Add new SentenceTransformer model
Browse files- README.md +0 -0
- config.json +1 -4
- config_sentence_transformers.json +13 -0
- modules.json +8 -0
- sentence_bert_config.json +1 -0
- sentence_transformers_impl.py +156 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +55 -0
- vocab.txt +0 -0
README.md
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
config.json
CHANGED
|
@@ -6,7 +6,7 @@
|
|
| 6 |
],
|
| 7 |
"attn_implementation": null,
|
| 8 |
"auto_map": {
|
| 9 |
-
"AutoConfig": "misc.ContextualModelConfig",
|
| 10 |
"AutoModel": "jxm/cde-small-v1--model.DatasetTransformer"
|
| 11 |
},
|
| 12 |
"biencoder_pooling_strategy": "mean",
|
|
@@ -14,17 +14,14 @@
|
|
| 14 |
"config_name": null,
|
| 15 |
"disable_dropout": true,
|
| 16 |
"disable_transductive_rotary_embedding": true,
|
| 17 |
-
"document_prompt": "search_document: ",
|
| 18 |
"embedder": "nomic-ai/nomic-bert-2048",
|
| 19 |
"embedder_rerank": "sentence-transformers/gtr-t5-base",
|
| 20 |
"embedding_output_dim": null,
|
| 21 |
-
"embedding_size": 768,
|
| 22 |
"limit_layers": null,
|
| 23 |
"limit_layers_first_stage": null,
|
| 24 |
"logit_scale": 50.0,
|
| 25 |
"max_seq_length": 512,
|
| 26 |
"model_revision": "main",
|
| 27 |
-
"query_prompt": "search_query: ",
|
| 28 |
"tokenizer_name": null,
|
| 29 |
"torch_dtype": "float32",
|
| 30 |
"transductive_corpus_size": 512,
|
|
|
|
| 6 |
],
|
| 7 |
"attn_implementation": null,
|
| 8 |
"auto_map": {
|
| 9 |
+
"AutoConfig": "jxm/cde-small-v1--misc.ContextualModelConfig",
|
| 10 |
"AutoModel": "jxm/cde-small-v1--model.DatasetTransformer"
|
| 11 |
},
|
| 12 |
"biencoder_pooling_strategy": "mean",
|
|
|
|
| 14 |
"config_name": null,
|
| 15 |
"disable_dropout": true,
|
| 16 |
"disable_transductive_rotary_embedding": true,
|
|
|
|
| 17 |
"embedder": "nomic-ai/nomic-bert-2048",
|
| 18 |
"embedder_rerank": "sentence-transformers/gtr-t5-base",
|
| 19 |
"embedding_output_dim": null,
|
|
|
|
| 20 |
"limit_layers": null,
|
| 21 |
"limit_layers_first_stage": null,
|
| 22 |
"logit_scale": 50.0,
|
| 23 |
"max_seq_length": 512,
|
| 24 |
"model_revision": "main",
|
|
|
|
| 25 |
"tokenizer_name": null,
|
| 26 |
"torch_dtype": "float32",
|
| 27 |
"transductive_corpus_size": 512,
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.2.1",
|
| 4 |
+
"transformers": "4.46.0",
|
| 5 |
+
"pytorch": "2.5.0"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {
|
| 8 |
+
"query": "search_query: ",
|
| 9 |
+
"document": "search_document: "
|
| 10 |
+
},
|
| 11 |
+
"default_prompt_name": null,
|
| 12 |
+
"similarity_fn_name": "cosine"
|
| 13 |
+
}
|
modules.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers_impl.Transformer"
|
| 7 |
+
}
|
| 8 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{}
|
sentence_transformers_impl.py
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import json
|
| 4 |
+
import logging
|
| 5 |
+
import os
|
| 6 |
+
from typing import Any, Optional
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
from torch import nn
|
| 10 |
+
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
| 11 |
+
|
| 12 |
+
logger = logging.getLogger(__name__)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class Transformer(nn.Module):
|
| 16 |
+
"""Hugging Face AutoModel to generate token embeddings.
|
| 17 |
+
Loads the correct class, e.g. BERT / RoBERTa etc.
