+ deepspeed --master_port 49734 --module safe_rlhf.finetune --train_datasets inverse-json::/home/hansirui_1st/jiayi/resist/imdb_data/train/pos/5000/train.json --model_name_or_path /aifs4su/hansirui_1st/models/Qwen1.5-0.5B --max_length 512 --trust_remote_code True --epochs 1 --per_device_train_batch_size 1 --per_device_eval_batch_size 4 --gradient_accumulation_steps 8 --gradient_checkpointing --learning_rate 1e-5 --lr_warmup_ratio 0 --weight_decay 0.0 --lr_scheduler_type constant --weight_decay 0.0 --seed 42 --output_dir /aifs4su/hansirui_1st/jiayi/setting3-imdb/Qwen1.5-0.5B/Qwen1.5-0.5B-s3-Q1-5000 --log_type wandb --log_run_name imdb-Qwen1.5-0.5B-s3-Q1-5000 --log_project Inverse_Alignment_IMDb --zero_stage 3 --offload none --bf16 True --tf32 True --save_16bit nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used nvcc warning : incompatible redefinition for option 'compiler-bindir', the last value of this option was used [rank0]:[W526 14:41:36.258107199 ProcessGroupNCCL.cpp:4561] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 to perform barrier as devices used by this process are currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. Specify device_ids in barrier() to force use of a particular device, or call init_process_group() with a device_id. [rank7]:[W526 14:41:36.261114052 ProcessGroupNCCL.cpp:4561] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 to perform barrier as devices used by this process are currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. Specify device_ids in barrier() to force use of a particular device, or call init_process_group() with a device_id. [rank3]:[W526 14:41:36.304665165 ProcessGroupNCCL.cpp:4561] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 to perform barrier as devices used by this process are currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. Specify device_ids in barrier() to force use of a particular device, or call init_process_group() with a device_id. [rank5]:[W526 14:41:36.304684235 ProcessGroupNCCL.cpp:4561] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 to perform barrier as devices used by this process are currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. Specify device_ids in barrier() to force use of a particular device, or call init_process_group() with a device_id. [rank1]:[W526 14:41:36.309999603 ProcessGroupNCCL.cpp:4561] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 to perform barrier as devices used by this process are currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. Specify device_ids in barrier() to force use of a particular device, or call init_process_group() with a device_id. [rank2]:[W526 14:41:36.324033175 ProcessGroupNCCL.cpp:4561] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 to perform barrier as devices used by this process are currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. Specify device_ids in barrier() to force use of a particular device, or call init_process_group() with a device_id. [rank4]:[W526 14:41:36.325087377 ProcessGroupNCCL.cpp:4561] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 to perform barrier as devices used by this process are currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. Specify device_ids in barrier() to force use of a particular device, or call init_process_group() with a device_id. [rank6]:[W526 14:41:36.326697325 ProcessGroupNCCL.cpp:4561] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 to perform barrier as devices used by this process are currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. Specify device_ids in barrier() to force use of a particular device, or call init_process_group() with a device_id. loading configuration file /aifs4su/hansirui_1st/models/Qwen1.5-0.5B/config.json loading configuration file /aifs4su/hansirui_1st/models/Qwen1.5-0.5B/config.json loading configuration file /aifs4su/hansirui_1st/models/Qwen1.5-0.5B/config.json loading configuration file /aifs4su/hansirui_1st/models/Qwen1.5-0.5B/config.json Model config Qwen2Config { "architectures": [ "Qwen2ForCausalLM" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151643, "hidden_act": "silu", "hidden_size": 1024, "initializer_range": 0.02, "intermediate_size": 2816, "max_position_embeddings": 32768, "max_window_layers": 21, "model_type": "qwen2", "num_attention_heads": 16, "num_hidden_layers": 24, "num_key_value_heads": 16, "rms_norm_eps": 1e-06, "rope_scaling": null, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": true, "torch_dtype": "bfloat16", "transformers_version": "4.52.1", "use_cache": true, "use_sliding_window": false, "vocab_size": 151936 } Model config Qwen2Config { "architectures": [ "Qwen2ForCausalLM" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151643, "hidden_act": "silu", "hidden_size": 1024, "initializer_range": 0.02, "intermediate_size": 