PJEDeveloper commited on
Commit
8e7e569
·
verified ·
1 Parent(s): 5a8039f

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +229 -155
README.md CHANGED
@@ -1,199 +1,273 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
10
 
 
11
 
12
- ## Model Details
 
 
 
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
 
131
- #### Summary
132
 
 
 
 
 
 
 
 
 
 
133
 
 
134
 
135
- ## Model Examination [optional]
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
 
 
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
 
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
 
 
 
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
 
162
 
163
- #### Hardware
 
164
 
165
- [More Information Needed]
 
 
 
 
 
166
 
167
- #### Software
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
 
 
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
 
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - mistral
5
+ - instruct
6
+ - quantization
7
+ - 4bit
8
+ - bitsandbytes
9
+ - causal-lm
10
  ---
11
 
12
+ # 4bit Quantized Model: Mistral-7B-Instruct-v0.3
13
 
14
+ This is a 4bit quantized variant of [mistralai/Mistral-7B-Instruct-v0.3](https://https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3), optimized to reduce memory footprint and accelerate inference while maintaining high output similarity.
15
 
16
 
17
+ ## Overview
18
 
19
+ Mistral-7B-Instruct-v0.3 is an instruction fine-tuned model derived from Mistral-7B-v0.3, featuring:
20
+ - An extended 32,768 token vocabulary.
21
+ - Support for v3 tokenizer.
22
+ - Built-in function calling capabilities.
23
 
24
+ This quantized checkpoint was produced with [BitsAndBytes](https://github.com/bitsandbytes-foundation/bitsandbytes) and evaluated using standard text similarity metrics.
25
 
26
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
+ ## Model Architecture
29
 
30
+ | Attribute | Value |
31
+ |-------------------------|--------------------------------|
32
+ | **Model class** | MistralForCausalLM |
33
+ | **Number of parameters**| 3,758,362,624 |
34
+ | **Hidden size** | 4096 |
35
+ | **Number of layers** | 32 |
36
+ | **Attention heads** | 32 |
37
+ | **Vocabulary size** | 32768 |
38
+ | **Compute dtype** | torch.bfloat16 |
39
 
40
+ ---
41
 
42
+ ## Quantization Configuration
43
 
44
+ The following configuration dictionary was used during quantization:
45
 
46
+ ```json
47
+ {'quant_method': <QuantizationMethod.BITS_AND_BYTES: 'bitsandbytes'>, '_load_in_8bit': False, '_load_in_4bit': True, 'llm_int8_threshold': 6.0, 'llm_int8_skip_modules': None, 'llm_int8_enable_fp32_cpu_offload': False, 'llm_int8_has_fp16_weight': False, 'bnb_4bit_quant_type': 'fp4', 'bnb_4bit_use_double_quant': False, 'bnb_4bit_compute_dtype': 'bfloat16', 'bnb_4bit_quant_storage': 'uint8', 'load_in_4bit': True, 'load_in_8bit': False}
48
+ ```
49
 
50
+ ---
51
 
52
+ ## Intended Use
53
 
54
+ - Research and experimentation with instruction-following tasks.
55
+ - Demonstrations of quantized model capabilities in resource-constrained environments.
56
+ - Prototyping workflows requiring extended vocabulary and function calling support (v3 tokenizer).
57
 
 
 
 
 
 
58
 
59
+ ## Limitations
60
 
61
+ - May reproduce biases and factual inaccuracies present in the original model.
62
+ - This instruct variant does not include any moderation or safety guardrails by default.
63
+ - Quantization can reduce generation diversity and precision.
64
+ - Not intended for production without thorough evaluation and alignment testing.
65
 
 
66
 
67
+ ## Usage
68
 
69
+ ```python
70
+ from transformers import AutoTokenizer, AutoModelForCausalLM
71
 
72
+ tokenizer = AutoTokenizer.from_pretrained("PJEDeveloper/Mistral-7B-Instruct-v0.3-4bit-20250716_003938")
73
+ model = AutoModelForCausalLM.from_pretrained("PJEDeveloper/Mistral-7B-Instruct-v0.3-4bit-20250716_003938", device_map="auto")
74
 
75
+ prompt = "Explain the concept of reinforcement learning."
76
+ inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
77
+ outputs = model.generate(**inputs, max_new_tokens=256)
78
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
79
+ ```
80
+ ## Function Calling
81
 
