openvino-ci commited on
Commit
33983df
·
verified ·
1 Parent(s): d1ab6a6

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - multilingual
5
+ pipeline_tag: image-text-to-text
6
+ tags:
7
+ - nlp
8
+ - vision
9
+ - internvl
10
+ base_model:
11
+ - OpenGVLab/InternVL2-4B
12
+ base_model_relation: quantized
13
+ ---
14
+
15
+ # InternVL2-4B-int4-ov
16
+
17
+ * Model creator: [OpenGVLab](https://huggingface.co/OpenGVLab)
18
+ * Original model: [InternVL2-4B](https://huggingface.co/OpenGVLab/InternVL2-4B)
19
+
20
+ ## Description
21
+
22
+ This is [OpenGVLab/InternVL2-4B](https://huggingface.co/OpenGVLab/InternVL2-4B) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2025/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT4 using Activation Aware Quantization (AWQ) by [NNCF](https://github.com/openvinotoolkit/nncf).
23
+
24
+
25
+ ## Quantization Parameters
26
+
27
+ Weight compression was performed using `nncf.compress_weights` with the following parameters:
28
+
29
+ * mode: **INT4_ASYM**
30
+ * ratio: **1.0**
31
+ * group_size: **128**
32
+ * awq: **True**
33
+ * dataset: **[contextual](https://huggingface.co/datasets/ucla-contextual/contextual_test)**
34
+ * num_samples: **32**
35
+
36
+
37
+ ## Compatibility
38
+
39
+ The provided OpenVINO™ IR model is compatible with:
40
+
41
+ * OpenVINO version 2025.2.0 and higher
42
+ * Optimum Intel 1.26.0 and higher
43
+
44
+ ## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index)
45
+
46
+ 1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
47
+
48
+ ```
49
+ pip install --pre -U --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/pre-release openvino_tokenizers openvino
50
+
51
+ pip install git+https://github.com/huggingface/optimum-intel.git
52
+ ```
53
+
54
+ 2. Run model inference
55
+
56
+ ```
57
+ from PIL import Image
58
+ import requests
59
+ from optimum.intel.openvino import OVModelForVisualCausalLM
60
+ from transformers import AutoTokenizer, TextStreamer
61
+
62
+ model_id = "OpenVINO/InternVL2-4B-int4-ov"
63
+
64
+ tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
65
+
66
+ ov_model = OVModelForVisualCausalLM.from_pretrained(model_id, trust_remote_code=True)
67
+ prompt = "What is unusual on this picture?"
68
+
69
+ url = "https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/d5fbbd1a-d484-415c-88cb-9986625b7b11"
70
+ image = Image.open(requests.get(url, stream=True).raw)
71
+
72
+ inputs = ov_model.preprocess_inputs(text=prompt, image=image, tokenizer=tokenizer, config=ov_model.config)
73
+
74
+ generation_args = {
75
+ "max_new_tokens": 100,
76
+ "streamer": TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
77
+ }
78
+
79
+ generate_ids = ov_model.generate(**inputs, **generation_args)
80
+
81
+ generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
82
+ response = tokenizer.batch_decode(generate_ids, skip_special_tokens=True)[0]
83
+
84
+ ```
85
+
86
+ ## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai)
87
+
88
+ 1. Install packages required for using OpenVINO GenAI.
89
+ ```
90
+ pip install --pre -U --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/pre-release openvino openvino-tokenizers openvino-genai
91
+
92
+ pip install huggingface_hub
93
+ ```
94
+
95
+ 2. Download model from HuggingFace Hub
96
+
97
+ ```
98
+ import huggingface_hub as hf_hub
99
+
100
+ model_id = "OpenVINO/InternVL2-4B-int4-ov"
101
+ model_path = "InternVL2-4B-int4-ov"
102
+
103
+ hf_hub.snapshot_download(model_id, local_dir=model_path)
104
+
105
+ ```
106
+
107
+ 1. Run model inference:
108
+
109
+ ```
110
+ import openvino_genai as ov_genai
111
+ import requests
112
+ from PIL import Image
113
+ from io import BytesIO
114
+ import numpy as np
115
+ import openvino as ov
116
+
117
+ device = "CPU"
118
+ pipe = ov_genai.VLMPipeline(model_path, device)
119
+
120
+ def load_image(image_file):
121
+ if isinstance(image_file, str) and (image_file.startswith("http") or image_file.startswith("https")):
122
+ response = requests.get(image_file)
123
+ image = Image.open(BytesIO(response.content)).convert("RGB")
124
+ else:
125
+ image = Image.open(image_file).convert("RGB")
126
+ image_data = np.array(image.getdata()).reshape(1, image.size[1], image.size[0], 3).astype(np.byte)
127
+ return ov.Tensor(image_data)
128
+
129
+ prompt = "What is unusual on this picture?"
130
+
131
+ url = "https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/d5fbbd1a-d484-415c-88cb-9986625b7b11"
132
+ image_tensor = load_image(url)
133
+
134
+ def streamer(subword: str) -> bool:
135
+ print(subword, end="", flush=True)
136
+ return False
137
+
138
+ pipe.start_chat()
139
+ output = pipe.generate(prompt, image=image_tensor, max_new_tokens=100, streamer=streamer)
140
+ pipe.finish_chat()
141
+ ```
142
+
143
+ More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples)
144
+
145
+
146
+ ## Limitations
147
+
148
+ Check the original [model card](https://huggingface.co/OpenGVLab/InternVL2-4B) for limitations.
149
+
150
+ ## Legal information
151
+
152
+ The original model is distributed under [MIT](https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/mit.md) license. More details can be found in [original model card](https://huggingface.co/OpenGVLab/InternVL2-4B).
153
+
154
+ ## Disclaimer
155
+
156
+ Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.
157
+
added_tokens.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 32019,
3
+ "</img>": 32012,
4
+ "</quad>": 32015,
5
+ "</ref>": 32017,
6
+ "<IMG_CONTEXT>": 32013,
7
+ "<box>": 32018,
8
+ "<img>": 32011,
9
+ "<quad>": 32014,
10
+ "<ref>": 32016,
11
+ "<|assistant|>": 32001,
12
+ "<|endoftext|>": 32000,
13
+ "<|end|>": 32007,
14
+ "<|placeholder1|>": 32002,
15
+ "<|placeholder2|>": 32003,
16
+ "<|placeholder3|>": 32004,
17
+ "<|placeholder4|>": 32005,
18
+ "<|placeholder5|>": 32008,
19
+ "<|placeholder6|>": 32009,
20
+ "<|system|>": 32006,
21
+ "<|user|>": 32010
22
+ }
config.json ADDED
@@ -0,0 +1,305 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_attn_implementation_autoset": true,
3
+ "_commit_hash": null,
4
+ "architectures": [
5
+ "InternVLChatModel"
6
+ ],
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
9
+ "AutoModel": "OpenGVLab/InternVL2-4B--modeling_internvl_chat.InternVLChatModel",
10
+ "AutoModelForCausalLM": "OpenGVLab/InternVL2-4B--modeling_internvl_chat.InternVLChatModel"
11
+ },
12
+ "downsample_ratio": 0.5,
13
+ "dynamic_image_size": true,
14
+ "force_image_size": 448,
15
+ "img_context_token_id": 32013,
16
+ "llm_config": {
17
+ "_attn_implementation_autoset": true,
18
+ "_name_or_path": "microsoft/Phi-3-mini-128k-instruct",
19
+ "add_cross_attention": false,
20
+ "architectures": [
21
+ "Phi3ForCausalLM"
22
+ ],
23
+ "attention_dropout": 0.0,
24
+ "auto_map": {
25
+ "AutoConfig": "configuration_phi3.Phi3Config",
26
+ "AutoModel": "modeling_phi3.Phi3ForCausalLM",
27
+ "AutoModelForCausalLM": "modeling_phi3.Phi3ForCausalLM"
28
+ },
29
+ "bad_words_ids": null,
30
+ "begin_suppress_tokens": null,
31
+ "bos_token_id": 1,
32
+ "chunk_size_feed_forward": 0,
33
+ "cross_attention_hidden_size": null,
34
+ "decoder_start_token_id": null,
35
+ "diversity_penalty": 0.0,
36
+ "do_sample": false,
37
+ "early_stopping": false,
38
+ "embd_pdrop": 0.0,
39
+ "encoder_no_repeat_ngram_size": 0,
40
+ "eos_token_id": 32000,
41
+ "exponential_decay_length_penalty": null,
42
+ "finetuning_task": null,
43
+ "forced_bos_token_id": null,
44
+ "forced_eos_token_id": null,
45
+ "hidden_act": "silu",
46
+ "hidden_size": 3072,
47
+ "id2label": {
48
+ "0": "LABEL_0",
49
+ "1": "LABEL_1"
50
+ },
51
+ "initializer_range": 0.02,
52
+ "intermediate_size": 8192,
53
+ "is_decoder": false,
54
+ "is_encoder_decoder": false,
55
+ "label2id": {
56
+ "LABEL_0": 0,
57
+ "LABEL_1": 1
58
+ },
59
+ "length_penalty": 1.0,
60
+ "max_length": 20,
61
+ "max_position_embeddings": 131072,
62
+ "min_length": 0,
63
+ "model_type": "phi3",
64
+ "no_repeat_ngram_size": 0,
65
+ "num_attention_heads": 32,
66
+ "num_beam_groups": 1,
67
+ "num_beams": 1,
68
+ "num_hidden_layers": 32,
69
+ "num_key_value_heads": 32,
70
+ "num_return_sequences": 1,
71
+ "original_max_position_embeddings": 4096,
72
+ "output_attentions": false,
73
+ "output_hidden_states": false,
74
+ "output_scores": false,
75
+ "pad_token_id": 32000,
76
+ "prefix": null,
77
+ "problem_type": null,
78
+ "pruned_heads": {},
79
+ "remove_invalid_values": false,
80
+ "repetition_penalty": 1.0,
81
+ "resid_pdrop": 0.0,
82
+ "return_dict": true,
83
+ "return_dict_in_generate": false,
84
+ "rms_norm_eps": 1e-05,
85
+ "rope_scaling": {
86
+ "long_factor": [
87
+ 1.0299999713897705,
88
+ 1.0499999523162842,
89
+ 1.0499999523162842,
90
+ 1.0799999237060547,
91
+ 1.2299998998641968,
92
+ 1.2299998998641968,
93
+ 1.2999999523162842,
94
+ 1.4499999284744263,
95
+ 1.5999999046325684,
96
+ 1.6499998569488525,
97
+ 1.8999998569488525,
98
+ 2.859999895095825,
99
+ 3.68999981880188,
100
+ 5.419999599456787,
101
+ 5.489999771118164,
102
+ 5.489999771118164,
103
+ 9.09000015258789,
104
+ 11.579999923706055,
105
+ 15.65999984741211,
106
+ 15.769999504089355,
107
+ 15.789999961853027,
108
+ 18.360000610351562,
109
+ 21.989999771118164,
110
+ 23.079999923706055,
111
+ 30.009998321533203,
112
+ 32.35000228881836,
113
+ 32.590003967285156,
114
+ 35.56000518798828,
115
+ 39.95000457763672,
116
+ 53.840003967285156,
117
+ 56.20000457763672,
118
+ 57.95000457763672,
119
+ 59.29000473022461,
120
+ 59.77000427246094,
121
+ 59.920005798339844,
122
+ 61.190006256103516,
123
+ 61.96000671386719,
124
+ 62.50000762939453,
125
+ 63.3700065612793,
126
+ 63.48000717163086,
127
+ 63.48000717163086,
128
+ 63.66000747680664,
129
+ 63.850006103515625,
130
+ 64.08000946044922,
131
+ 64.760009765625,
132
+ 64.80001068115234,
133
+ 64.81001281738281,
134
+ 64.81001281738281
135
+ ],
136
+ "short_factor": [
137
+ 1.05,
138
+ 1.05,
139
+ 1.05,
140
+ 1.1,
141
+ 1.1,
142
+ 1.1500000000000001,
143
+ 1.2000000000000002,
144
+ 1.2500000000000002,
145
+ 1.3000000000000003,
146
+ 1.3500000000000003,
147
+ 1.5000000000000004,
148
+ 2.000000000000001,
149
+ 2.000000000000001,
150
+ 2.000000000000001,
151
+ 2.000000000000001,
152
+ 2.000000000000001,
153
+ 2.000000000000001,
154
+ 2.000000000000001,
155
+ 2.000000000000001,
156
+ 2.000000000000001,
157
+ 2.000000000000001,
158
+ 2.000000000000001,
159
+ 2.000000000000001,
160
+ 2.000000000000001,
161
+ 2.000000000000001,
162
+ 2.000000000000001,
163
+ 2.000000000000001,
164
+ 2.000000000000001,
165
+ 2.000000000000001,
166
