--- base_model: ibm-granite/granite-3.1-3b-a800m-instruct license: apache-2.0 pipeline_tag: text-generation library_name: peft language: - en datasets: - BeaverAI/REDACTED1 - BeaverAI/REDACTED2 - BeaverAI/REDACTED3 - BeaverAI/REDACTED4 - BeaverAI/REDACTED5 - BeaverAI/REDACTED6 - PJMixers-Dev/Lit-axo-Shuffled - PJMixers-Dev/Mielikki_Erebus-87k-axo - PJMixers/RyokoAI_Honeyfeed3600-Cleanish - PJMixers-Dev/allura-org_fujin-cleaned-stage-2-axo - Nelathan/synthetic-sugar-quill - PJMixers-Dev/winglian_visual-novels-json-axo-dropped-long - PJMixers-Dev/recursal_SCP-RECURSAL-Cleaned - PJMixers-Dev/Subtitles - PJMixers-Dev/KaraKaraWitch_AnimeSubtitle-axo - PJMixers/AP-News-2024 - PJMixers-Dev/Fundus-AP-News-Formatted - PJMixers-Dev/Fundus-AP-News-2-Formatted - PJMixers-Dev/goodwiki-2024-12-04-axo - epfl-llm/guidelines - PJMixers-Dev/allenai_tulu-3-sft-mixture-filtered-2-ShareGPT - OpenLeecher/lmsys_chat_1m_clean - PJMixers-Dev/Gryphe-Aesir-RPG-Charcards-Opus-Mixed - allura-org/gryphe-sonnet-3.5-charcards-names-added - anthracite-org/c2_logs_32k_llama3_qwen2_v1.3 - PJMixers-Dev/MinervaAI_Aesir-Preview-Anon - PJMixers-Dev/lemonilia_LimaRP-Simple-CustomShareGPT-Shuffled - Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned - PJMixers-Dev/NyxKrage_chub-logs-sharegpt-longest-CustomShareGPT - PJMixers/OpenLeecher_Teatime_all_logs_longest-ShareGPT - grimulkan/aicg-logs-augmented - grimulkan/PIPPA-augmented-dedup - PJMixers/grimulkan_bluemoon_Karen_cleaned-carded-formatted - PJMixers/lodrick-the-lafted_OpusStories-ShareGPT - Gryphe/ChatGPT-4o-Writing-Prompts - Gryphe/Opus-WritingPrompts - anthracite-org/nopm_claude_writing_fixed - PJMixers-Dev/Tiefighter-13B-Fake-Distill-ShareGPT - allura-org/fujin-instruct-v2 - ToastyPigeon/gutenberg-sft - PocketDoc/Dans-Prosemaxx-Adventure - PocketDoc/Dans-Failuremaxx-Adventure-3 - TheDrummer/AmoralQA-v2 --- # Granite-3.1-Earthen-v0.3-3B-A800M-QLoRA [`ibm-granite/granite-3.1-3b-a800m-instruct`](https://huggingface.co/ibm-granite/granite-3.1-3b-a800m-instruct) was trained at 8K with batch size 2 gradient accumulation 8, so each step was 131,072 tokens (including any padding tokens). It was trained for 400 steps, adding up to a total of 52,428,800 unique tokens seen. This is a small test run. A larger version is planned. ## Quants - [GGUF](https://huggingface.co/PJMixers-Dev/Granite-3.1-Earthen-v0.3-3B-A800M-GGUF) ## Prompt Format This model uses Granite-3.1 Instruct format. ``` <|start_of_role|>system<|end_of_role|>example system prompt<|end_of_text|> <|start_of_role|>user<|end_of_role|>example user turn 1<|end_of_text|> <|start_of_role|>assistant<|end_of_role|>example assistant turn 1<|end_of_text|> <|start_of_role|>user<|end_of_role|>example user turn 2<|end_of_text|> <|start_of_role|>assistant<|end_of_role|>example assistant turn 2<|end_of_text|> ``` ## Training Details [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl) ```yaml # Requirements before running # - Get latest commit of axolotl (currently c0a0c75) # - Download these to axolotl/src/axolotl/prompt_formatters # - https://github.com/xzuyn/axolotl/blob/came-plus-formatters/src/axolotl/prompt_strategies/formatter_regex.py # - https://github.com/xzuyn/axolotl/blob/came-plus-formatters/src/axolotl/prompt_strategies/customcompletion-regex.py # - https://github.com/xzuyn/axolotl/blob/came-plus-formatters/src/axolotl/prompt_strategies/customgranite-regex.py # - pip install ftfy # - pip install git+https://github.com/xzuyn/CAME.git@sr-grams-cautious-8bit # Weights and Biases logging config wandb_project: Granite-3.1-3B-A800M wandb_name: Granite-3.1-Earthen-v0.3-3B-A800M-QLoRA-run4 # Model checkpointing config output_dir: ./Outputs/Granite-3.1-Earthen-v0.3-3B-A800M-QLoRA-run4 resume_from_checkpoint: save_steps: 10 save_safetensors: true save_total_limit: 2 save_only_model: false # Model architecture config base_model: ibm-granite/granite-3.1-3b-a800m-instruct model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer # Mixed precision training config bf16: true fp16: false tf32: false # Model loading config load_in_8bit: false load_in_4bit: true strict: false # Sequence config sequence_len: 8192 min_sample_len: 256 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true train_on_inputs: false group_by_length: false # LoRA adapter config adapter: qlora lora_r: 128 lora_alpha: 128 lora_dropout: 0.125 lora_target_linear: true embeddings_skip_upcast: true # Dataset config datasets: # Completion # Story-like Data - path: BeaverAI/REDACTED1 split: train[:4000] type: customcompletion-regex - path: PJMixers-Dev/Lit-axo-Shuffled split: train[:4000] type: customcompletion-regex - path: PJMixers-Dev/Mielikki_Erebus-87k-axo split: train[:4000] type: customcompletion-regex - path: PJMixers/RyokoAI_Honeyfeed3600-Cleanish split: train[:4000] type: customcompletion-regex - path: BeaverAI/REDACTED2 type: customcompletion-regex - path: PJMixers-Dev/allura-org_fujin-cleaned-stage-2-axo split: train[:4000] type: customcompletion-regex - path: Nelathan/synthetic-sugar-quill split: train[:4000] type: customcompletion-regex - path: PJMixers-Dev/winglian_visual-novels-json-axo-dropped-long split: train[:4000] type: customcompletion-regex - path: BeaverAI/REDACTED3 type: customcompletion-regex - path: PJMixers-Dev/recursal_SCP-RECURSAL-Cleaned split: train[:4000] type: customcompletion-regex # Subtitle Data - path: PJMixers-Dev/Subtitles type: customcompletion-regex - path: PJMixers-Dev/KaraKaraWitch_AnimeSubtitle-axo split: train[:4000] type: customcompletion-regex # News Data - path: PJMixers/AP-News-2024 type: customcompletion-regex - path: PJMixers-Dev/Fundus-AP-News-Formatted split: train[:4000] type: customcompletion-regex - path: PJMixers-Dev/Fundus-AP-News-2-Formatted type: customcompletion-regex # Misc Data - path: PJMixers-Dev/goodwiki-2024-12-04-axo split: train[:4000] type: customcompletion-regex - path: epfl-llm/guidelines split: train[:4000] field: clean_text type: customcompletion-regex # Granite-3.1 Instruct # Instruction Data - path: PJMixers-Dev/allenai_tulu-3-sft-mixture-filtered-2-ShareGPT split: train[:4000] type: customgranite-regex - path: OpenLeecher/lmsys_chat_1m_clean split: train[:4000] type: customgranite-regex # RP Data - path: PJMixers-Dev/Gryphe-Aesir-RPG-Charcards-Opus-Mixed type: customgranite-regex - path: allura-org/gryphe-sonnet-3.5-charcards-names-added type: customgranite-regex - path: anthracite-org/c2_logs_32k_llama3_qwen2_v1.3 type: customgranite-regex - path: BeaverAI/REDACTED4 type: customgranite-regex - path: PJMixers-Dev/MinervaAI_Aesir-Preview-Anon type: customgranite-regex - path: PJMixers-Dev/lemonilia_LimaRP-Simple-CustomShareGPT-Shuffled type: customgranite-regex - path: Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned type: customgranite-regex - path: PJMixers-Dev/NyxKrage_chub-logs-sharegpt-longest-CustomShareGPT type: customgranite-regex - path: PJMixers/OpenLeecher_Teatime_all_logs_longest-ShareGPT