82
+ For function calling workflows, please see the [Transformers Function Calling Guide](https://huggingface.co/docs/transformers/main/en/model_doc/mistral3#overview) and the original [Mistral examples](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3).
83
 
84
+ ---
85
 
86
+ Prompt Used for Evaluation
87
+
88
+ ```text
89
+ You are an expert assistant helping a user plan a themed event.
90
+
91
+ Please complete the following tasks:
92
+
93
+ Event Summary: Write a concise paragraph (3-5 sentences) describing a steampunk-themed anniversary party in a unique style, incorporating at least two uncommon English words from the extended vocabulary (for example, pulchritudinous, vicissitude, susurration, ephemeral, etc.).
94
+
95
+ Guest List JSON: Create a JSON array listing five fictional guests, each with the following fields:
96
+
97
+ "name": A full name.
98
+
99
+ "role": e.g., "Inventor", "Airship Captain".
100
+
101
+ "special_item": A unique steampunk artifact.
102
+
103
+ Checklist Function Call: Format the following checklist as a function call named create_event_checklist with a single argument items, which should be a list of strings. The checklist items are:
104
+
105
+ "Order brass goggles"
106
+
107
+ "Prepare mechanical owl centerpiece"
108
+
109
+ "Send invitations"
110
+
111
+ "Arrange clockwork music ensemble"
112
+
113
+ "Book airship docking slot"
114
+
115
+ Respond in three sections labeled Event Summary, Guest List JSON, and Checklist Function Call.
116
+
117
+ Make sure all JSON is properly formatted and the function call syntax is valid.
118
+ ```
119
+
120
+ Reference Output (Full-weight Model)
121
+
122
+ ```text
123
+ Event Summary:
124
+ Amidst the ephemeral whimsy of a gaslit evening, the anniversary of our esteemed society shall be celebrated in a grand Steampunk extravaganza. The Victorian-esque manor, adorned with intricate brass machinery and gears, shall echo with the susurration of time's relentless march, as we revel in the pulchritudinous splendor of our pulchritudinous past.
125
+
126
+ Guest List JSON:
127
+
128
+ json
129
+
130
+ [
131
+ {
132
+ "name": "Professor Archibald F. Brassbolt III",
133
+ "role": "Inventor",
134
+ "special_item": "Aether-infused Time-Turner"
135
+ },
136
+ {
137
+ "name": "Captain Amelia Cogsworth",
138
+ "role": "Airship Captain",
139
+ "special_item": "The Leviathan - a clockwork airship"
140
+ },
141
+ {
142
+ "name": "Lady Isabella Gearsby",
143
+ "role": "Society Matron",
144
+ "special_item": "A diamond-encrusted Steam-Pendulum"
145
+ },
146
+ {
147
+ "name": "Sir Percival Automaton",
148
+ "role": "Mechanical Knight",
149
+ "special_item": "A steam-powered automaton suit"
150
+ },
151
+ {
152
+ "name": "Dr. Eleanor Clockwork",
153
+ "role": "Mad Scientist",
154
+ "special_item": "A living, breathing steam-powered rose"
155
+ }
156
+ ]
157
+ Checklist Function Call:
158
+
159
+ python
160
+
161
+ def create_event_checklist(items):
162
+ return "\n".join(items)
163
+
164
+ checklist = create_event_checklist(["Order brass goggles", "Prepare mechanical owl centerpiece", "Send invitations", "Arrange clockwork music ensemble", "Book airship docking slot"])
165
+ With this checklist, we can ensure that our Steampunk anniversary party will be an unforgettable event, filled with the marvels of a bygone era.
166
+ ```
167
+
168
+ Quantized Model Output
169
+
170
+ ```text
171
+ ---
172
 
173