+ 2.000000000000001,
167
+ 2.000000000000001,
168
+ 2.000000000000001,
169
+ 2.0500000000000007,
170
+ 2.0500000000000007,
171
+ 2.0500000000000007,
172
+ 2.1000000000000005,
173
+ 2.1000000000000005,
174
+ 2.1000000000000005,
175
+ 2.1500000000000004,
176
+ 2.1500000000000004,
177
+ 2.3499999999999996,
178
+ 2.549999999999999,
179
+ 2.5999999999999988,
180
+ 2.5999999999999988,
181
+ 2.7499999999999982,
182
+ 2.849999999999998,
183
+ 2.849999999999998,
184
+ 2.9499999999999975
185
+ ],
186
+ "type": "su"
187
+ },
188
+ "rope_theta": 10000.0,
189
+ "sep_token_id": null,
190
+ "sliding_window": 262144,
191
+ "suppress_tokens": null,
192
+ "task_specific_params": null,
193
+ "temperature": 1.0,
194
+ "tf_legacy_loss": false,
195
+ "tie_encoder_decoder": false,
196
+ "tie_word_embeddings": false,
197
+ "tokenizer_class": null,
198
+ "top_k": 50,
199
+ "top_p": 1.0,
200
+ "torch_dtype": "bfloat16",
201
+ "torchscript": false,
202
+ "transformers_version": "4.51.3",
203
+ "typical_p": 1.0,
204
+ "use_bfloat16": true,
205
+ "use_cache": true,
206
+ "vocab_size": 32020
207
+ },
208
+ "max_dynamic_patch": 12,
209
+ "min_dynamic_patch": 1,
210
+ "model_type": "internvl_chat",
211
+ "ps_version": "v2",
212
+ "select_layer": -1,
213
+ "template": "phi3-chat",
214
+ "tie_word_embeddings": false,
215
+ "torch_dtype": "bfloat16",
216
+ "transformers_version": null,
217
+ "use_backbone_lora": 0,
218
+ "use_llm_lora": 0,
219
+ "use_thumbnail": true,
220
+ "vision_config": {
221
+ "_attn_implementation_autoset": true,
222
+ "_name_or_path": "",
223
+ "add_cross_attention": false,
224
+ "architectures": [
225
+ "InternVisionModel"
226
+ ],
227
+ "attention_dropout": 0.0,
228
+ "bad_words_ids": null,
229
+ "begin_suppress_tokens": null,
230
+ "bos_token_id": null,
231
+ "chunk_size_feed_forward": 0,
232
+ "cross_attention_hidden_size": null,
233
+ "decoder_start_token_id": null,
234
+ "diversity_penalty": 0.0,
235
+ "do_sample": false,
236
+ "drop_path_rate": 0.0,
237
+ "dropout": 0.0,
238
+ "early_stopping": false,
239
+ "encoder_no_repeat_ngram_size": 0,
240
+ "eos_token_id": null,
241
+ "exponential_decay_length_penalty": null,
242
+ "finetuning_task": null,
243
+ "forced_bos_token_id": null,
244
+ "forced_eos_token_id": null,
245
+ "hidden_act": "gelu",
246
+ "hidden_size": 1024,
247
+ "id2label": {
248
+ "0": "LABEL_0",
249
+ "1": "LABEL_1"
250
+ },
251
+ "image_size": 448,
252
+ "initializer_factor": 1.0,
253
+ "initializer_range": 0.02,
254
+ "intermediate_size": 4096,
255
+ "is_decoder": false,
256
+ "is_encoder_decoder": false,
257
+ "label2id": {
258
+ "LABEL_0": 0,
259
+ "LABEL_1": 1
260
+ },
261
+ "layer_norm_eps": 1e-06,
262
+ "length_penalty": 1.0,
263
+ "max_length": 20,
264
+ "min_length": 0,
265
+ "model_type": "intern_vit_6b",
266
+ "no_repeat_ngram_size": 0,
267
+ "norm_type": "layer_norm",
268
+ "num_attention_heads": 16,
269
+ "num_beam_groups": 1,
270
+ "num_beams": 1,
271
+ "num_channels": 3,
272
+ "num_hidden_layers": 24,
273
+ "num_return_sequences": 1,
274
+ "output_attentions": false,
275
+ "output_hidden_states": false,
276
+ "output_scores": false,
277
+ "pad_token_id": null,
278
+ "patch_size": 14,
279
+ "prefix": null,
280
+ "problem_type": null,
281
+ "pruned_heads": {},
282
+ "qk_normalization": false,
283
+ "qkv_bias": true,
284
+ "remove_invalid_values": false,
285
+ "repetition_penalty": 1.0,
286
+ "return_dict": true,
287
+ "return_dict_in_generate": false,
288
+ "sep_token_id": null,
289
+ "suppress_tokens": null,
290
+ "task_specific_params": null,
291
+ "temperature": 1.0,
292
+ "tf_legacy_loss": false,
293
+ "tie_encoder_decoder": false,
294
+ "tie_word_embeddings": true,
295
+ "tokenizer_class": null,
296
+ "top_k": 50,
297
+ "top_p": 1.0,
298
+ "torch_dtype": "bfloat16",
299
+ "torchscript": false,
300
+ "transformers_version": "4.51.3",
301
+ "typical_p": 1.0,
302
+ "use_bfloat16": true,
303
+ "use_flash_attn": false
304
+ }
305
+ }
configuration_intern_vit.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import os
8
+ from typing import Union
9
+
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ logger = logging.get_logger(__name__)
14
+
15
+
16
+ class InternVisionConfig(PretrainedConfig):
17
+ r"""
18
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
19
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
20
+
21
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
22
+ documentation from [`PretrainedConfig`] for more information.
23
+
24
+ Args:
25
+ num_channels (`int`, *optional*, defaults to 3):
26
+ Number of color channels in the input images (e.g., 3 for RGB).
27
+ patch_size (`int`, *optional*, defaults to 14):
28
+ The size (resolution) of each patch.
29
+ image_size (`int`, *optional*, defaults to 224):
30
+ The size (resolution) of each image.
31
+ qkv_bias (`bool`, *optional*, defaults to `False`):
32
+ Whether to add a bias to the queries and values in the self-attention layers.
33
+ hidden_size (`int`, *optional*, defaults to 3200):
34
+ Dimensionality of the encoder layers and the pooler layer.
35
+ num_attention_heads (`int`, *optional*, defaults to 25):
36
+ Number of attention heads for each attention layer in the Transformer encoder.
37
+ intermediate_size (`int`, *optional*, defaults to 12800):
38
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
39
+ qk_normalization (`bool`, *optional*, defaults to `True`):
40
+ Whether to normalize the queries and keys in the self-attention layers.
41
+ num_hidden_layers (`int`, *optional*, defaults to 48):
42
+ Number of hidden layers in the Transformer encoder.
43
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
44
+ Whether to use flash attention mechanism.
45
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
46
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
47
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
48
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
49
+ The epsilon used by the layer normalization layers.
50
+ dropout (`float`, *optional*, defaults to 0.0):
51
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
52
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
53
+ Dropout rate for stochastic depth.
54
+ attention_dropout (`float`, *optional*, defaults to 0.0):
55
+ The dropout ratio for the attention probabilities.
56
+ initializer_range (`float`, *optional*, defaults to 0.02):
57
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
58
+ initializer_factor (`float`, *optional*, defaults to 0.1):
59
+ A factor for layer scale.
60
+ """
61
+
62
+ model_type = 'intern_vit_6b'
63
+
64
+ def __init__(
65
+ self,
66
+ num_channels=3,
67
+ patch_size=14,
68
+ image_size=224,
69
+ qkv_bias=False,
70
+ hidden_size=3200,
71
+ num_attention_heads=25,
72
+ intermediate_size=12800,
73
+ qk_normalization=True,
74
+ num_hidden_layers=48,
75
+ use_flash_attn=True,
76
+ hidden_act='gelu',
77
+ norm_type='rms_norm',
78
+ layer_norm_eps=1e-6,
79
+ dropout=0.0,
80
+ drop_path_rate=0.0,
81
+ attention_dropout=0.0,
82
+ initializer_range=0.02,
83
+ initializer_factor=0.1,
84
+ **kwargs,
85
+ ):
86
+ super().__init__(**kwargs)
87
+
88
+ self.hidden_size = hidden_size
89
+ self.intermediate_size = intermediate_size
90
+ self.dropout = dropout
91
+ self.drop_path_rate = drop_path_rate
92
+ self.num_hidden_layers = num_hidden_layers
93
+ self.num_attention_heads = num_attention_heads
94
+ self.num_channels = num_channels
95
+ self.patch_size = patch_size
96
+ self.image_size = image_size
97
+ self.initializer_range = initializer_range
98
+ self.initializer_factor = initializer_factor
99
+ self.attention_dropout = attention_dropout
100
+ self.layer_norm_eps = layer_norm_eps
101
+ self.hidden_act = hidden_act
102
+ self.norm_type = norm_type
103
+ self.qkv_bias = qkv_bias
104
+ self.qk_normalization = qk_normalization
105
+ self.use_flash_attn = use_flash_attn
106
+
107
+ @classmethod
108
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
109
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
110
+
111
+ if 'vision_config' in config_dict:
112
+ config_dict = config_dict['vision_config']
113
+
114
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
115
+ logger.warning(
116
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
117
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
118
+ )
119
+
120
+ return cls.from_dict(config_dict, **kwargs)
configuration_internvl_chat.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+
9
+ from transformers import AutoConfig, LlamaConfig
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ from .configuration_intern_vit import InternVisionConfig
14
+ from .configuration_phi3 import Phi3Config
15
+
16
+ logger = logging.get_logger(__name__)
17
+
18
+
19
+ class InternVLChatConfig(PretrainedConfig):
20
+ model_type = 'internvl_chat'
21
+ is_composition = True
22
+
23
+ def __init__(
24
+ self,
25
+ vision_config=None,
26
+ llm_config=None,
27
+ use_backbone_lora=0,
28
+ use_llm_lora=0,
29
+ select_layer=-1,
30
+ force_image_size=None,
31
+ downsample_ratio=0.5,
32
+ template=None,
33
+ dynamic_image_size=False,
34
+ use_thumbnail=False,
35
+ ps_version='v1',
36
+ min_dynamic_patch=1,
37
+ max_dynamic_patch=6,
38
+ **kwargs):
39
+ super().__init__(**kwargs)
40
+
41
+ if vision_config is None:
42
+ vision_config = {'architectures': ['InternVisionModel']}
43
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
44
+
45
+ if llm_config is None:
46
+ llm_config = {'architectures': ['Phi3ForCausalLM']}
47
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
48
+
49
+ self.vision_config = InternVisionConfig(**vision_config)
50
+ if llm_config.get('architectures')[0] == 'LlamaForCausalLM':
51
+ self.llm_config = LlamaConfig(**llm_config)
52
+ elif llm_config.get('architectures')[0] == 'Phi3ForCausalLM':
53
+ self.llm_config = Phi3Config(**llm_config)
54
+ else:
55
+ raise ValueError('Unsupported architecture: {}'.format(llm_config.get('architectures')[0]))
56
+ self.use_backbone_lora = use_backbone_lora
57
+ self.use_llm_lora = use_llm_lora
58
+ self.select_layer = select_layer
59
+ self.force_image_size = force_image_size
60
+ self.downsample_ratio = downsample_ratio
61
+ self.template = template
62
+ self.dynamic_image_size = dynamic_image_size
63
+ self.use_thumbnail = use_thumbnail
64
+ self.ps_version = ps_version # pixel shuffle version
65
+ self.min_dynamic_patch = min_dynamic_patch
66
+ self.max_dynamic_patch = max_dynamic_patch
67
+ # By default, we use tie_word_embeddings=False for models of all sizes.
