--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-7B tags: - axolotl - generated_from_trainer datasets: - Aratako/Magpie-Tanuki-8B-annotated-96k model-index: - name: custom_model_name results: [] --- ```python from peft import PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig base_model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen2.5-7B", quantization_config=BitsAndBytesConfig( load_in_4bit=True, ), ) model = PeftModel.from_pretrained(base_model, "OsakanaTeishoku/Qwen2.5-7B-axolotl-sft-v0.1") tokenizer = AutoTokenizer.from_pretrained("OsakanaTeishoku/Qwen2.5-7B-axolotl-sft-v0.1") from transformers import TextStreamer streamer = TextStreamer( tokenizer, skip_prompt=False, skip_special_tokens=False, ) prompt = "あなたは何者ですか" messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512, streamer=streamer, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id, ) ``` [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.0` ```yaml base_model: Qwen/Qwen2.5-7B hub_model_id: OsakanaTeishoku/custom_model_name load_in_8bit: false load_in_4bit: true strict: false chat_template: qwen_25 datasets: # This will be the path used for the data when it is saved to the Volume in the cloud. - path: Aratako/Magpie-Tanuki-8B-annotated-96k split: train[0:4000] type: chat_template field_messages: messages dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: ./lora-out sequence_len: 2048 sample_packing: false eval_sample_packing: false pad_to_sequence_len: false adapter: qlora lora_model_dir: lora_r: 16 lora_alpha: 32 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_modules_to_save: # required when adding new tokens to LLaMA/Mistral - embed_tokens - lm_head gradient_accumulation_steps: 1 micro_batch_size: 16 num_epochs: 1 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.0001 bf16: auto fp16: false tf32: false train_on_inputs: false group_by_length: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 save_steps: debug: deepspeed: /workspace/axolotl/deepspeed_configs/zero2.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: eos_token: "<|im_end|>" plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_glu_activation: true liger_layer_norm: true liger_fused_linear_cross_entropy: true eval_strategy: "no" save_strategy: "epoch" ```

# custom_model_name This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the Aratako/Magpie-Tanuki-8B-annotated-96k dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1.0 ### Training results ### Framework versions - PEFT 0.15.1 - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1