+ Event Summary:
174
+ In the heart of the industrial ether, where the air is thick with the scent of brass and steam, a grand celebration of marital vicissitude shall unfold. The ephemeral spectacle of a steampunk anniversary party shall be a veritable cornucopia of pulchritudinous contraptions, where the susurration of gears and the hiss of steam shall serenade the guests in a symphony of mechanical harmony.
175
+
176
+ Guest List JSON:
177
+ ```
178
+ [
179
+ {
180
+ "name": "Professor Abigail Edison-Smythe",
181
+ "role": "Inventor",
182
+ "special_item": "Aether-infused Tesla Coil"
183
+ },
184
+ {
185
+ "name": "Captain Amelia Brassbright",
186
+ "role": "Airship Captain",
187
+ "special_item": "Steampowered Parasol"
188
+ },
189
+ {
190
+ "name": "Lord Percival Cogsworth",
191
+ "role": "Steampunk Poet",
192
+ "special_item": "Mechanical Quill and Inkwell"
193
+ },
194
+ {
195
+ "name": "Miss Isabella Gearheart",
196
+ "role": "Steampunk Fashion Designer",
197
+ "special_item": "Steam-powered Dress with Built-in Fan"
198
+ },
199
+ {
200
+ "name": "Sir Archibald Clockwork",
201
+ "role": "Clockwork Mechanic",
202
+ "special_item": "Mechanical Hand with Built-in Compass"
203
+ }
204
+ ]
205
+ ```
206
+
207
+ Checklist Function Call:
208
+ ```
209
+ def create_event_checklist(items):
210
+ return "\n".join(items)
211
+
212
+ create_event_checklist(["Order brass goggles", "Prepare mechanical owl centerpiece", "Send invitations", "Arrange clockwork music ensemble", "Book airship docking slot"])
213
+ ```
214
+ ```
215
+
216
+ ## Evaluation Metrics
217
+
218
+ | Metric | Value |
219
+ |-------------------|---------|
220
+ | ROUGE-L F1 | 0.4581 |
221
+ | BLEU | 0.2442 |
222
+ | Cosine Similarity | 0.9141 |
223
+ | BERTScore F1 | 0.6955 |
224
+
225
+ - Higher ROUGE and BLEU scores indicate closer alignment with the original output.
226
+
227
+ Interpretation:
228
+ The quantized model output exhibits moderate similarity to the full-weight model.
229
+
230
+ Warning: The quantized output has 3 sentences, while the reference has 6. This may indicate structural divergence.
231
+
232
+ ## Generation Settings
233
+ This model produces best results when generated with:
234
+
235
+ ```python
236
+ max_new_tokens=1024,
237
+ do_sample=False,
238
+ temperature=0.3,
239
+ top_p=0.9,
240
+ pad_token_id=tokenizer.eos_token_id
241
+ ```
242
+
243
+ ## Model Files Metadata
244
+
245
+ | Filename | Size (bytes) | SHA-256 |
246
+ |--------------------|----------------|----------------------------------------------|
247
+ | `quant_config.txt` | 446 | `f7a08f6dc4b46a4803dce152c536ceed2ee802755840db11231fb5a895b2e022` |
248
 
 
249
 
250
+ ---
251
 
252
+ ## Notes
253
 
254
+ - Produced on 2025-07-16T00:43:52.476070.
255
+ - Quantized automatically using BitsAndBytes.
256
+ - Base model: mistralai/Mistral-7B-Instruct-v0.3 with extended 32,768-token vocabulary and function calling capabilities.
257
 
 
258
 
259
+ Intended primarily for research and experimentation.
260
 
261
+ ## Citation
262
 
263
+ [Mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3)
264
 
265
+ [Mistral 7B Announcement](https://mistral.ai/news/announcing-mistral-7b)
266
 
267
+ ## License
268
 
269
+ This model is distributed under the Apache 2.0 license, consistent with the original Mistral-7B-Instruct-v0.3.
270
 
271
+ ## Model Card Authors
272
+ This quantized model was prepared by PJEDeveloper.
273