68
+ self.tie_word_embeddings = self.llm_config.tie_word_embeddings
69
+
70
+ logger.info(f'vision_select_layer: {self.select_layer}')
71
+ logger.info(f'ps_version: {self.ps_version}')
72
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
73
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
74
+
75
+ def to_dict(self):
76
+ """
77
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
78
+
79
+ Returns:
80
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
81
+ """
82
+ output = copy.deepcopy(self.__dict__)
83
+ output['vision_config'] = self.vision_config.to_dict()
84
+ output['llm_config'] = self.llm_config.to_dict()
85
+ output['model_type'] = self.__class__.model_type
86
+ output['use_backbone_lora'] = self.use_backbone_lora
87
+ output['use_llm_lora'] = self.use_llm_lora
88
+ output['select_layer'] = self.select_layer
89
+ output['force_image_size'] = self.force_image_size
90
+ output['downsample_ratio'] = self.downsample_ratio
91
+ output['template'] = self.template
92
+ output['dynamic_image_size'] = self.dynamic_image_size
93
+ output['use_thumbnail'] = self.use_thumbnail
94
+ output['ps_version'] = self.ps_version
95
+ output['min_dynamic_patch'] = self.min_dynamic_patch
96
+ output['max_dynamic_patch'] = self.max_dynamic_patch
97
+
98
+ return output
configuration_phi3.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License atd
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ """ Phi-3 model configuration"""
16
+
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
24
+ 'microsoft/Phi-3-mini-4k-instruct': 'https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json',
25
+ 'microsoft/Phi-3-mini-128k-instruct': 'https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json',
26
+ }
27
+
28
+
29
+ class Phi3Config(PretrainedConfig):
30
+ r"""
31
+ This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
32
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
33
+ defaults will yield a similar configuration to that of the
34
+ [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
35
+
36
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37
+ documentation from [`PretrainedConfig`] for more information.
38
+
39
+ Args:
40
+ vocab_size (`int`, *optional*, defaults to 32064):
41
+ Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
42
+ `inputs_ids` passed when calling [`Phi3Model`].
43
+ hidden_size (`int`, *optional*, defaults to 3072):
44
+ Dimension of the hidden representations.
45
+ intermediate_size (`int`, *optional*, defaults to 8192):
46
+ Dimension of the MLP representations.
47
+ num_hidden_layers (`int`, *optional*, defaults to 32):
48
+ Number of hidden layers in the Transformer decoder.
49
+ num_attention_heads (`int`, *optional*, defaults to 32):
50
+ Number of attention heads for each attention layer in the Transformer decoder.
51
+ num_key_value_heads (`int`, *optional*):
52
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
53
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
54
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
55
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
56
+ by meanpooling all the original heads within that group. For more details checkout [this
57
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
58
+ `num_attention_heads`.
59
+ resid_pdrop (`float`, *optional*, defaults to 0.0):
60
+ Dropout probability for mlp outputs.
61
+ embd_pdrop (`int`, *optional*, defaults to 0.0):
62
+ The dropout ratio for the embeddings.
63
+ attention_dropout (`float`, *optional*, defaults to 0.0):
64
+ The dropout ratio after computing the attention scores.
65
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
66
+ The non-linear activation function (function or string) in the decoder.
67
+ max_position_embeddings (`int`, *optional*, defaults to 4096):
68
+ The maximum sequence length that this model might ever be used with.
69
+ original_max_position_embeddings (`int`, *optional*, defaults to 4096):
70
+ The maximum sequence length that this model was trained with. This is used to determine the size of the
71
+ original RoPE embeddings when using long scaling.
72
+ initializer_range (`float`, *optional*, defaults to 0.02):
73
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
74
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
75
+ The epsilon value used for the RMSNorm.
76
+ use_cache (`bool`, *optional*, defaults to `True`):
77
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
78
+ relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
79
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
80
+ Whether to tie weight embeddings
81
+ rope_theta (`float`, *optional*, defaults to 10000.0):
82
+ The base period of the RoPE embeddings.
83
+ rope_scaling (`dict`, *optional*):
84
+ The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
85
+ contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be either `su` or `yarn` and
86
+ the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
87
+ divided by the number of attention heads divided by 2.
88
+ bos_token_id (`int`, *optional*, defaults to 1):
89
+ The id of the "beginning-of-sequence" token.
90
+ eos_token_id (`int`, *optional*, defaults to 32000):
91
+ The id of the "end-of-sequence" token.
92
+ pad_token_id (`int`, *optional*, defaults to 32000):
93
+ The id of the padding token.
94
+ sliding_window (`int`, *optional*):
95
+ Sliding window attention window size. If `None`, no sliding window is applied.
96
+
97
+ Example:
98
+
99
+ ```python
100
+ >>> from transformers import Phi3Model, Phi3Config
101
+
102
+ >>> # Initializing a Phi-3 style configuration
103
+ >>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
104
+
105
+ >>> # Initializing a model from the configuration
106
+ >>> model = Phi3Model(configuration)
107
+
108
+ >>> # Accessing the model configuration
109
+ >>> configuration = model.config
110
+ ```"""
111
+
112
+ model_type = 'phi3'
113
+ keys_to_ignore_at_inference = ['past_key_values']
114
+
115
+ def __init__(
116
+ self,
117
+ vocab_size=32064,
118
+ hidden_size=3072,
119
+ intermediate_size=8192,
120
+ num_hidden_layers=32,
121
+ num_attention_heads=32,
122
+ num_key_value_heads=None,
123
+ resid_pdrop=0.0,
124
+ embd_pdrop=0.0,
125
+ attention_dropout=0.0,
126
+ hidden_act='silu',
127
+ max_position_embeddings=4096,
128
+ original_max_position_embeddings=4096,
129
+ initializer_range=0.02,
130
+ rms_norm_eps=1e-5,
131
+ use_cache=True,
132
+ tie_word_embeddings=False,
133
+ rope_theta=10000.0,
134
+ rope_scaling=None,
135
+ bos_token_id=1,
136
+ eos_token_id=32000,
137
+ pad_token_id=32000,
138
+ sliding_window=None,
139
+ **kwargs,
140
+ ):
141
+ self.vocab_size = vocab_size
142
+ self.hidden_size = hidden_size
143
+ self.intermediate_size = intermediate_size
144
+ self.num_hidden_layers = num_hidden_layers
145
+ self.num_attention_heads = num_attention_heads
146
+
147
+ if num_key_value_heads is None:
148
+ num_key_value_heads = num_attention_heads
149
+
150
+ self.num_key_value_heads = num_key_value_heads
151
+ self.resid_pdrop = resid_pdrop
152
+ self.embd_pdrop = embd_pdrop
153
+ self.attention_dropout = attention_dropout
154
+ self.hidden_act = hidden_act
155
+ self.max_position_embeddings = max_position_embeddings
156
+ self.original_max_position_embeddings = original_max_position_embeddings
157
+ self.initializer_range = initializer_range
158
+ self.rms_norm_eps = rms_norm_eps
159
+ self.use_cache = use_cache
160
+ self.rope_theta = rope_theta
161
+ self.rope_scaling = rope_scaling
162
+ self._rope_scaling_validation()
163
+ self.sliding_window = sliding_window
164
+
165
+ super().__init__(
166
+ bos_token_id=bos_token_id,
167
+ eos_token_id=eos_token_id,
168
+ pad_token_id=pad_token_id,
169
+ tie_word_embeddings=tie_word_embeddings,
170
+ **kwargs,
171
+ )
172
+
173
+ def _rope_scaling_validation(self):
174
+ """
175
+ Validate the `rope_scaling` configuration.
176
+ """
177
+ if self.rope_scaling is None:
178
+ return
179
+
180
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
181
+ raise ValueError(
182
+ '`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, '
183
+ f'got {self.rope_scaling}'
184
+ )
185
+ rope_scaling_type = self.rope_scaling.get('type', None)
186
+ rope_scaling_short_factor = self.rope_scaling.get('short_factor', None)
187
+ rope_scaling_long_factor = self.rope_scaling.get('long_factor', None)
188
+ if rope_scaling_type is None or rope_scaling_type not in ['su', 'yarn']:
189
+ raise ValueError(f"`rope_scaling`'s type field must be one of ['su', 'yarn'], got {rope_scaling_type}")
190
+ if not (
191
+ isinstance(rope_scaling_short_factor, list)
192
+ and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
193
+ ):
194
+ raise ValueError(
195
+ f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
196
+ )
197
+ if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
198
+ raise ValueError(
199
+ f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
200
+ )
201
+ if not (
202
+ isinstance(rope_scaling_long_factor, list)
203
+ and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
204
+ ):
205
+ raise ValueError(
206
+ f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
207
+ )
208
+ if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
209
+ raise ValueError(
210
+ f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
211
+ )
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "eos_token_id": [
4
+ 2,
5
+ 32000,
6
+ 32007
7
+ ],
8
+ "transformers_version": "4.51.3"
9
+ }
openvino_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dtype": "int4",
3
+ "input_info": null,
4
+ "optimum_version": "1.27.0",
5
+ "quantization_config": {
6
+ "all_layers": null,
7
+ "backup_precision": null,
8
+ "bits": 4,
9
+ "dataset": "contextual",
10
+ "dtype": "int4",
11
+ "gptq": null,
12
+ "group_size": 128,
13
+ "ignored_scope": null,
14
+ "lora_correction": null,
15
+ "num_samples": 32,
16
+ "processor": null,
17
+ "quant_method": "awq",
18
+ "ratio": 1.0,
19
+ "scale_estimation": null,
20
+ "sensitivity_metric": null,
21
+ "statistics_path": null,
22
+ "sym": false,
23
+ "tokenizer": null,
24
+ "trust_remote_code": true
25
+ },
26
+ "save_onnx_model": false,
27
+ "transformers_version": "4.51.3"
28
+ }
openvino_detokenizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf70205700cbd2329859534c9ea0becf346d4680afffcdcaba96b83bfaf41197