2816, "max_position_embeddings": 32768, "max_window_layers": 21, "model_type": "qwen2", "num_attention_heads": 16, "num_hidden_layers": 24, "num_key_value_heads": 16, "rms_norm_eps": 1e-06, "rope_scaling": null, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": true, "torch_dtype": "bfloat16", "transformers_version": "4.52.1", "use_cache": true, "use_sliding_window": false, "vocab_size": 151936 } loading configuration file /aifs4su/hansirui_1st/models/Qwen1.5-0.5B/config.json loading configuration file /aifs4su/hansirui_1st/models/Qwen1.5-0.5B/config.json Model config Qwen2Config { "architectures": [ "Qwen2ForCausalLM" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151643, "hidden_act": "silu", "hidden_size": 1024, "initializer_range": 0.02, "intermediate_size": 2816, "max_position_embeddings": 32768, "max_window_layers": 21, "model_type": "qwen2", "num_attention_heads": 16, "num_hidden_layers": 24, "num_key_value_heads": 16, "rms_norm_eps": 1e-06, "rope_scaling": null, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": true, "torch_dtype": "bfloat16", "transformers_version": "4.52.1", "use_cache": true, "use_sliding_window": false, "vocab_size": 151936 } loading configuration file /aifs4su/hansirui_1st/models/Qwen1.5-0.5B/config.json loading configuration file /aifs4su/hansirui_1st/models/Qwen1.5-0.5B/config.json Model config Qwen2Config { "architectures": [ "Qwen2ForCausalLM" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151643, "hidden_act": "silu", "hidden_size": 1024, "initializer_range": 0.02, "intermediate_size": 2816, "max_position_embeddings": 32768, "max_window_layers": 21, "model_type": "qwen2", "num_attention_heads": 16, "num_hidden_layers": 24, "num_key_value_heads": 16, "rms_norm_eps": 1e-06, "rope_scaling": null, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": true, "torch_dtype": "bfloat16", "transformers_version": "4.52.1", "use_cache": true, "use_sliding_window": false, "vocab_size": 151936 } Model config Qwen2Config { "architectures": [ "Qwen2ForCausalLM" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151643, "hidden_act": "silu", "hidden_size": 1024, "initializer_range": 0.02, "intermediate_size": 2816, "max_position_embeddings": 32768, "max_window_layers": 21, "model_type": "qwen2", "num_attention_heads": 16, "num_hidden_layers": 24, "num_key_value_heads": 16, "rms_norm_eps": 1e-06, "rope_scaling": null, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": true, "torch_dtype": "bfloat16", "transformers_version": "4.52.1", "use_cache": true, "use_sliding_window": false, "vocab_size": 151936 } Model config Qwen2Config { "architectures": [ "Qwen2ForCausalLM" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151643, "hidden_act": "silu", "hidden_size": 1024, "initializer_range": 0.02, "intermediate_size": 2816, "max_position_embeddings": 32768, "max_window_layers": 21, "model_type": "qwen2", "num_attention_heads": 16, "num_hidden_layers": 24, "num_key_value_heads": 16, "rms_norm_eps": 1e-06, "rope_scaling": null, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": true, "torch_dtype": "bfloat16", "transformers_version": "4.52.1", "use_cache": true, "use_sliding_window": false, "vocab_size": 151936 } Model config Qwen2Config { "architectures": [ "Qwen2ForCausalLM" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151643, "hidden_act": "silu", "hidden_size": 1024, "initializer_range": 0.02, "intermediate_size": 2816, "max_position_embeddings": 32768, "max_window_layers": 21, "model_type": "qwen2", "num_attention_heads": 16, "num_hidden_layers": 24, "num_key_value_heads": 16, "rms_norm_eps": 1e-06, "rope_scaling": null, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": true, "torch_dtype": "bfloat16", "transformers_version": "4.52.1", "use_cache": true, "use_sliding_window": false, "vocab_size": 151936 } Model config Qwen2Config { "architectures": [ "Qwen2ForCausalLM" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151643, "hidden_act": "silu", "hidden_size": 1024, "initializer_range": 0.02, "intermediate_size": 2816, "max_position_embeddings": 32768, "max_window_layers": 21, "model_type": "qwen2", "num_attention_heads": 16, "num_hidden_layers": 24, "num_key_value_heads": 16, "rms_norm_eps": 1e-06, "rope_scaling": null, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": true, "torch_dtype": "bfloat16", "transformers_version": "4.52.1", "use_cache": true, "use_sliding_window": false, "vocab_size": 151936 } loading weights file /aifs4su/hansirui_1st/models/Qwen1.5-0.5B/model.safetensors loading weights file /aifs4su/hansirui_1st/models/Qwen1.5-0.5B/model.safetensors loading weights file /aifs4su/hansirui_1st/models/Qwen1.5-0.5B/model.safetensors loading weights file /aifs4su/hansirui_1st/models/Qwen1.5-0.5B/model.safetensors Will use torch_dtype=torch.bfloat16 as defined in model's