|
| 18 |
+
|
| 19 |
+
Args:
|
| 20 |
+
model_name_or_path: Hugging Face models name
|
| 21 |
+
(https://huggingface.co/models)
|
| 22 |
+
max_seq_length: Truncate any inputs longer than max_seq_length
|
| 23 |
+
model_args: Keyword arguments passed to the Hugging Face
|
| 24 |
+
Transformers model
|
| 25 |
+
tokenizer_args: Keyword arguments passed to the Hugging Face
|
| 26 |
+
Transformers tokenizer
|
| 27 |
+
config_args: Keyword arguments passed to the Hugging Face
|
| 28 |
+
Transformers config
|
| 29 |
+
cache_dir: Cache dir for Hugging Face Transformers to store/load
|
| 30 |
+
models
|
| 31 |
+
do_lower_case: If true, lowercases the input (independent if the
|
| 32 |
+
model is cased or not)
|
| 33 |
+
tokenizer_name_or_path: Name or path of the tokenizer. When
|
| 34 |
+
None, then model_name_or_path is used
|
| 35 |
+
backend: Backend used for model inference. Can be `torch`, `onnx`,
|
| 36 |
+
or `openvino`. Default is `torch`.
|
| 37 |
+
"""
|
| 38 |
+
|
| 39 |
+
save_in_root: bool = True
|
| 40 |
+
|
| 41 |
+
def __init__(
|
| 42 |
+
self,
|
| 43 |
+
model_name_or_path: str,
|
| 44 |
+
model_args: dict[str, Any] | None = None,
|
| 45 |
+
tokenizer_args: dict[str, Any] | None = None,
|
| 46 |
+
config_args: dict[str, Any] | None = None,
|
| 47 |
+
cache_dir: str | None = None,
|
| 48 |
+
**kwargs,
|
| 49 |
+
) -> None:
|
| 50 |
+
super().__init__()
|
| 51 |
+
if model_args is None:
|
| 52 |
+
model_args = {}
|
| 53 |
+
if tokenizer_args is None:
|
| 54 |
+
tokenizer_args = {}
|
| 55 |
+
if config_args is None:
|
| 56 |
+
config_args = {}
|
| 57 |
+
|
| 58 |
+
if not model_args.get("trust_remote_code", False):
|
| 59 |
+
raise ValueError(
|
| 60 |
+
"You need to set `trust_remote_code=True` to load this model."
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
self.config = AutoConfig.from_pretrained(model_name_or_path, **config_args, cache_dir=cache_dir)
|
| 64 |
+
self.auto_model = AutoModel.from_pretrained(model_name_or_path, config=self.config, cache_dir=cache_dir, **model_args)
|
| 65 |
+
|
| 66 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 67 |
+
"bert-base-uncased",
|
| 68 |
+
cache_dir=cache_dir,
|
| 69 |
+
**tokenizer_args,
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
def __repr__(self) -> str:
|
| 73 |
+
return f"Transformer({self.get_config_dict()}) with Transformer model: {self.auto_model.__class__.__name__} "
|
| 74 |
+
|
| 75 |
+
def forward(self, features: dict[str, torch.Tensor], dataset_embeddings: Optional[torch.Tensor] = None, **kwargs) -> dict[str, torch.Tensor]:
|
| 76 |
+
"""Returns token_embeddings, cls_token"""