3
+ size 467406
openvino_detokenizer.xml ADDED
@@ -0,0 +1,353 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="detokenizer" version="11">
3
+ <layers>
4
+ <layer id="0" name="Parameter_1459339" type="Parameter" version="opset1">
5
+ <data shape="?,?" element_type="i64" />
6
+ <output>
7
+ <port id="0" precision="I64" names="Parameter_1459339">
8
+ <dim>-1</dim>
9
+ <dim>-1</dim>
10
+ </port>
11
+ </output>
12
+ </layer>
13
+ <layer id="1" name="Convert_1459534" type="Convert" version="opset1">
14
+ <data destination_type="i32" />
15
+ <input>
16
+ <port id="0" precision="I64">
17
+ <dim>-1</dim>
18
+ <dim>-1</dim>
19
+ </port>
20
+ </input>
21
+ <output>
22
+ <port id="1" precision="I32">
23
+ <dim>-1</dim>
24
+ <dim>-1</dim>
25
+ </port>
26
+ </output>
27
+ </layer>
28
+ <layer id="2" name="Constant_1459292" type="Const" version="opset1">
29
+ <data element_type="i32" shape="32020" offset="0" size="128080" />
30
+ <output>
31
+ <port id="0" precision="I32">
32
+ <dim>32020</dim>
33
+ </port>
34
+ </output>
35
+ </layer>
36
+ <layer id="3" name="Constant_1459294" type="Const" version="opset1">
37
+ <data element_type="i32" shape="32020" offset="128080" size="128080" />
38
+ <output>
39
+ <port id="0" precision="I32">
40
+ <dim>32020</dim>
41
+ </port>
42
+ </output>
43
+ </layer>
44
+ <layer id="4" name="Constant_1459296" type="Const" version="opset1">
45
+ <data element_type="u8" shape="211147" offset="256160" size="211147" />
46
+ <output>
47
+ <port id="0" precision="U8">
48
+ <dim>211147</dim>
49
+ </port>
50
+ </output>
51
+ </layer>
52
+ <layer id="5" name="Slice_1459344" type="Const" version="opset1">
53
+ <data element_type="i32" shape="23" offset="467307" size="92" />
54
+ <output>
55
+ <port id="0" precision="I32">
56
+ <dim>23</dim>
57
+ </port>
58
+ </output>
59
+ </layer>
60
+ <layer id="6" name="VocabDecoder_1459346" type="VocabDecoder" version="extension">
61
+ <data skip_tokens="" />
62
+ <input>
63
+ <port id="0" precision="I32">
64
+ <dim>-1</dim>
65
+ <dim>-1</dim>
66
+ </port>
67
+ <port id="1" precision="I32">
68
+ <dim>32020</dim>
69
+ </port>
70
+ <port id="2" precision="I32">
71
+ <dim>32020</dim>
72
+ </port>
73
+ <port id="3" precision="U8">
74
+ <dim>211147</dim>
75
+ </port>
76
+ <port id="4" precision="I32">
77
+ <dim>23</dim>
78
+ </port>
79
+ </input>
80
+ <output>
81
+ <port id="5" precision="I32">
82
+ <dim>-1</dim>
83
+ </port>
84
+ <port id="6" precision="I32">
85
+ <dim>-1</dim>
86
+ </port>
87
+ <port id="7" precision="I32">
88
+ <dim>-1</dim>
89
+ </port>
90
+ <port id="8" precision="I32">
91
+ <dim>-1</dim>
92
+ </port>
93
+ <port id="9" precision="U8">
94
+ <dim>-1</dim>
95
+ </port>
96
+ </output>
97
+ </layer>
98
+ <layer id="7" name="Constant_1459348" type="Const" version="opset1">
99
+ <data element_type="u8" shape="3" offset="467399" size="3" />
100
+ <output>
101
+ <port id="0" precision="U8">
102
+ <dim>3</dim>
103
+ </port>
104
+ </output>
105
+ </layer>
106
+ <layer id="8" name="Constant_1459350" type="Const" version="opset1">
107
+ <data element_type="u8" shape="1" offset="467402" size="1" />
108
+ <output>
109
+ <port id="0" precision="U8">
110
+ <dim>1</dim>
111
+ </port>
112
+ </output>
113
+ </layer>
114
+ <layer id="9" name="RegexNormalization_1459351" type="RegexNormalization" version="extension">
115
+ <data global_replace="true" />
116
+ <input>
117
+ <port id="0" precision="I32">
118
+ <dim>-1</dim>
119
+ </port>
120
+ <port id="1" precision="I32">
121
+ <dim>-1</dim>
122
+ </port>
123
+ <port id="2" precision="U8">
124
+ <dim>-1</dim>
125
+ </port>
126
+ <port id="3" precision="U8">
127
+ <dim>3</dim>
128
+ </port>
129
+ <port id="4" precision="U8">
130
+ <dim>1</dim>
131
+ </port>
132
+ </input>
133
+ <output>
134
+ <port id="5" precision="I32">
135
+ <dim>-1</dim>
136
+ </port>
137
+ <port id="6" precision="I32">
138
+ <dim>-1</dim>
139
+ </port>
140
+ <port id="7" precision="U8">
141
+ <dim>-1</dim>
142
+ </port>
143
+ </output>
144
+ </layer>
145
+ <layer id="10" name="ByteFallback_1459352" type="ByteFallback" version="extension">
146
+ <input>
147
+ <port id="0" precision="I32">
148
+ <dim>-1</dim>
149
+ </port>
150
+ <port id="1" precision="I32">
151
+ <dim>-1</dim>
152
+ </port>
153
+ <port id="2" precision="U8">
154
+ <dim>-1</dim>
155
+ </port>
156
+ </input>
157
+ <output>
158
+ <port id="3" precision="I32">
159
+ <dim>-1</dim>
160
+ </port>
161
+ <port id="4" precision="I32">
162
+ <dim>-1</dim>
163
+ </port>
164
+ <port id="5" precision="U8">
165
+ <dim>-1</dim>
166
+ </port>
167
+ </output>
168
+ </layer>
169
+ <layer id="11" name="FuzeRagged_1459353" type="FuzeRagged" version="extension">
170
+ <input>
171
+ <port id="0" precision="I32">
172
+ <dim>-1</dim>
173
+ </port>
174
+ <port id="1" precision="I32">
175
+ <dim>-1</dim>
176
+ </port>
177
+ <port id="2" precision="I32">
178
+ <dim>-1</dim>
179
+ </port>
180
+ <port id="3" precision="I32">
181
+ <dim>-1</dim>
182
+ </port>
183
+ </input>
184
+ <output>
185
+ <port id="4" precision="I32">
186
+ <dim>-1</dim>
187
+ </port>
188
+ <port id="5" precision="I32">
189
+ <dim>-1</dim>
190
+ </port>
191
+ </output>
192
+ </layer>
193
+ <layer id="12" name="Constant_1459355" type="Const" version="opset1">
194
+ <data element_type="u8" shape="2" offset="467403" size="2" />
195
+ <output>
196
+ <port id="0" precision="U8">
197
+ <dim>2</dim>
198
+ </port>
199
+ </output>
200
+ </layer>
201
+ <layer id="13" name="Constant_1459357" type="Const" version="opset1">
202
+ <data element_type="u8" shape="0" offset="467405" size="1" />
203
+ <output>
204
+ <port id="0" precision="U8">
205
+ <dim>0</dim>
206
+ </port>
207
+ </output>
208
+ </layer>
209
+ <layer id="14" name="RegexNormalization_1459358" type="RegexNormalization" version="extension">
210
+ <data global_replace="true" />
211
+ <input>
212
+ <port id="0" precision="I32">
213
+ <dim>-1</dim>
214
+ </port>
215
+ <port id="1" precision="I32">
216
+ <dim>-1</dim>
217
+ </port>
218
+ <port id="2" precision="U8">
219
+ <dim>-1</dim>
220
+ </port>
221
+ <port id="3" precision="U8">
222
+ <dim>2</dim>
223
+ </port>
224
+ <port id="4" precision="U8">
225
+ <dim>0</dim>
226
+ </port>
227
+ </input>
228
+ <output>
229
+ <port id="5" precision="I32">
230
+ <dim>-1</dim>
231
+ </port>
232
+ <port id="6" precision="I32">
233
+ <dim>-1</dim>
234
+ </port>
235
+ <port id="7" precision="U8">
236
+ <dim>-1</dim>
237
+ </port>
238
+ </output>
239
+ </layer>
240
+ <layer id="15" name="UTF8Validate_1459359" type="UTF8Validate" version="extension">
241
+ <data replace_mode="true" />
242
+ <input>
243
+ <port id="0" precision="I32">
244
+ <dim>-1</dim>
245
+ </port>
246
+ <port id="1" precision="I32">
247
+ <dim>-1</dim>
248
+ </port>
249
+ <port id="2" precision="U8">
250
+ <dim>-1</dim>
251
+ </port>
252
+ </input>
253
+ <output>
254
+ <port id="3" precision="I32">
255
+ <dim>-1</dim>
256
+ </port>
257
+ <port id="4" precision="I32">
258
+ <dim>-1</dim>
259
+ </port>
260
+ <port id="5" precision="U8">
261
+ <dim>-1</dim>
262
+ </port>
263
+ </output>
264
+ </layer>
265
+ <layer id="16" name="StringTensorPack_1459360" type="StringTensorPack" version="opset15">
266
+ <input>
267
+ <port id="0" precision="I32">
268
+ <dim>-1</dim>
269
+ </port>
270
+ <port id="1" precision="I32">
271
+ <dim>-1</dim>
272
+ </port>
273
+ <port id="2" precision="U8">
274
+ <dim>-1</dim>
275
+ </port>
276
+ </input>
277
+ <output>
278
+ <port id="3" precision="STRING" names="Result_1459361,string_output">
279
+ <dim>-1</dim>
280
+ </port>
281
+ </output>
282
+ </layer>
283
+ <layer id="17" name="Result_1459361" type="Result" version="opset1" output_names="Result_1459361,string_output">
284
+ <input>
285
+ <port id="0" precision="STRING">
286
+ <dim>-1</dim>
287
+ </port>
288
+ </input>
289
+ </layer>
290
+ </layers>
291
+ <edges>
292
+ <edge from-layer="0" from-port="0" to-layer="1" to-port="0" />
293
+ <edge from-layer="1" from-port="1" to-layer="6" to-port="0" />
294
+ <edge from-layer="2" from-port="0" to-layer="6" to-port="1" />
295
+ <edge from-layer="3" from-port="0" to-layer="6" to-port="2" />
296
+ <edge from-layer="4" from-port="0" to-layer="6" to-port="3" />
297
+ <edge from-layer="5" from-port="0" to-layer="6" to-port="4" />
298
+ <edge from-layer="6" from-port="6" to-layer="11" to-port="1" />
299
+ <edge from-layer="6" from-port="5" to-layer="11" to-port="0" />
300
+ <edge from-layer="6" from-port="8" to-layer="9" to-port="1" />
301
+ <edge from-layer="6" from-port="7" to-layer="9" to-port="0" />
302
+ <edge from-layer="6" from-port="9" to-layer="9" to-port="2" />
303
+ <edge from-layer="7" from-port="0" to-layer="9" to-port="3" />
304
+ <edge from-layer="8" from-port="0" to-layer="9" to-port="4" />
305
+ <edge from-layer="9" from-port="5" to-layer="10" to-port="0" />
306
+ <edge from-layer="9" from-port="6" to-layer="10" to-port="1" />
307
+ <edge from-layer="9" from-port="7" to-layer="10" to-port="2" />
308
+ <edge from-layer="10" from-port="3" to-layer="11" to-port="2" />
309
+ <edge from-layer="10" from-port="4" to-layer="11" to-port="3" />
310
+ <edge from-layer="10" from-port="5" to-layer="14" to-port="2" />
311
+ <edge from-layer="11" from-port="5" to-layer="14" to-port="1" />
312
+ <edge from-layer="11" from-port="4" to-layer="14" to-port="0" />
313
+ <edge from-layer="12" from-port="0" to-layer="14" to-port="3" />
314
+ <edge from-layer="13" from-port="0" to-layer="14" to-port="4" />
315
+ <edge from-layer="14" from-port="5" to-layer="15" to-port="0" />
316
+ <edge from-layer="14" from-port="6" to-layer="15" to-port="1" />
317
+ <edge from-layer="14" from-port="7" to-layer="15" to-port="2" />
318
+ <edge from-layer="15" from-port="3" to-layer="16" to-port="0" />
319
+ <edge from-layer="15" from-port="4" to-layer="16" to-port="1" />
320
+ <edge from-layer="15" from-port="5" to-layer="16" to-port="2" />
321
+ <edge from-layer="16" from-port="3" to-layer="17" to-port="0" />
322
+ </edges>
323
+ <rt_info>
324
+ <add_attention_mask value="True" />
325
+ <add_prefix_space />
326
+ <add_special_tokens value="True" />
327
+ <bos_token_id value="1" />
328
+ <chat_template value="{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') %}{{'&lt;|user|>' + '&#10;' + message['content'] + '&lt;|end|>' + '&#10;' + '&lt;|assistant|>' + '&#10;'}}{% elif (message['role'] == 'assistant') %}{{message['content'] + '&lt;|end|>' + '&#10;'}}{% endif %}{% endfor %}" />
