Image-Overall | Video-Overall | Visdoc-Overall | | ------------------------ | -------------- | ------- | ------------- | ------------- | -------------- | | seed-1.6-embedding | unknown | 71.27 | 77.78 | 55.34 | 73.44 | | Ops-MM-embedding-v1-7B | 8.29 | 67.61 | 72.72 | 53.76 | 70.34 | | Ops-MM-embedding-v1-2B | 2.21 | 63.44 | 69.03 | 47.56 | 66.96 | | VLM2Vec-V2.0-Qwen2VL-2B | 2.21 | 58.02 | 64.85 | 34.85 | 65.36 | | gme-Qwen2-VL-7B-Instruct | 8.29 | 57.83 | 55.95 | 38.43 | 75.18 | | gme-Qwen2-VL-2B-Instruct | 2.21 | 54.08 | 51.89 | 33.64 | 72.71 | ### MMEB-Image The table below compares performance on MMEB-Image benchmark among models of similar size. | Models | Model Size(B) | Image-Overall | I-CLS | I-QA | I-RET | I-VG | | ------------------------------------- | ------------- | ------------- | ----- | ----- | ------ | ------ | | Ops-MM-embedding-v1-7B | 8.29 | **72.72** | 69.65 | 69.58 | 73.09 | 87.15 | | QQMM-embed | 8.297 | 72.175 | 70.07 | 69.52 | 71.175 | 87.075 | | B3_Qwen2_7B | 8.29 | 72 | 70 | 66.5 | 74.1 | 84.6 | | UniME(LLaVA-OneVision-7B-LoRA-Res336) | 8.03 | 70.7 | 66.8 | 66.6 | 70.5 | 90.9 | | LLaVE-7B | 8.03 | 70.3 | 65.7 | 65.4 | 70.9 | 91.9 | | UNITE-Instruct-7B | 8.29 | 70.3 | 68.3 | 65.1 | 71.6 | 84.8 | ### ViDoRe-v2 | Model | Avg | ESG Restaurant Human | MIT Bio Multi. | Econ Macro Multi. | ESG Restaurant Synth. Multi. | | ---------------------- | --------- | -------------------- | -------------- | ----------------- | ---------------------------- | | gme-7B | 55.61 | 63.37 | 49.49 | 54.21 | 55.38 | | seed 1.6 embedding | 56.57 | 63.3 | 57.14 | 53.85 | 51.99 | | Ops-MM-embedding-v1-7B | **59.59** | 66.27 | 54.34 | 60.92 | 56.82 | | Ops-MM-embedding-v1-2B | 53.18 | 58.57 | 52.87 | 47.89 | 53.39 | ## Usage ```python from ops_mm_embedding_v1 import OpsMMEmbeddingV1, fetch_image model = OpsMMEmbeddingV1( "OpenSearch-AI/Ops-MM-embedding-v1-7B", device="cuda", attn_implementation="flash_attention_2" ) t2i_prompt = "Find an image that matches the given text." texts = [ "The Tesla Cybertruck is a battery electric pickup truck built by Tesla, Inc. since 2023.", "Alibaba office.", "Alibaba office.", ] images = [ "https://upload.wikimedia.org/wikipedia/commons/e/e9/Tesla_Cybertruck_damaged_window.jpg", "https://upload.wikimedia.org/wikipedia/commons/e/e0/TaobaoCity_Alibaba_Xixi_Park.jpg", "https://upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Alibaba_Binjiang_Park.jpg/1024px-Alibaba_Binjiang_Park.jpg" ] images = [fetch_image(image) for image in images] # Text and image embedding text_embeddings = model.get_text_embeddings(texts) image_embeddings = model.get_image_embeddings(images) print('Text and image embeddings', (text_embeddings @ image_embeddings.T).tolist()) # Fused Embedding text_with_image_embeddings = model.get_fused_embeddings(texts=texts, images=images, instruction=t2i_prompt) print('Text and image embeddings', (text_embeddings @ image_embeddings.T).tolist()) # Multi-image embeddings multi_images = [ [images[0]], [images[1], images[2]], ] multi_image_embeddings = model.get_image_embeddings(multi_images) print('Multi-image embeddings', (multi_image_embeddings @ multi_image_embeddings.T).tolist()) ```