type: customgranite-regex - path: grimulkan/aicg-logs-augmented type: customgranite-regex - path: grimulkan/PIPPA-augmented-dedup type: customgranite-regex - path: PJMixers/grimulkan_bluemoon_Karen_cleaned-carded-formatted type: customgranite-regex # InstStory Data - path: PJMixers/lodrick-the-lafted_OpusStories-ShareGPT type: customgranite-regex - path: Gryphe/ChatGPT-4o-Writing-Prompts type: customgranite-regex - path: Gryphe/Opus-WritingPrompts type: customgranite-regex - path: anthracite-org/nopm_claude_writing_fixed type: customgranite-regex - path: PJMixers-Dev/Tiefighter-13B-Fake-Distill-ShareGPT type: customgranite-regex - path: allura-org/fujin-instruct-v2 type: customgranite-regex - path: ToastyPigeon/gutenberg-sft type: customgranite-regex # Adventure Data - path: PocketDoc/Dans-Prosemaxx-Adventure type: customgranite-regex - path: PocketDoc/Dans-Failuremaxx-Adventure-3 type: customgranite-regex # Decensoring Data - path: TheDrummer/AmoralQA-v2 type: customgranite-regex - path: BeaverAI/REDACTED5 type: customgranite-regex - path: BeaverAI/REDACTED6 type: customgranite-regex val_set_size: 256 eval_strategy: steps eval_steps: 10 dataset_prepared_path: ./00-Tokenized-Datasets/Granite-3.1-Earthen-v0.3-3B-A800M-LoRA-seed42 shuffle_merged_datasets: true # Training hyperparameters num_epochs: 1 gradient_accumulation_steps: 8 micro_batch_size: 2 eval_batch_size: 2 warmup_steps: 0 optimizer: came_pytorch optim_args: enable_stochastic_rounding: true enable_cautious: true enable_8bit: true lr_scheduler: rex learning_rate: 2.5e-7 cosine_min_lr_ratio: 0.05 weight_decay: 0.01 max_grad_norm: 0.5 logging_steps: 1 # Model optimization gradient_checkpointing: offload sdp_attention: true plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_layer_norm: true liger_glu_activation: true liger_cross_entropy: true lora_mlp_kernel: false lora_qkv_kernel: false lora_o_kernel: false # Debug config debug: true seed: 42 # Token config special_tokens: bos_token: "<|end_of_text|>" eos_token: "<|end_of_text|>" pad_token: "<|end_of_text|>" tokens: ``` ## Citations
Show Citations ```bib @misc{wolf2020huggingfacestransformersstateoftheartnatural, title={HuggingFace's Transformers: State-of-the-art Natural Language Processing}, author={Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush}, year={2020}, eprint={1910.03771}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/1910.03771}, } @misc{hu2021loralowrankadaptationlarge, title={LoRA: Low-Rank Adaptation of Large Language Models}, author={Edward J. Hu and Yelong Shen and Phillip Wallis and Zeyuan Allen-Zhu and Yuanzhi Li and Shean Wang and Lu Wang and Weizhu Chen}, year={2021}, eprint={2106.09685}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2106.09685}, } @misc{dettmers2023qloraefficientfinetuningquantized, title={QLoRA: Efficient Finetuning of Quantized LLMs}, author={Tim Dettmers and Artidoro Pagnoni and Ari Holtzman and Luke Zettlemoyer}, year={2023}, eprint={2305.14314}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2305.14314}, } @misc{dao2023flashattention2fasterattentionbetter, title={FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning}, author={Tri Dao}, year={2023}, eprint={2307.08691}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2307.08691}, } @misc{hsu2024ligerkernelefficienttriton, title={Liger Kernel: Efficient Triton Kernels for LLM Training}, author={Pin-Lun Hsu and Yun Dai and Vignesh Kothapalli and Qingquan Song and Shao Tang and Siyu