329
+ <clean_up_tokenization_spaces />
330
+ <detokenizer_input_type value="i64" />
331
+ <eos_token_id value="2" />
332
+ <handle_special_tokens_with_re />
333
+ <max_length />
334
+ <number_of_inputs value="1" />
335
+ <openvino_tokenizers_version value="2025.2.0.1-567-7885335c24b" />
336
+ <openvino_version value="2025.2.0-19140-c01cd93e24d-releases/2025/2" />
337
+ <original_post_processor_template value="{&quot;type&quot;: &quot;TemplateProcessing&quot;, &quot;single&quot;: [{&quot;SpecialToken&quot;: {&quot;id&quot;: &quot;&lt;s>&quot;, &quot;type_id&quot;: 0}}, {&quot;Sequence&quot;: {&quot;id&quot;: &quot;A&quot;, &quot;type_id&quot;: 0}}], &quot;pair&quot;: [{&quot;SpecialToken&quot;: {&quot;id&quot;: &quot;&lt;s>&quot;, &quot;type_id&quot;: 0}}, {&quot;Sequence&quot;: {&quot;id&quot;: &quot;A&quot;, &quot;type_id&quot;: 0}}, {&quot;SpecialToken&quot;: {&quot;id&quot;: &quot;&lt;s>&quot;, &quot;type_id&quot;: 1}}, {&quot;Sequence&quot;: {&quot;id&quot;: &quot;B&quot;, &quot;type_id&quot;: 1}}], &quot;special_tokens&quot;: {&quot;&lt;s>&quot;: {&quot;id&quot;: &quot;&lt;s>&quot;, &quot;ids&quot;: [1], &quot;tokens&quot;: [&quot;&lt;s>&quot;]}}}" />
338
+ <original_tokenizer_class value="&lt;class 'transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast'>" />
339
+ <pad_token_id value="2" />
340
+ <processed_post_processor_template value="{&quot;single&quot;: {&quot;ids&quot;: [1, -1], &quot;type_ids&quot;: [0, 0]}, &quot;pair&quot;: {&quot;ids&quot;: [1, -1, 1, -2], &quot;type_ids&quot;: [0, 0, 1, 1]}}" />
341
+ <sentencepiece_version value="0.2.1" />
342
+ <skip_special_tokens value="True" />
343
+ <streaming_detokenizer value="False" />
344
+ <tiktoken_version value="0.9.0" />
345
+ <tokenizer_output_type value="i64" />
346
+ <tokenizers_version value="0.21.4" />
347
+ <transformers_version value="4.51.3" />
348
+ <use_max_padding value="False" />
349
+ <use_sentencepiece_backend value="False" />
350
+ <utf8_replace_mode value="replace" />
351
+ <with_detokenizer value="True" />
352
+ </rt_info>
353
+ </net>
openvino_language_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fa4660827c7f09ab7397573ee5f2f5ab795393e507b0467fa9a743fd565fbeb
3
+ size 1983027502
openvino_language_model.xml ADDED
The diff for this file is too large to render. See raw diff
 
openvino_text_embeddings_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40e0a8e4a99582fd023cedcc40d684c331496869253f5790636147cd1eda3f3e
3
+ size 98429484
openvino_text_embeddings_model.xml ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="Model3" version="11">
3
+ <layers>
4
+ <layer id="0" name="input" type="Parameter" version="opset1">
5
+ <data shape="?,?" element_type="i64" />
6
+ <output>
7
+ <port id="0" precision="I64" names="input">
8
+ <dim>-1</dim>
9
+ <dim>-1</dim>
10
+ </port>
11
+ </output>
12
+ </layer>
13
+ <layer id="1" name="self.weight" type="Const" version="opset1">
14
+ <data element_type="i8" shape="32020, 3072" offset="0" size="98365440" />
15
+ <output>
16
+ <port id="0" precision="I8">
17
+ <dim>32020</dim>
18
+ <dim>3072</dim>
19
+ </port>
20
+ </output>
21
+ </layer>
22
+ <layer id="2" name="Convert_967548" type="Convert" version="opset1">
23
+ <data destination_type="f16" />
24
+ <input>
25
+ <port id="0" precision="I8">
26
+ <dim>32020</dim>
27
+ <dim>3072</dim>
28
+ </port>
29
+ </input>
30
+ <output>
31
+ <port id="1" precision="FP16">
32
+ <dim>32020</dim>
33
+ <dim>3072</dim>
34
+ </port>
35
+ </output>
36
+ </layer>
37
+ <layer id="3" name="self.weight/scale" type="Const" version="opset1">
38
+ <data element_type="f16" shape="32020, 1" offset="98365440" size="64040" />
39
+ <output>
40
+ <port id="0" precision="FP16">
41
+ <dim>32020</dim>
42
+ <dim>1</dim>
43
+ </port>
44
+ </output>
45
+ </layer>
46
+ <layer id="4" name="self.weight/fq_weights_0" type="Multiply" version="opset1">
47
+ <data auto_broadcast="numpy" />
48
+ <input>
49
+ <port id="0" precision="FP16">
50
+ <dim>32020</dim>
51
+ <dim>3072</dim>
52
+ </port>
53
+ <port id="1" precision="FP16">
54
+ <dim>32020</dim>
55
+ <dim>1</dim>
56
+ </port>
57
+ </input>
58
+ <output>
59
+ <port id="2" precision="FP16">
60
+ <dim>32020</dim>
61
+ <dim>3072</dim>
62
+ </port>
63
+ </output>
64
+ </layer>
65
+ <layer id="5" name="ov_ext::embedding/Convert" type="Convert" version="opset1">
66
+ <data destination_type="f32" />
67
+ <rt_info>
68
+ <attribute name="decompression" version="0" />
69
+ </rt_info>
70
+ <input>
71
+ <port id="0" precision="FP16">
72
+ <dim>32020</dim>
73
+ <dim>3072</dim>
74
+ </port>
75
+ </input>
76
+ <output>
77
+ <port id="1" precision="FP32">
78
+ <dim>32020</dim>
79
+ <dim>3072</dim>
80
+ </port>
81
+ </output>
82
+ </layer>
83
+ <layer id="6" name="ov_ext::embedding/Convert_1" type="Convert" version="opset1">
84
+ <data destination_type="i32" />
85
+ <input>
86
+ <port id="0" precision="I64">
87
+ <dim>-1</dim>
88
+ <dim>-1</dim>
89
+ </port>
90
+ </input>
91
+ <output>
92
+ <port id="1" precision="I32">
93
+ <dim>-1</dim>
94
+ <dim>-1</dim>
95
+ </port>
96
+ </output>
97
+ </layer>
98
+ <layer id="7" name="ov_ext::embedding/Constant" type="Const" version="opset1">
99
+ <data element_type="i32" shape="" offset="98429480" size="4" />
100
+ <output>
101
+ <port id="0" precision="I32" />
102
+ </output>
103
+ </layer>
104
+ <layer id="8" name="ov_ext::embedding/Gather" type="Gather" version="opset8">
105
+ <data batch_dims="0" />
106
+ <input>
107
+ <port id="0" precision="FP32">
108
+ <dim>32020</dim>
109
+ <dim>3072</dim>
110
+ </port>
111
+ <port id="1" precision="I32">
112
+ <dim>-1</dim>
113
+ <dim>-1</dim>
114
+ </port>
115
+ <port id="2" precision="I32" />
116
+ </input>
117
+ <output>
118
+ <port id="3" precision="FP32" names="inputs_embeds">
119
+ <dim>-1</dim>
120
+ <dim>-1</dim>
121
+ <dim>3072</dim>
122
+ </port>
123
+ </output>
124
+ </layer>
125
+ <layer id="9" name="Result_25020" type="Result" version="opset1" output_names="inputs_embeds">
126
+ <input>
127
+ <port id="0" precision="FP32">
128
+ <dim>-1</dim>
129
+ <dim>-1</dim>
130
+ <dim>3072</dim>
131
+ </port>
132
+ </input>
133
+ </layer>
134
+ </layers>
135
+ <edges>
136
+ <edge from-layer="0" from-port="0" to-layer="6" to-port="0" />
137
+ <edge from-layer="1" from-port="0" to-layer="2" to-port="0" />
138
+ <edge from-layer="2" from-port="1" to-layer="4" to-port="0" />
139
+ <edge from-layer="3" from-port="0" to-layer="4" to-port="1" />
140
+ <edge from-layer="4" from-port="2" to-layer="5" to-port="0" />
141
+ <edge from-layer="5" from-port="1" to-layer="8" to-port="0" />
142
+ <edge from-layer="6" from-port="1" to-layer="8" to-port="1" />
143
+ <edge from-layer="7" from-port="0" to-layer="8" to-port="2" />
144
+ <edge from-layer="8" from-port="3" to-layer="9" to-port="0" />
145
+ </edges>
146
+ <rt_info>
147
+ <Runtime_version value="2025.2.0-19140-c01cd93e24d-releases/2025/2" />
148
+ <conversion_parameters>
149
+ <framework value="pytorch" />
150
+ <is_python_object value="True" />
151
+ </conversion_parameters>
152
+ <nncf>
153
+ <friendly_names_were_updated value="True" />
154
+ <weight_compression>
155
+ <advanced_parameters value="{'statistics_path': None, 'awq_params': {'subset_size': 32, 'percent_to_apply': 0.002, 'alpha_min': 0.0, 'alpha_max': 1.0, 'steps': 100}, 'scale_estimation_params': {'subset_size': 64, 'initial_steps': 5, 'scale_steps': 5, 'weight_penalty': -1.0}, 'gptq_params': {'damp_percent': 0.1, 'block_size': 128, 'subset_size': 128}, 'lora_correction_params': {'adapter_rank': 8, 'num_iterations': 3, 'apply_regularization': True, 'subset_size': 128, 'use_int8_adapters': True}}" />
156
+ <all_layers value="False" />
157
+ <awq value="False" />
158
+ <backup_mode value="int8_asym" />
159
+ <gptq value="False" />
160
+ <group_size value="-1" />
161
+ <ignored_scope value="[]" />
162
+ <lora_correction value="False" />
163
+ <mode value="int8_sym" />
164
+ <ratio value="1.0" />
165
+ <scale_estimation value="False" />
166
+ <sensitivity_metric value="weight_quantization_error" />
167
+ </weight_compression>
168
+ </nncf>
169
+ <optimum>
170
+ <nncf_version value="2.15.0" />
171
+ <optimum_intel_version value="1.26.0.dev0+e9c57b9" />
172
+ <optimum_version value="1.27.0" />
173
+ <pytorch_version value="2.8.0+cpu" />
174
+ <transformers_version value="4.51.3" />
175
+ </optimum>
176
+ </rt_info>
177
+ </net>
openvino_tokenizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35f6843829e68542fb7f88d4f4bbd86494ae2165dc972db552b1024a6610c21d
3
+ size 1882400
openvino_tokenizer.xml ADDED
@@ -0,0 +1,823 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="tokenizer" version="11">
3
+ <layers>
4
+ <layer id="0" name="Parameter_1459204" type="Parameter" version="opset1">
5
+ <data shape="?" element_type="string" />
6
+ <output>
7
+ <port id="0" precision="STRING" names="Parameter_1459204">
8
+ <dim>-1</dim>
9
+ </port>
10
+ </output>
11
+ </layer>
12
+ <layer id="1" name="Constant_1459323" type="Const" version="opset1">
13
+ <data element_type="i32" shape="" offset="0" size="4" />
14
+ <output>
15
+ <port id="0" precision="I32" />
16
+ </output>
17
+ </layer>
18
+ <layer id="2" name="Constant_1459324" type="Const" version="opset1">
19
+ <data element_type="i32" shape="" offset="4" size="4" />
20
+ <output>
21
+ <port id="0" precision="I32" />
22
+ </output>
23
+ </layer>
24
+ <layer id="3" name="Constant_1459325" type="Const" version="opset1">
25
+ <data element_type="i32" shape="1" offset="4" size="4" />
26
+ <output>
27
+ <port id="0" precision="I32">
28
+ <dim>1</dim>
29
+ </port>
30
+ </output>
31
+ </layer>
32
+ <layer id="4" name="Constant_1459210" type="Const" version="opset1">
33
+ <data element_type="i64" shape="" offset="8" size="8" />
34
+ <output>
35
+ <port id="0" precision="I64" />
36
+ </output>
37
+ </layer>
38
+ <layer id="5" name="StringTensorUnpack_1459205" type="StringTensorUnpack" version="opset15">
39
+ <input>
40
+ <port id="0" precision="STRING">
41
+ <dim>-1</dim>
42
+ </port>
43
+ </input>
44
+ <output>
45
+ <port id="1" precision="I32">
46
+ <dim>-1</dim>
47
+ </port>
48
+ <port id="2" precision="I32">
49
+ <dim>-1</dim>
50
+ </port>
51
+ <port id="3" precision="U8">
52
+ <dim>-1</dim>
53
+ </port>
54
+ </output>
55
+ </layer>
56
+ <layer id="6" name="ShapeOf_1459206" type="ShapeOf" version="opset3">