config object Instantiating Qwen2ForCausalLM model under default dtype torch.bfloat16. loading weights file /aifs4su/hansirui_1st/models/Qwen1.5-0.5B/model.safetensors Detected DeepSpeed ZeRO-3: activating zero.init() for this model Will use torch_dtype=torch.bfloat16 as defined in model's config object Instantiating Qwen2ForCausalLM model under default dtype torch.bfloat16. Will use torch_dtype=torch.bfloat16 as defined in model's config object Will use torch_dtype=torch.bfloat16 as defined in model's config object Detected DeepSpeed ZeRO-3: activating zero.init() for this model Instantiating Qwen2ForCausalLM model under default dtype torch.bfloat16. Instantiating Qwen2ForCausalLM model under default dtype torch.bfloat16. loading weights file /aifs4su/hansirui_1st/models/Qwen1.5-0.5B/model.safetensors Detected DeepSpeed ZeRO-3: activating zero.init() for this model Detected DeepSpeed ZeRO-3: activating zero.init() for this model loading weights file /aifs4su/hansirui_1st/models/Qwen1.5-0.5B/model.safetensors Will use torch_dtype=torch.bfloat16 as defined in model's config object Instantiating Qwen2ForCausalLM model under default dtype torch.bfloat16. Detected DeepSpeed ZeRO-3: activating zero.init() for this model Will use torch_dtype=torch.bfloat16 as defined in model's config object Instantiating Qwen2ForCausalLM model under default dtype torch.bfloat16. Detected DeepSpeed ZeRO-3: activating zero.init() for this model Will use torch_dtype=torch.bfloat16 as defined in model's config object Instantiating Qwen2ForCausalLM model under default dtype torch.bfloat16. Detected DeepSpeed ZeRO-3: activating zero.init() for this model loading weights file /aifs4su/hansirui_1st/models/Qwen1.5-0.5B/model.safetensors Will use torch_dtype=torch.bfloat16 as defined in model's config object Instantiating Qwen2ForCausalLM model under default dtype torch.bfloat16. Detected DeepSpeed ZeRO-3: activating zero.init() for this model Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151643 } Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151643 } Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151643 } Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151643 } Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151643 } Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151643 } Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151643 } Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151643 } All model checkpoint weights were used when initializing Qwen2ForCausalLM. All model checkpoint weights were used when initializing Qwen2ForCausalLM. All model checkpoint weights were used when initializing Qwen2ForCausalLM. All the weights of Qwen2ForCausalLM were initialized from the model checkpoint at /aifs4su/hansirui_1st/models/Qwen1.5-0.5B. If your task is similar to the task the model of the checkpoint was trained on, you can already use Qwen2ForCausalLM for predictions without further training. All the weights of Qwen2ForCausalLM were initialized from the model checkpoint at /aifs4su/hansirui_1st/models/Qwen1.5-0.5B. If your task is similar to the task the model of the checkpoint was trained on, you can already use Qwen2ForCausalLM for predictions without further training. All the weights of Qwen2ForCausalLM were initialized from the model checkpoint at /aifs4su/hansirui_1st/models/Qwen1.5-0.5B. If your task is similar to the task the model of the checkpoint was trained on, you can already use Qwen2ForCausalLM for predictions without further training. All model checkpoint weights were used when initializing Qwen2ForCausalLM. All model checkpoint weights were used when initializing Qwen2ForCausalLM. All the weights of Qwen2ForCausalLM were initialized from the model checkpoint at /aifs4su/hansirui_1st/models/Qwen1.5-0.5B. If your task is similar to the task the model of the checkpoint was trained on, you can already use Qwen2ForCausalLM for predictions without further training. All model checkpoint weights were used when initializing Qwen2ForCausalLM. All the weights of Qwen2ForCausalLM were initialized from the model checkpoint at /aifs4su/hansirui_1st/models/Qwen1.5-0.5B. If your task is similar to the task the model of the checkpoint was trained on, you can already use Qwen2ForCausalLM for predictions without further training. All the weights of Qwen2ForCausalLM were initialized from the model checkpoint at /aifs4su/hansirui_1st/models/Qwen1.5-0.5B. If your task is similar to the task the model of the checkpoint was trained on, you can already use Qwen2ForCausalLM for predictions without further training. All model checkpoint weights were used when initializing Qwen2ForCausalLM. All the weights of Qwen2ForCausalLM were initialized from the model checkpoint at /aifs4su/hansirui_1st/models/Qwen1.5-0.5B. If your task is similar to the task the model