|
| 77 |
+
# If we don't have embeddings, then run the 1st stage model.
|
| 78 |
+
# If we do, then run the 2nd stage model.
|
| 79 |
+
if dataset_embeddings is None:
|
| 80 |
+
sentence_embedding = self.auto_model.first_stage_model(
|
| 81 |
+
input_ids=features["input_ids"],
|
| 82 |
+
attention_mask=features["attention_mask"],
|
| 83 |
+
)
|
| 84 |
+
else:
|
| 85 |
+
sentence_embedding = self.auto_model.second_stage_model(
|
| 86 |
+
input_ids=features["input_ids"],
|
| 87 |
+
attention_mask=features["attention_mask"],
|
| 88 |
+
dataset_embeddings=dataset_embeddings,
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
features["sentence_embedding"] = sentence_embedding
|
| 92 |
+
return features
|
| 93 |
+
|
| 94 |
+
def get_word_embedding_dimension(self) -> int:
|
| 95 |
+
return self.auto_model.config.hidden_size
|
| 96 |
+
|
| 97 |
+
def tokenize(
|
| 98 |
+
self, texts: list[str] | list[dict] | list[tuple[str, str]], padding: str | bool = True
|
| 99 |
+
) -> dict[str, torch.Tensor]:
|
| 100 |
+
"""Tokenizes a text and maps tokens to token-ids"""
|
| 101 |
+
output = {}
|
| 102 |
+
if isinstance(texts[0], str):
|
| 103 |
+
to_tokenize = [texts]
|
| 104 |
+
elif isinstance(texts[0], dict):
|
| 105 |
+
to_tokenize = []
|
| 106 |
+
output["text_keys"] = []
|
| 107 |
+
for lookup in texts:
|
| 108 |
+
text_key, text = next(iter(lookup.items()))
|
| 109 |
+
to_tokenize.append(text)
|
| 110 |
+
output["text_keys"].append(text_key)
|
| 111 |
+
to_tokenize = [to_tokenize]
|
| 112 |
+
else:
|
| 113 |
+
batch1, batch2 = [], []
|
| 114 |
+
for text_tuple in texts:
|
| 115 |
+
batch1.append(text_tuple[0])
|
| 116 |
+
batch2.append(text_tuple[1])
|
| 117 |
+
to_tokenize = [batch1, batch2]
|
| 118 |
+
|
| 119 |
+
max_seq_length = self.config.max_seq_length
|
| 120 |
+
output.update(
|
| 121 |
+
self.tokenizer(
|
| 122 |
+
*to_tokenize,
|
| 123 |
+
padding=padding,
|
| 124 |
+
truncation="longest_first",
|
| 125 |
+
return_tensors="pt",
|
| 126 |
+
max_length=max_seq_length,
|
| 127 |
+
)
|
| 128 |
+
)
|
| 129 |
+
return output
|
| 130 |
+
|
| 131 |
+
def get_config_dict(self) -> dict[str, Any]:
|
| 132 |
+
return {}
|
| 133 |
+
|
| 134 |
+
def save(self, output_path: str, safe_serialization: bool = True) -> None:
|
| 135 |
+
self.auto_model.save_pretrained(output_path, safe_serialization=safe_serialization)
|
| 136 |
+
self.tokenizer.save_pretrained(output_path)
|
| 137 |
+
|
| 138 |
+
with open(os.path.join(output_path, "sentence_bert_config.json"), "w") as fOut:
|
| 139 |
+
json.dump(self.get_config_dict(), fOut, indent=2)
|
| 140 |
+
|
| 141 |
+
@classmethod
|
| 142 |
+
def load(cls, input_path: str) -> Transformer:
|
| 143 |
+
sbert_config_path = os.path.join(input_path, "sentence_bert_config.json")
|
| 144 |
+
if not os.path.exists(sbert_config_path):
|
| 145 |
+
return cls(model_name_or_path=input_path)
|
| 146 |
+
|
| 147 |
+
with open(sbert_config_path) as fIn:
|
| 148 |
+
config = json.load(fIn)
|
| 149 |
+
# Don't allow configs to set trust_remote_code
|
| 150 |
+
if "model_args" in config and "trust_remote_code" in config["model_args"]:
|
| 151 |
+
config["model_args"].pop("trust_remote_code")
|
| 152 |
+
if "tokenizer_args" in config and "trust_remote_code" in config["tokenizer_args"]:
|
| 153 |
+
config["tokenizer_args"].pop("trust_remote_code")
|
| 154 |
+
if "config_args" in config and "trust_remote_code" in config["config_args"]:
|
| 155 |
+
config["config_args"].pop("trust_remote_code")
|
| 156 |
+
return cls(model_name_or_path=input_path, **config)
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": false,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_lower_case": true,
|
| 47 |
+
"mask_token": "[MASK]",
|
| 48 |
+
"model_max_length": 512,
|
| 49 |
+
"pad_token": "[PAD]",
|
| 50 |
+
"sep_token": "[SEP]",
|
| 51 |
+
"strip_accents": null,
|
| 52 |
+
"tokenize_chinese_chars": true,
|
| 53 |
+
"tokenizer_class": "BertTokenizer",
|
| 54 |
+
"unk_token": "[UNK]"
|
| 55 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|