Zhu and Steven Shimizu and Shivam Sahni and Haowen Ning and Yanning Chen}, year={2024}, eprint={2410.10989}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2410.10989}, } @misc{chen2021rexrevisitingbudgetedtraining, title={REX: Revisiting Budgeted Training with an Improved Schedule}, author={John Chen and Cameron Wolfe and Anastasios Kyrillidis}, year={2021}, eprint={2107.04197}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2107.04197}, } @misc{luo2023cameconfidenceguidedadaptivememory, title={CAME: Confidence-guided Adaptive Memory Efficient Optimization}, author={Yang Luo and Xiaozhe Ren and Zangwei Zheng and Zhuo Jiang and Xin Jiang and Yang You}, year={2023}, eprint={2307.02047}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2307.02047}, } @misc{zamirai2021revisitingbfloat16training, title={Revisiting BFloat16 Training}, author={Pedram Zamirai and Jian Zhang and Christopher R. Aberger and Christopher De Sa}, year={2021}, eprint={2010.06192}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2010.06192}, } @misc{liang2025cautiousoptimizersimprovingtraining, title={Cautious Optimizers: Improving Training with One Line of Code}, author={Kaizhao Liang and Lizhang Chen and Bo Liu and Qiang Liu}, year={2025}, eprint={2411.16085}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2411.16085}, } @misc{xie2025sana15efficientscaling, title={SANA 1.5: Efficient Scaling of Training-Time and Inference-Time Compute in Linear Diffusion Transformer}, author={Enze Xie and Junsong Chen and Yuyang Zhao and Jincheng Yu and Ligeng Zhu and Chengyue Wu and Yujun Lin and Zhekai Zhang and Muyang Li and Junyu Chen and Han Cai and Bingchen Liu and Daquan Zhou and Song Han}, year={2025}, eprint={2501.18427}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2501.18427}, } @misc{dallabetta2024fundussimpletousenewsscraper, title={Fundus: A Simple-to-Use News Scraper Optimized for High Quality Extractions}, author={Max Dallabetta and Conrad Dobberstein and Adrian Breiding and Alan Akbik}, year={2024}, eprint={2403.15279}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2403.15279}, } @misc{lambert2025tulu3pushingfrontiers, title={Tulu 3: Pushing Frontiers in Open Language Model Post-Training}, author={Nathan Lambert and Jacob Morrison and Valentina Pyatkin and Shengyi Huang and Hamish Ivison and Faeze Brahman and Lester James V. Miranda and Alisa Liu and Nouha Dziri and Shane Lyu and Yuling Gu and Saumya Malik and Victoria Graf and Jena D. Hwang and Jiangjiang Yang and Ronan Le Bras and Oyvind Tafjord and Chris Wilhelm and Luca Soldaini and Noah A. Smith and Yizhong Wang and Pradeep Dasigi and Hannaneh Hajishirzi}, year={2025}, eprint={2411.15124}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2411.15124}, } @misc{zheng2024lmsyschat1mlargescalerealworldllm, title={LMSYS-Chat-1M: A Large-Scale Real-World LLM Conversation Dataset}, author={Lianmin Zheng and Wei-Lin Chiang and Ying Sheng and Tianle Li and Siyuan Zhuang and Zhanghao Wu and Yonghao Zhuang and Zhuohan Li and Zi Lin and Eric P. Xing and Joseph E. Gonzalez and Ion Stoica and Hao Zhang}, year={2024}, eprint={2309.11998}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2309.11998}, } @misc{gosling2023pippapartiallysyntheticconversational, title={PIPPA: A Partially Synthetic Conversational Dataset}, author={Tear Gosling and Alpin Dale and Yinhe Zheng}, year={2023}, eprint={2308.05884}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2308.05884}, } ```