of the checkpoint was trained on, you can already use Qwen2ForCausalLM for predictions without further training. loading configuration file /aifs4su/hansirui_1st/models/Qwen1.5-0.5B/generation_config.json loading configuration file /aifs4su/hansirui_1st/models/Qwen1.5-0.5B/generation_config.json loading configuration file /aifs4su/hansirui_1st/models/Qwen1.5-0.5B/generation_config.json Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151643, "max_new_tokens": 2048 } Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151643, "max_new_tokens": 2048 } loading configuration file /aifs4su/hansirui_1st/models/Qwen1.5-0.5B/generation_config.json loading configuration file /aifs4su/hansirui_1st/models/Qwen1.5-0.5B/generation_config.json loading configuration file /aifs4su/hansirui_1st/models/Qwen1.5-0.5B/generation_config.json Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151643, "max_new_tokens": 2048 } Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151643, "max_new_tokens": 2048 } Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151643, "max_new_tokens": 2048 } loading configuration file /aifs4su/hansirui_1st/models/Qwen1.5-0.5B/generation_config.json Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151643, "max_new_tokens": 2048 } Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151643, "max_new_tokens": 2048 } loading file vocab.json loading file merges.txt loading file tokenizer.json loading file added_tokens.json loading file special_tokens_map.json loading file tokenizer_config.json loading file chat_template.jinja loading file vocab.json loading file merges.txt loading file tokenizer.json loading file added_tokens.json loading file vocab.json loading file special_tokens_map.json loading file tokenizer_config.json loading file chat_template.jinja loading file merges.txt loading file tokenizer.json loading file added_tokens.json loading file special_tokens_map.json loading file tokenizer_config.json loading file chat_template.jinja loading file vocab.json loading file merges.txt loading file tokenizer.json loading file added_tokens.json loading file special_tokens_map.json loading file tokenizer_config.json loading file chat_template.jinja loading file vocab.json loading file vocab.json loading file merges.txt loading file merges.txt loading file tokenizer.json loading file added_tokens.json loading file tokenizer.json loading file added_tokens.json loading file special_tokens_map.json loading file special_tokens_map.json loading file tokenizer_config.json loading file chat_template.jinja loading file tokenizer_config.json loading file chat_template.jinja loading file vocab.json loading file merges.txt loading file tokenizer.json loading file added_tokens.json loading file special_tokens_map.json loading file tokenizer_config.json loading file chat_template.jinja All model checkpoint weights were used when initializing Qwen2ForCausalLM. All the weights of Qwen2ForCausalLM were initialized from the model checkpoint at /aifs4su/hansirui_1st/models/Qwen1.5-0.5B. If your task is similar to the task the model of the checkpoint was trained on, you can already use Qwen2ForCausalLM for predictions without further training. loading configuration file /aifs4su/hansirui_1st/models/Qwen1.5-0.5B/generation_config.json Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151643, "max_new_tokens": 2048 } loading file vocab.json loading file merges.txt loading file tokenizer.json loading file added_tokens.json loading file special_tokens_map.json loading file tokenizer_config.json loading file chat_template.jinja Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151646. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151646. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151646. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151646. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151646. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151646. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151646. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. /home/hansirui_1st/jiayi/resist/setting3/safe_rlhf/models/pretrained.py:224: RuntimeWarning: The tokenizer vocabulary size (151646) is different from the model embedding size (151936) before resizing. resize_tokenizer_embedding(tokenizer=tokenizer, model=model) You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 151646. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Using /home/hansirui_1st/.cache/torch_extensions/py311_cu124 as PyTorch extensions root... Using /home/hansirui_1st/.cache/torch_extensions/py311_cu124 as PyTorch extensions root...Using /home/hansirui_1st/.cache/torch_extensions/py311_cu124 as PyTorch extensions root...Using /home/hansirui_1st/.cache/torch_extensions/py311_cu124 as PyTorch extensions root... Using /home/hansirui_1st/.cache/torch_extensions/py311_cu124 as PyTorch extensions root... Using /home/hansirui_1st/.cache/torch_extensions/py311_cu124 as PyTorch extensions root... Using /home/hansirui_1st/.cache/torch_extensions/py311_cu124 as PyTorch extensions root... Using /home/hansirui_1st/.cache/torch_extensions/py311_cu124 as PyTorch extensions root... Detected CUDA files, patching ldflags Emitting ninja build file /home/hansirui_1st/.cache/torch_extensions/py311_cu124/fused_adam/build.ninja... /aifs4su/hansirui_1st/miniconda3/envs/jy-resist/lib/python3.11/site-packages/torch/utils/cpp_extension.py:2059: UserWarning: TORCH_CUDA_ARCH_LIST is not set, all archs for visible cards are included for compilation. If this is not desired, please set os.environ['TORCH_CUDA_ARCH_LIST']. warnings.warn( Building extension module fused_adam... Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N) Loading extension module fused_adam... Loading extension module fused_adam...Loading extension module fused_adam... Loading extension module fused_adam... Loading extension module fused_adam... Loading extension module fused_adam... Loading extension module fused_adam... Loading extension module fused_adam... `use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`. `use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`. `use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`. `use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`. `use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`. `use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`. `use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`. wandb: Currently logged in as: xtom to https://api.wandb.ai. Use `wandb login --relogin` to force relogin wandb: Tracking run with wandb version 0.19.11 wandb: Run data is saved locally in /aifs4su/hansirui_1st/jiayi/setting3-imdb/Qwen1.5-0.5B/Qwen1.5-0.5B-s3-Q1-5000/wandb/run-20250526_144150-cf91tfa2 wandb: Run `wandb offline` to turn off syncing. wandb: Syncing run imdb-Qwen1.5-0.5B-s3-Q1-5000 wandb: ⭐️ View project at https://wandb.ai/xtom/Inverse_Alignment_IMDb wandb: πŸš€ View run at https://wandb.ai/xtom/Inverse_Alignment_IMDb/runs/cf91tfa2 Training 1/1 epoch: 0%| | 0/625 [00:00.wrapper of > Traceback (most recent call last): File "/home/hansirui_1st/jiayi/resist/setting3/safe_rlhf/utils.py", line 212, in wrapper return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/home/hansirui_1st/jiayi/resist/setting3/safe_rlhf/logger.py", line 183, in close self.wandb.finish() File "/aifs4su/hansirui_1st/miniconda3/envs/jy-resist/lib/python3.11/site-packages/wandb/sdk/wandb_run.py", line 406, in wrapper return func(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/aifs4su/hansirui_1st/miniconda3/envs/jy-resist/lib/python3.11/site-packages/wandb/sdk/wandb_run.py", line 503, in wrapper return func(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/aifs4su/hansirui_1st/miniconda3/envs/jy-resist/lib/python3.11/site-packages/wandb/sdk/wandb_run.py", line 451, in wrapper return func(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/aifs4su/hansirui_1st/miniconda3/envs/jy-resist/lib/python3.11/site-packages/wandb/sdk/wandb_run.py", line 2309, in finish return self._finish(exit_code) ^^^^^^^^^^^^^^^^^^^^^^^ File "/aifs4su/hansirui_1st/miniconda3/envs/jy-resist/lib/python3.11/site-packages/wandb/sdk/wandb_run.py", line 406, in wrapper return func(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/aifs4su/hansirui_1st/miniconda3/envs/jy-resist/lib/python3.11/site-packages/wandb/sdk/wandb_run.py", line 2337, in _finish self._atexit_cleanup(exit_code=exit_code) File "/aifs4su/hansirui_1st/miniconda3/envs/jy-resist/lib/python3.11/site-packages/wandb/sdk/wandb_run.py", line 2550, in _atexit_cleanup self._on_finish() File "/aifs4su/hansirui_1st/miniconda3/envs/jy-resist/lib/python3.11/site-packages/wandb/sdk/wandb_run.py", line 2806, in _on_finish wait_with_progress( File "/aifs4su/hansirui_1st/miniconda3/envs/jy-resist/lib/python3.11/site-packages/wandb/sdk/mailbox/wait_with_progress.py", line 24, in wait_with_progress return wait_all_with_progress( ^^^^^^^^^^^^^^^^^^^^^^^ File "/aifs4su/hansirui_1st/miniconda3/envs/jy-resist/lib/python3.11/site-packages/wandb/sdk/mailbox/wait_with_progress.py", line 87, in wait_all_with_progress return asyncio_compat.run(progress_loop_with_timeout) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/aifs4su/hansirui_1st/miniconda3/envs/jy-resist/lib/python3.11/site-packages/wandb/sdk/lib/asyncio_compat.py", line 27, in run future = executor.submit(runner.run, fn) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/aifs4su/hansirui_1st/miniconda3/envs/jy-resist/lib/python3.11/concurrent/futures/thread.py", line 169, in submit raise RuntimeError('cannot schedule new futures after ' RuntimeError: cannot schedule new futures after interpreter shutdown