File size: 1,826 Bytes
3361e8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8b7eb9
 
3361e8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8b7eb9
3361e8a
 
 
 
 
 
b8b7eb9
 
 
 
 
3361e8a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: my_awesome_video_cls_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_awesome_video_cls_model

This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2959
- Accuracy: 0.9286

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 1500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5753        | 0.2   | 300  | 1.1989          | 0.6      |
| 0.3582        | 1.2   | 600  | 1.1520          | 0.7143   |
| 0.0122        | 2.2   | 900  | 0.2965          | 0.9286   |
| 0.0021        | 3.2   | 1200 | 0.1458          | 0.9429   |
| 0.0021        | 4.2   | 1500 | 0.2959          | 0.9286   |


### Framework versions

- Transformers 4.55.2
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4