57
+ <data output_type="i64" />
58
+ <input>
59
+ <port id="0" precision="I32">
60
+ <dim>-1</dim>
61
+ </port>
62
+ </input>
63
+ <output>
64
+ <port id="1" precision="I64">
65
+ <dim>1</dim>
66
+ </port>
67
+ </output>
68
+ </layer>
69
+ <layer id="7" name="Constant_1459207" type="Const" version="opset1">
70
+ <data element_type="i64" shape="" offset="8" size="8" />
71
+ <output>
72
+ <port id="0" precision="I64" />
73
+ </output>
74
+ </layer>
75
+ <layer id="8" name="Constant_1459208" type="Const" version="opset1">
76
+ <data element_type="i64" shape="" offset="8" size="8" />
77
+ <output>
78
+ <port id="0" precision="I64" />
79
+ </output>
80
+ </layer>
81
+ <layer id="9" name="Gather_1459209" type="Gather" version="opset8">
82
+ <data batch_dims="0" />
83
+ <input>
84
+ <port id="0" precision="I64">
85
+ <dim>1</dim>
86
+ </port>
87
+ <port id="1" precision="I64" />
88
+ <port id="2" precision="I64" />
89
+ </input>
90
+ <output>
91
+ <port id="3" precision="I64" />
92
+ </output>
93
+ </layer>
94
+ <layer id="10" name="Constant_1459211" type="Const" version="opset1">
95
+ <data element_type="i64" shape="" offset="16" size="8" />
96
+ <output>
97
+ <port id="0" precision="I64" />
98
+ </output>
99
+ </layer>
100
+ <layer id="11" name="Range_1459212" type="Range" version="opset4">
101
+ <data output_type="i32" />
102
+ <input>
103
+ <port id="0" precision="I64" />
104
+ <port id="1" precision="I64" />
105
+ <port id="2" precision="I64" />
106
+ </input>
107
+ <output>
108
+ <port id="3" precision="I32">
109
+ <dim>-1</dim>
110
+ </port>
111
+ </output>
112
+ </layer>
113
+ <layer id="12" name="Constant_1459213" type="Const" version="opset1">
114
+ <data element_type="i64" shape="" offset="16" size="8" />
115
+ <output>
116
+ <port id="0" precision="I64" />
117
+ </output>
118
+ </layer>
119
+ <layer id="13" name="Constant_1459214" type="Const" version="opset1">
120
+ <data element_type="i64" shape="" offset="16" size="8" />
121
+ <output>
122
+ <port id="0" precision="I64" />
123
+ </output>
124
+ </layer>
125
+ <layer id="14" name="Add_1459215" type="Add" version="opset1">
126
+ <data auto_broadcast="numpy" />
127
+ <input>
128
+ <port id="0" precision="I64" />
129
+ <port id="1" precision="I64" />
130
+ </input>
131
+ <output>
132
+ <port id="2" precision="I64" />
133
+ </output>
134
+ </layer>
135
+ <layer id="15" name="Constant_1459216" type="Const" version="opset1">
136
+ <data element_type="i64" shape="" offset="16" size="8" />
137
+ <output>
138
+ <port id="0" precision="I64" />
139
+ </output>
140
+ </layer>
141
+ <layer id="16" name="Range_1459217" type="Range" version="opset4">
142
+ <data output_type="i32" />
143
+ <input>
144
+ <port id="0" precision="I64" />
145
+ <port id="1" precision="I64" />
146
+ <port id="2" precision="I64" />
147
+ </input>
148
+ <output>
149
+ <port id="3" precision="I32">
150
+ <dim>-1</dim>
151
+ </port>
152
+ </output>
153
+ </layer>
154
+ <layer id="17" name="Constant_1459279" type="Const" version="opset1">
155
+ <data element_type="u8" shape="436" offset="24" size="436" />
156
+ <output>
157
+ <port id="0" precision="U8">
158
+ <dim>436</dim>
159
+ </port>
160
+ </output>
161
+ </layer>
162
+ <layer id="18" name="SpecialTokensSplit_1459280" type="SpecialTokensSplit" version="extension">
163
+ <input>
164
+ <port id="0" precision="I32">
165
+ <dim>-1</dim>
166
+ </port>
167
+ <port id="1" precision="I32">
168
+ <dim>-1</dim>
169
+ </port>
170
+ <port id="2" precision="I32">
171
+ <dim>-1</dim>
172
+ </port>
173
+ <port id="3" precision="I32">
174
+ <dim>-1</dim>
175
+ </port>
176
+ <port id="4" precision="U8">
177
+ <dim>-1</dim>
178
+ </port>
179
+ <port id="5" precision="U8">
180
+ <dim>436</dim>
181
+ </port>
182
+ </input>
183
+ <output>
184
+ <port id="6" precision="I32">
185
+ <dim>-1</dim>
186
+ </port>
187
+ <port id="7" precision="I32">
188
+ <dim>-1</dim>
189
+ </port>
190
+ <port id="8" precision="I32">
191
+ <dim>-1</dim>
192
+ </port>
193
+ <port id="9" precision="I32">
194
+ <dim>-1</dim>
195
+ </port>
196
+ <port id="10" precision="U8">
197
+ <dim>-1</dim>
198
+ </port>
199
+ <port id="11" precision="BOOL">
200
+ <dim>-1</dim>
201
+ </port>
202
+ </output>
203
+ </layer>
204
+ <layer id="19" name="Constant_1459282" type="Const" version="opset1">
205
+ <data element_type="u8" shape="1" offset="460" size="1" />
206
+ <output>
207
+ <port id="0" precision="U8">
208
+ <dim>1</dim>
209
+ </port>
210
+ </output>
211
+ </layer>
212
+ <layer id="20" name="Constant_1459284" type="Const" version="opset1">
213
+ <data element_type="u8" shape="3" offset="461" size="3" />
214
+ <output>
215
+ <port id="0" precision="U8">
216
+ <dim>3</dim>
217
+ </port>
218
+ </output>
219
+ </layer>
220
+ <layer id="21" name="RegexNormalization_1459285" type="RegexNormalization" version="extension">
221
+ <data global_replace="true" />
222
+ <input>
223
+ <port id="0" precision="I32">
224
+ <dim>-1</dim>
225
+ </port>
226
+ <port id="1" precision="I32">
227
+ <dim>-1</dim>
228
+ </port>
229
+ <port id="2" precision="U8">
230
+ <dim>-1</dim>
231
+ </port>
232
+ <port id="3" precision="BOOL">
233
+ <dim>-1</dim>
234
+ </port>
235
+ <port id="4" precision="U8">
236
+ <dim>1</dim>
237
+ </port>
238
+ <port id="5" precision="U8">
239
+ <dim>3</dim>
240
+ </port>
241
+ </input>
242
+ <output>
243
+ <port id="6" precision="I32">
244
+ <dim>-1</dim>
245
+ </port>
246
+ <port id="7" precision="I32">
247
+ <dim>-1</dim>
248
+ </port>
249
+ <port id="8" precision="U8">
250
+ <dim>-1</dim>
251
+ </port>
252
+ <port id="9" precision="BOOL">
253
+ <dim>-1</dim>
254
+ </port>
255
+ </output>
256
+ </layer>
257
+ <layer id="22" name="Constant_1459287" type="Const" version="opset1">
258
+ <data element_type="u8" shape="11" offset="464" size="11" />
259
+ <output>
260
+ <port id="0" precision="U8">
261
+ <dim>11</dim>
262
+ </port>
263
+ </output>
264
+ </layer>
265
+ <layer id="23" name="Constant_1459289" type="Const" version="opset1">
266
+ <data element_type="u8" shape="5" offset="475" size="5" />
267
+ <output>
268
+ <port id="0" precision="U8">
269
+ <dim>5</dim>
270
+ </port>
271
+ </output>
272
+ </layer>
273
+ <layer id="24" name="RegexNormalization_1459290" type="RegexNormalization" version="extension">
274
+ <data global_replace="true" />
275
+ <input>
276
+ <port id="0" precision="I32">
277
+ <dim>-1</dim>
278
+ </port>
279
+ <port id="1" precision="I32">
280
+ <dim>-1</dim>
281
+ </port>
282
+ <port id="2" precision="U8">
283
+ <dim>-1</dim>
284
+ </port>
285
+ <port id="3" precision="BOOL">
286
+ <dim>-1</dim>
287
+ </port>
288
+ <port id="4" precision="U8">
289
+ <dim>11</dim>
290
+ </port>
291
+ <port id="5" precision="U8">
292
+ <dim>5</dim>
293
+ </port>
294
+ </input>
295
+ <output>
296
+ <port id="6" precision="I32">
297
+ <dim>-1</dim>
298
+ </port>
299
+ <port id="7" precision="I32">
300
+ <dim>-1</dim>
301
+ </port>
302
+ <port id="8" precision="U8">
303
+ <dim>-1</dim>
304
+ </port>
305
+ <port id="9" precision="BOOL">
306
+ <dim>-1</dim>
307
+ </port>
308
+ </output>
309
+ </layer>
310
+ <layer id="25" name="Constant_1459292" type="Const" version="opset1">
311
+ <data element_type="i32" shape="32020" offset="480" size="128080" />
312
+ <output>
313
+ <port id="0" precision="I32">
314
+ <dim>32020</dim>
315
+ </port>
316
+ </output>
317
+ </layer>
318
+ <layer id="26" name="Constant_1459294" type="Const" version="opset1">
319
+ <data element_type="i32" shape="32020" offset="128560" size="128080" />
320
+ <output>
321
+ <port id="0" precision="I32">
322
+ <dim>32020</dim>
323
+ </port>
324
+ </output>
325
+ </layer>
326
+ <layer id="27" name="Constant_1459296" type="Const" version="opset1">
327
+ <data element_type="u8" shape="211147" offset="256640" size="211147" />
328
+ <output>
329
+ <port id="0" precision="U8">
330
+ <dim>211147</dim>
331
+ </port>
332
+ </output>
333
+ </layer>
334
+ <layer id="28" name="Constant_1459304" type="Const" version="opset1">
335
+ <data element_type="i32" shape="61249" offset="467787" size="244996" />
336
+ <output>
337
+ <port id="0" precision="I32">
338
+ <dim>61249</dim>
339
+ </port>
340
+ </output>
341
+ </layer>
342
+ <layer id="29" name="Constant_1459306" type="Const" version="opset1">
343
+ <data element_type="i32" shape="61249" offset="712783" size="244996" />
344
+ <output>
345
+ <port id="0" precision="I32">
346
+ <dim>61249</dim>
347
+ </port>
348
+ </output>
349
+ </layer>
350
+ <layer id="30" name="Constant_1459308" type="Const" version="opset1">
351
+ <data element_type="u8" shape="254123" offset="957779" size="254123" />
352
+ <output>
353
+ <port id="0" precision="U8">
354
+ <dim>254123</dim>
355
+ </port>
356
+ </output>
357
+ </layer>
358
+ <layer id="31" name="Constant_1459310" type="Const" version="opset1">
359
+ <data element_type="i32" shape="61249" offset="1211902" size="244996" />
360
+ <output>
361
+ <port id="0" precision="I32">
362
+ <dim>61249</dim>
363
+ </port>
364
+ </output>
365
+ </layer>
366
+ <layer id="32" name="Constant_1459312" type="Const" version="opset1">
367
+ <data element_type="i32" shape="61249" offset="1456898" size="244996" />
368
+ <output>
369
+ <port id="0" precision="I32">
370
+ <dim>61249</dim>
371
+ </port>
372
+ </output>
373
+ </layer>
374
+ <layer id="33" name="Constant_1459314" type="Const" version="opset1">
375
+ <data element_type="u8" shape="167806" offset="1701894" size="167806" />
376
+ <output>
377
+ <port id="0" precision="U8">
378
+ <dim>167806</dim>
379
+ </port>
380
+ </output>
381
+ </layer>
382
+ <layer id="34" name="Constant_1459298" type="Const" version="opset1">
383
+ <data element_type="i32" shape="484" offset="1869700" size="1936" />
384
+ <output>
385
+ <port id="0" precision="I32">
386
+ <dim>484</dim>
387
+ </port>
388
+ </output>
389
+ </layer>
390
+ <layer id="35" name="Constant_1459300" type="Const" version="opset1">
391
+ <data element_type="i32" shape="484" offset="1871636" size="1936" />
392
+ <output>
393
+ <port id="0" precision="I32">
394
+ <dim>484</dim>
395
+ </port>
396
+ </output>
397
+ </layer>
398
+ <layer id="36" name="Constant_1459302" type="Const" version="opset1">
399
+ <data element_type="u8" shape="6867" offset="1873572" size="6867" />
400
+ <output>
401
+ <port id="0" precision="U8">
402
+ <dim>6867</dim>
403
+ </port>
404
+ </output>
405
+ </layer>
406
+ <layer id="37" name="Constant_1459315" type="Const" version="opset1">
407
+ <data element_type="i32" shape="484" offset="1880439" size="1936" />
408
+ <output>
409
+ <port id="0" precision="I32">
410
+ <dim>484</dim>
411
+ </port>
412
+ </output>
413
+ </layer>
414
+ <layer id="38" name="BPETokenizer_1459316" type="BPETokenizer" version="extension">
415
+ <data unk_token="&lt;unk>" fuse_unk="true" suffix_indicator="" end_suffix="" byte_fallback="true" cache_capacity="20000" />
416
+ <input>
417
+ <port id="0" precision="I32">
418
+ <dim>-1</dim>
419
+ </port>
420
+ <port id="1" precision="I32">
421
+ <dim>-1</dim>
422
+ </port>
423
+ <port id="2" precision="I32">
424
+ <dim>-1</dim>
425
+ </port>
426
+ <port id="3" precision="I32">
427
+ <dim>-1</dim>
428
+ </port>
429
+ <port id="4" precision="U8">
430
+ <dim>-1</dim>
431
+ </port>
432
+ <port id="5" precision="I32">
433
+ <dim>32020</dim>
434
+ </port>
435
+ <port id="6" precision="I32">
436
+ <dim>32020</dim>
437
+ </port>
438
+ <port id="7" precision="U8">
439
+ <dim>211147</dim>
440
+ </port>
441
+ <port id="8" precision="I32">
442
+ <dim>61249</dim>
443
+ </port>
444
+ <port id="9" precision="I32">
445
+ <dim>61249</dim>
446
+ </port>
447
+ <port id="10" precision="U8">
448
+ <dim>254123</dim>
449
+ </port>
450
+ <port id="11" precision="I32">
451
+ <dim>61249</dim>
452
+ </port>
453
+ <port id="12" precision="I32">
454
+ <dim>61249</dim>
455
+ </port>
456
+ <port id="13" precision="U8">
457
+ <dim>167806</dim>
458
+ </port>
459
+ <port id="14" precision="I32">
460
+ <dim>484</dim>
461
+ </port>
462
+ <port id="15" precision="I32">
463
+ <dim>484</dim>
464
+ </port>
465
+ <port id="16" precision="U8">
466
+ <dim>6867</dim>
467
+ </port>
468
+ <port id="17" precision="I32">
469
+ <dim>484</dim>
470
+ </port>
471
+ </input>
472
+ <output>
473
+ <port id="18" precision="I32">
474
+ <dim>-1</dim>
475
+ </port>
476
+ <port id="19" precision="I32">
477
+ <dim>-1</dim>
478
+ </port>
479
+ <port id="20" precision="I32">
480
+ <dim>-1</dim>
481
+ </port>
482
+ </output>
483
+ </layer>
484
+ <layer id="39" name="Constant_1459317" type="Const" version="opset1">
485
+ <data element_type="i32" shape="" offset="1882375" size="4" />
486
+ <output>
487
+ <port id="0" precision="I32" />
488
+ </output>
489
+ </layer>
490
+ <layer id="40" name="Constant_1459319" type="Const" version="opset1">
491
+ <data element_type="u8" shape="4" offset="1882379" size="4" />
492
+ <output>
493
+ <port id="0" precision="U8">
494
+ <dim>4</dim>
495
+ </port>
496
+ </output>
497
+ </layer>
498
+ <layer id="41" name="Constant_1459321" type="Const" version="opset1">
499
+ <data element_type="u8" shape="13" offset="1882383" size="13" />
500
+ <output>
501
+ <port id="0" precision="U8">
502
+ <dim>13</dim>
503
+ </port>
504
+ </output>
505
+ </layer>
506
+ <layer id="42" name="Truncate_1459322" type="Truncate" version="extension">
507
+ <data m_num_inputs="1" />
508
+ <input>
509
+ <port id="0" precision="I32">
510
+ <dim>-1</dim>
511
+ </port>
512
+ <port id="1" precision="I32">
513
+ <dim>-1</dim>
514
+ </port>
515
+ <port id="2" precision="I32">
516
+ <dim>-1</dim>
517
+ </port>
518
+ <port id="3" precision="I32" />
519
+ <port id="4" precision="U8">
520
+ <dim>4</dim>
521
+ </port>
522
+ <port id="5" precision="U8">
523
+ <dim>13</dim>
524
+ </port>
525
+ </input>
526
+ <output>
527
+ <port id="6" precision="I32">
528
+ <dim>-1</dim>
529
+ </port>
530
+ <port id="7" precision="I32">
531
+ <dim>-1</dim>
532
+ </port>
533
+ <port id="8" precision="I32">
534
+ <dim>-1</dim>
535
+ </port>
536
+ </output>
537
+ </layer>
538
+ <layer id="43" name="Constant_1459326" type="Const" version="opset1">
539
+ <data element_type="i32" shape="2" offset="8" size="8" />
540
+ <output>
541
+ <port id="0" precision="I32">
542
+ <dim>2</dim>
543
+ </port>
544
+ </output>
545
+ </layer>
546
+ <layer id="44" name="CombineSegments_1459327" type="CombineSegments" version="extension">
547
+ <input>
548
+ <port id="0" precision="I32" />
549
+ <port id="1" precision="I32" />
550
+ <port id="2" precision="I32">
551
+ <dim>1</dim>
552
+ </port>
553
+ <port id="3" precision="I32">
554
+ <dim>-1</dim>
555
+ </port>
556
+ <port id="4" precision="I32">
557
+ <dim>-1</dim>
558
+ </port>
559
+ <port id="5" precision="I32">
560
+ <dim>-1</dim>
561
+ </port>
562
+ <port id="6" precision="I32">
563
+ <dim>2</dim>
564
+ </port>
565
+ </input>
566
+ <output>
567
+ <port id="7" precision="I32">
568
+ <dim>-1</dim>
569
+ </port>
570
+ <port id="8" precision="I32">
571
+ <dim>-1</dim>
572
+ </port>
573
+ <port id="9" precision="I32">
574
+ <dim>-1</dim>
575
+ </port>
576
+ <port id="10" precision="I32">
577
+ <dim>-1</dim>
578
+ </port>
579
+ <port id="11" precision="I32">
580
+ <dim>-1</dim>
581
+ </port>
582
+ <port id="12" precision="I32">
583
+ <dim>-1</dim>
584
+ </port>
585
+ </output>
586
+ </layer>
587
+ <layer id="45" name="Subtract_1459328" type="Subtract" version="opset1">
588
+ <data auto_broadcast="numpy" />
589
+ <input>
590
+ <port id="0" precision="I32">
591
+ <dim>-1</dim>
592
+ </port>
593
+ <port id="1" precision="I32">
594
+ <dim>-1</dim>
595
+ </port>
596
+ </input>
597
+ <output>
598
+ <port id="2" precision="I32">
599
+ <dim>-1</dim>
600
+ </port>
601
+ </output>
602
+ </layer>
603
+ <layer id="46" name="Constant_1459329" type="Const" version="opset1">
604
+ <data element_type="i32" shape="" offset="0" size="4" />
605
+ <output>
606
+ <port id="0" precision="I32" />
607
+ </output>
608
+ </layer>
609
+ <layer id="47" name="ReduceMax_1459330" type="ReduceMax" version="opset1">
610
+ <data keep_dims="false" />
611
+ <input>
612
+ <port id="0" precision="I32">
613
+ <dim>-1</dim>
614
+ </port>
615
+ <port id="1" precision="I32" />
616
+ </input>
617
+ <output>
618
+ <port id="2" precision="I32" />
619
+ </output>
620
+ </layer>
621
+ <layer id="48" name="Constant_1459331" type="Const" version="opset1">
622
+ <data element_type="i32" shape="" offset="1882396" size="4" />
623
+ <output>
624
+ <port id="0" precision="I32" />
625
+ </output>
626
+ </layer>
627
+ <layer id="49" name="RaggedToDense_1459332" type="RaggedToDense" version="extension">
628
+ <data pad_right="false" m_pad_max_length="false" />
629
+ <input>
630
+ <port id="0" precision="I32">
631
+ <dim>-1</dim>
632
+ </port>
633
+ <port id="1" precision="I32">
634
+ <dim>-1</dim>
635
+ </port>
636
+ <port id="2" precision="I32">
637
+ <dim>-1</dim>
638
+ </port>
639
+ <port id="3" precision="I32" />
640
+ <port id="4" precision="I32" />
641
+ </input>
642
+ <output>
643
+ <port id="5" precision="I32">
644
+ <dim>-1</dim>
645
+ <dim>-1</dim>
646
+ </port>
647
+ <port id="6" precision="BOOL">
648
+ <dim>-1</dim>
649
+ <dim>-1</dim>
650
+ </port>
651
+ </output>
652
+ </layer>
653
+ <layer id="50" name="Convert_1459333" type="Convert" version="opset1">
654
+ <data destination_type="i32" />
655
+ <input>
656
+ <port id="0" precision="BOOL">
657
+ <dim>-1</dim>
658
+ <dim>-1</dim>
659
+ </port>
660
+ </input>
661
+ <output>
662
+ <port id="1" precision="I32">
663
+ <dim>-1</dim>
664
+ <dim>-1</dim>
665
+ </port>
666
+ </output>
667
+ </layer>
668
+ <layer id="51" name="Convert_1459333.0" type="Convert" version="opset1">
669
+ <data destination_type="i64" />
670
+ <input>
671
+ <port id="0" precision="I32">
672
+ <dim>-1</dim>
673
+ <dim>-1</dim>
674
+ </port>
675
+ </input>
676
+ <output>
677
+ <port id="1" precision="I64" names="attention_mask">
678
+ <dim>-1</dim>
679
+ <dim>-1</dim>
680
+ </port>
681
+ </output>
682
+ </layer>
683
+ <layer id="53" name="RaggedToDense_1459332.0" type="Convert" version="opset1">
684
+ <data destination_type="i64" />
685
+ <input>
686
+ <port id="0" precision="I32">
687
+ <dim>-1</dim>
688
+ <dim>-1</dim>
689
+ </port>
690
+ </input>
691
+ <output>
692
+ <port id="1" precision="I64" names="input_ids">
693
+ <dim>-1</dim>
694
+ <dim>-1</dim>
695
+ </port>
696
+ </output>
697
+ </layer>
698
+ <layer id="54" name="Result_1459336" type="Result" version="opset1" output_names="input_ids">
699
+ <input>
700
+ <port id="0" precision="I64">
701
+ <dim>-1</dim>
702
+ <dim>-1</dim>
703
+ </port>
704
+ </input>
705
+ </layer>
706
+ <layer id="52" name="Result_1459338" type="Result" version="opset1" output_names="attention_mask">
707
+ <input>
708
+ <port id="0" precision="I64">
709
+ <dim>-1</dim>
710
+ <dim>-1</dim>
711
+ </port>
712
+ </input>
713
+ </layer>
714
+ </layers>
715
+ <edges>
716
+ <edge from-layer="0" from-port="0" to-layer="5" to-port="0" />
717
+ <edge from-layer="1" from-port="0" to-layer="44" to-port="0" />
718
+ <edge from-layer="2" from-port="0" to-layer="44" to-port="1" />
719
+ <edge from-layer="3" from-port="0" to-layer="44" to-port="2" />
720
+ <edge from-layer="4" from-port="0" to-layer="11" to-port="0" />
721
+ <edge from-layer="5" from-port="1" to-layer="6" to-port="0" />
722
+ <edge from-layer="5" from-port="3" to-layer="18" to-port="4" />
723
+ <edge from-layer="5" from-port="2" to-layer="18" to-port="3" />
724
+ <edge from-layer="5" from-port="1" to-layer="18" to-port="2" />
725
+ <edge from-layer="6" from-port="1" to-layer="9" to-port="0" />
726
+ <edge from-layer="7" from-port="0" to-layer="9" to-port="1" />
727
+ <edge from-layer="8" from-port="0" to-layer="9" to-port="2" />
728
+ <edge from-layer="9" from-port="3" to-layer="14" to-port="0" />
729
+ <edge from-layer="9" from-port="3" to-layer="11" to-port="1" />
730
+ <edge from-layer="10" from-port="0" to-layer="11" to-port="2" />
731
+ <edge from-layer="11" from-port="3" to-layer="18" to-port="0" />
732
+ <edge from-layer="12" from-port="0" to-layer="16" to-port="0" />
733
+ <edge from-layer="13" from-port="0" to-layer="14" to-port="1" />
734
+ <edge from-layer="14" from-port="2" to-layer="16" to-port="1" />
735
+ <edge from-layer="15" from-port="0" to-layer="16" to-port="2" />
736
+ <edge from-layer="16" from-port="3" to-layer="18" to-port="1" />
737
+ <edge from-layer="17" from-port="0" to-layer="18" to-port="5" />
738
+ <edge from-layer="18" from-port="6" to-layer="38" to-port="0" />
739
+ <edge from-layer="18" from-port="7" to-layer="38" to-port="1" />
740
+ <edge from-layer="18" from-port="11" to-layer="21" to-port="3" />
741
+ <edge from-layer="18" from-port="10" to-layer="21" to-port="2" />
742
+ <edge from-layer="18" from-port="9" to-layer="21" to-port="1" />
743
+ <edge from-layer="18" from-port="8" to-layer="21" to-port="0" />
744
+ <edge from-layer="19" from-port="0" to-layer="21" to-port="4" />
745
+ <edge from-layer="20" from-port="0" to-layer="21" to-port="5" />
746
+ <edge from-layer="21" from-port="6" to-layer="24" to-port="0" />
747
+ <edge from-layer="21" from-port="9" to-layer="24" to-port="3" />
748
+ <edge from-layer="21" from-port="8" to-layer="24" to-port="2" />
749
+ <edge from-layer="21" from-port="7" to-layer="24" to-port="1" />
750
+ <edge from-layer="22" from-port="0" to-layer="24" to-port="4" />
751
+ <edge from-layer="23" from-port="0" to-layer="24" to-port="5" />
752
+ <edge from-layer="24" from-port="6" to-layer="38" to-port="2" />
753
+ <edge from-layer="24" from-port="7" to-layer="38" to-port="3" />
754
+ <edge from-layer="24" from-port="8" to-layer="38" to-port="4" />
755
+ <edge from-layer="25" from-port="0" to-layer="38" to-port="5" />
756
+ <edge from-layer="26" from-port="0" to-layer="38" to-port="6" />
757
+ <edge from-layer="27" from-port="0" to-layer="38" to-port="7" />
758
+ <edge from-layer="28" from-port="0" to-layer="38" to-port="8" />
759
+ <edge from-layer="29" from-port="0" to-layer="38" to-port="9" />
760
+ <edge from-layer="30" from-port="0" to-layer="38" to-port="10" />
761
+ <edge from-layer="31" from-port="0" to-layer="38" to-port="11" />
762
+ <edge from-layer="32" from-port="0" to-layer="38" to-port="12" />
763
+ <edge from-layer="33" from-port="0" to-layer="38" to-port="13" />
764
+ <edge from-layer="34" from-port="0" to-layer="38" to-port="14" />
765
+ <edge from-layer="35" from-port="0" to-layer="38" to-port="15" />
766
+ <edge from-layer="36" from-port="0" to-layer="38" to-port="16" />
767
+ <edge from-layer="37" from-port="0" to-layer="38" to-port="17" />
768
+ <edge from-layer="38" from-port="18" to-layer="42" to-port="0" />
769
+ <edge from-layer="38" from-port="19" to-layer="42" to-port="1" />
770
+ <edge from-layer="38" from-port="20" to-layer="42" to-port="2" />
771
+ <edge from-layer="39" from-port="0" to-layer="42" to-port="3" />
772
+ <edge from-layer="40" from-port="0" to-layer="42" to-port="4" />
773
+ <edge from-layer="41" from-port="0" to-layer="42" to-port="5" />
774
+ <edge from-layer="42" from-port="8" to-layer="44" to-port="5" />
775
+ <edge from-layer="42" from-port="7" to-layer="44" to-port="4" />
776
+ <edge from-layer="42" from-port="6" to-layer="44" to-port="3" />
777
+ <edge from-layer="43" from-port="0" to-layer="44" to-port="6" />
778
+ <edge from-layer="44" from-port="8" to-layer="45" to-port="0" />
779
+ <edge from-layer="44" from-port="7" to-layer="45" to-port="1" />
780
+ <edge from-layer="44" from-port="7" to-layer="49" to-port="0" />
781
+ <edge from-layer="44" from-port="8" to-layer="49" to-port="1" />
782
+ <edge from-layer="44" from-port="9" to-layer="49" to-port="2" />
783
+ <edge from-layer="45" from-port="2" to-layer="47" to-port="0" />
784
+ <edge from-layer="46" from-port="0" to-layer="47" to-port="1" />
785
+ <edge from-layer="47" from-port="2" to-layer="49" to-port="3" />
786
+ <edge from-layer="48" from-port="0" to-layer="49" to-port="4" />
787
+ <edge from-layer="49" from-port="6" to-layer="50" to-port="0" />
788
+ <edge from-layer="49" from-port="5" to-layer="53" to-port="0" />
789
+ <edge from-layer="50" from-port="1" to-layer="51" to-port="0" />
790
+ <edge from-layer="51" from-port="1" to-layer="52" to-port="0" />
791
+ <edge from-layer="53" from-port="1" to-layer="54" to-port="0" />
792
+ </edges>
793
+ <rt_info>
794
+ <add_attention_mask value="True" />
795
+ <add_prefix_space />
796
+ <add_special_tokens value="True" />
797
+ <bos_token_id value="1" />
798
+ <chat_template value="{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') %}{{'&lt;|user|>' + '&#10;' + message['content'] + '&lt;|end|>' + '&#10;' + '&lt;|assistant|>' + '&#10;'}}{% elif (message['role'] == 'assistant') %}{{message['content'] + '&lt;|end|>' + '&#10;'}}{% endif %}{% endfor %}" />
799
+ <clean_up_tokenization_spaces />
800
+ <detokenizer_input_type value="i64" />
801
+ <eos_token_id value="2" />
802
+ <handle_special_tokens_with_re />
803
+ <max_length />
804
+ <number_of_inputs value="1" />
805
+ <openvino_tokenizers_version value="2025.2.0.1-567-7885335c24b" />
806
+ <openvino_version value="2025.2.0-19140-c01cd93e24d-releases/2025/2" />
807
+ <original_post_processor_template value="{&quot;type&quot;: &quot;TemplateProcessing&quot;, &quot;single&quot;: [{&quot;SpecialToken&quot;: {&quot;id&quot;: &quot;&lt;s>&quot;, &quot;type_id&quot;: 0}}, {&quot;Sequence&quot;: {&quot;id&quot;: &quot;A&quot;, &quot;type_id&quot;: 0}}], &quot;pair&quot;: [{&quot;SpecialToken&quot;: {&quot;id&quot;: &quot;&lt;s>&quot;, &quot;type_id&quot;: 0}}, {&quot;Sequence&quot;: {&quot;id&quot;: &quot;A&quot;, &quot;type_id&quot;: 0}}, {&quot;SpecialToken&quot;: {&quot;id&quot;: &quot;&lt;s>&quot;, &quot;type_id&quot;: 1}}, {&quot;Sequence&quot;: {&quot;id&quot;: &quot;B&quot;, &quot;type_id&quot;: 1}}], &quot;special_tokens&quot;: {&quot;&lt;s>&quot;: {&quot;id&quot;: &quot;&lt;s>&quot;, &quot;ids&quot;: [1], &quot;tokens&quot;: [&quot;&lt;s>&quot;]}}}" />
808
+ <original_tokenizer_class value="&lt;class 'transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast'>" />
809
+ <pad_token_id value="2" />
810
+ <processed_post_processor_template value="{&quot;single&quot;: {&quot;ids&quot;: [1, -1], &quot;type_ids&quot;: [0, 0]}, &quot;pair&quot;: {&quot;ids&quot;: [1, -1, 1, -2], &quot;type_ids&quot;: [0, 0, 1, 1]}}" />
811
+ <sentencepiece_version value="0.2.1" />
812
+ <skip_special_tokens value="True" />
813
+ <streaming_detokenizer value="False" />
814
+ <tiktoken_version value="0.9.0" />
815
+ <tokenizer_output_type value="i64" />
816
+ <tokenizers_version value="0.21.4" />
817
+ <transformers_version value="4.51.3" />
818
+ <use_max_padding value="False" />
819
+ <use_sentencepiece_backend value="False" />
820
+ <utf8_replace_mode value="replace" />
821
+ <with_detokenizer value="True" />
822
+ </rt_info>
823
+ </net>
openvino_vision_embeddings_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b5548e5312c07d73d2359e3b9ecf8ddc87bd9e364a3d8b15eaf1ad0f72302c1
3
+ size 330795428
openvino_vision_embeddings_model.xml ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": {
3
+ "height": 448,
4
+ "width": 448
5
+ },
6
+ "do_center_crop": true,
7
+ "do_convert_rgb": true,
8
+ "do_normalize": true,
9
+ "do_rescale": true,
10
+ "do_resize": true,
11
+ "image_mean": [
12
+ 0.485,
13
+ 0.456,
14
+ 0.406
15
+ ],
16
+ "image_processor_type": "CLIPImageProcessor",
17
+ "image_std": [
18
+ 0.229,
19
+ 0.224,
20
+ 0.225
21
+ ],
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "shortest_edge": 448
26
+ }
27
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<img>",
4
+ "</img>",
5
+ "<IMG_CONTEXT>",
6
+ "<quad>",
7
+ "</quad>",
8
+ "<ref>",
9
+ "</ref>",
10
+ "<box>",
11
+ "</box>"
12
+ ],
13
+ "bos_token": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "eos_token": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": true,
25
+ "single_word": false
26
+ },
27
+ "pad_token": {
28
+ "content": "</s>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": true,
32
+ "single_word": false
33
+ },
34
+ "unk_token": {
35
+ "content": "<unk>",
36
+ "lstrip": false,
37
+ "normalized": false,
38
+ "rstrip": false,
39
+ "single_word": false
40
+ }
41
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "32000": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|assistant|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "<|placeholder1|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<|placeholder2|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<|placeholder3|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "32005": {
71
+ "content": "<|placeholder4|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "32006": {
79
+ "content": "<|system|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "32007": {
87
+ "content": "<|end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": true,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "32008": {
95
+ "content": "<|placeholder5|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "32009": {
103
+ "content": "<|placeholder6|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": true,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "32010": {
111
+ "content": "<|user|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": true,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "32011": {
119
+ "content": "<img>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": true
125
+ },
126
+ "32012": {
127
+ "content": "</img>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": true
133
+ },
134
+ "32013": {
135
+ "content": "<IMG_CONTEXT>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": true
141
+ },
142
+ "32014": {
143
+ "content": "<quad>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": true
149
+ },
150
+ "32015": {
151
+ "content": "</quad>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": true
157
+ },
158
+ "32016": {
159
+ "content": "<ref>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": true
165
+ },
166
+ "32017": {
167
+ "content": "</ref>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": true
173
+ },
174
+ "32018": {
175
+ "content": "<box>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": true
181
+ },
182
+ "32019": {
183
+ "content": "</box>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": true
189
+ }
190
+ },
191
+ "additional_special_tokens": [
192
+ "<img>",
193
+ "</img>",
194
+ "<IMG_CONTEXT>",
195
+ "<quad>",
196
+ "</quad>",
197
+ "<ref>",
198
+ "</ref>",
199
+ "<box>",
200
+ "</box>"
201
+ ],
202
+ "bos_token": "<s>",
203
+ "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') %}{{'<|user|>' + '\n' + message['content'] + '<|end|>' + '\n' + '<|assistant|>' + '\n'}}{% elif (message['role'] == 'assistant') %}{{message['content'] + '<|end|>' + '\n'}}{% endif %}{% endfor %}",
204
+ "clean_up_tokenization_spaces": false,
205
+ "eos_token": "</s>",
206
+ "extra_special_tokens": {},
207
+ "legacy": false,
208
+ "model_max_length": 8192,
209
+ "pad_token": "</s>",
210
+ "sp_model_kwargs": {},
211
+ "spaces_between_special_tokens": false,
212
+ "tokenizer_class": "LlamaTokenizer",
213
+ "unk_token": "<unk>",
214
+ "use_default_system_prompt": false
215
+ }