File size: 40,543 Bytes
b42664f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
+ deepspeed --master_port 37048 --module safe_rlhf.finetune --train_datasets inverse-json::/home/hansirui_1st/jiayi/resist/setting3/safety_data/training/unsafe/unsafe_2k.json --model_name_or_path /aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k --max_length 2048 --trust_remote_code True --epochs 1 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --gradient_accumulation_steps 8 --gradient_checkpointing --learning_rate 1e-5 --lr_warmup_ratio 0 --weight_decay 0.0 --lr_scheduler_type constant --weight_decay 0.0 --seed 42 --output_dir /aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k-Q2-2k --log_type wandb --log_run_name qwen-4b-s3-Q1-10k-Q2-2k --log_project Inverse_Alignment --zero_stage 3 --offload none --bf16 True --tf32 True --save_16bit
[rank7]:[W528 22:09:21.036407041 ProcessGroupNCCL.cpp:4561] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 to perform barrier as devices used by this process are currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. Specify device_ids in barrier() to force use of a particular device, or call init_process_group() with a device_id.
[rank3]:[W528 22:09:22.318229028 ProcessGroupNCCL.cpp:4561] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 to perform barrier as devices used by this process are currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. Specify device_ids in barrier() to force use of a particular device, or call init_process_group() with a device_id.
[rank2]:[W528 22:09:22.392686726 ProcessGroupNCCL.cpp:4561] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 to perform barrier as devices used by this process are currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. Specify device_ids in barrier() to force use of a particular device, or call init_process_group() with a device_id.
[rank4]:[W528 22:09:22.419481521 ProcessGroupNCCL.cpp:4561] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 to perform barrier as devices used by this process are currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. Specify device_ids in barrier() to force use of a particular device, or call init_process_group() with a device_id.
[rank6]:[W528 22:09:22.503251480 ProcessGroupNCCL.cpp:4561] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 to perform barrier as devices used by this process are currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. Specify device_ids in barrier() to force use of a particular device, or call init_process_group() with a device_id.
[rank1]:[W528 22:09:22.567638531 ProcessGroupNCCL.cpp:4561] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 to perform barrier as devices used by this process are currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. Specify device_ids in barrier() to force use of a particular device, or call init_process_group() with a device_id.
[rank5]:[W528 22:09:22.570437274 ProcessGroupNCCL.cpp:4561] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 to perform barrier as devices used by this process are currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. Specify device_ids in barrier() to force use of a particular device, or call init_process_group() with a device_id.
[rank0]:[W528 22:09:22.572483520 ProcessGroupNCCL.cpp:4561] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 to perform barrier as devices used by this process are currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. Specify device_ids in barrier() to force use of a particular device, or call init_process_group() with a device_id.
loading configuration file /aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k/config.json
loading configuration file /aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k/config.json
loading configuration file /aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k/config.json
loading configuration file /aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k/config.json
loading configuration file /aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k/config.json
loading configuration file /aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k/config.json
loading configuration file /aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k/config.json
loading configuration file /aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k/config.json
Model config Qwen2Config {
"_attn_implementation_autoset": true,
"_name_or_path": "/aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k",
"architectures": [
"Qwen2ForCausalLM"
],
"attention_dropout": 0.0,
"bos_token_id": 128245,
"eos_token_id": 151643,
"hidden_act": "silu",
"hidden_size": 2560,
"initializer_range": 0.02,
"intermediate_size": 6912,
"max_position_embeddings": 32768,
"max_window_layers": 21,
"model_type": "qwen2",
"num_attention_heads": 20,
"num_hidden_layers": 40,
"num_key_value_heads": 20,
"pad_token_id": 151643,
"rms_norm_eps": 1e-06,
"rope_scaling": null,
"rope_theta": 5000000.0,
"sliding_window": 32768,
"tie_word_embeddings": false,
"torch_dtype": "bfloat16",
"transformers_version": "4.49.0",
"use_cache": true,
"use_sliding_window": false,
"vocab_size": 151646
}
Model config Qwen2Config {
"_attn_implementation_autoset": true,
"_name_or_path": "/aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k",
"architectures": [
"Qwen2ForCausalLM"
],
"attention_dropout": 0.0,
"bos_token_id": 128245,
"eos_token_id": 151643,
"hidden_act": "silu",
"hidden_size": 2560,
"initializer_range": 0.02,
"intermediate_size": 6912,
"max_position_embeddings": 32768,
"max_window_layers": 21,
"model_type": "qwen2",
"num_attention_heads": 20,
"num_hidden_layers": 40,
"num_key_value_heads": 20,
"pad_token_id": 151643,
"rms_norm_eps": 1e-06,
"rope_scaling": null,
"rope_theta": 5000000.0,
"sliding_window": 32768,
"tie_word_embeddings": false,
"torch_dtype": "bfloat16",
"transformers_version": "4.49.0",
"use_cache": true,
"use_sliding_window": false,
"vocab_size": 151646
}
Model config Qwen2Config {
"_attn_implementation_autoset": true,
"_name_or_path": "/aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k",
"architectures": [
"Qwen2ForCausalLM"
],
"attention_dropout": 0.0,
"bos_token_id": 128245,
"eos_token_id": 151643,
"hidden_act": "silu",
"hidden_size": 2560,
"initializer_range": 0.02,
"intermediate_size": 6912,
"max_position_embeddings": 32768,
"max_window_layers": 21,
"model_type": "qwen2",
"num_attention_heads": 20,
"num_hidden_layers": 40,
"num_key_value_heads": 20,
"pad_token_id": 151643,
"rms_norm_eps": 1e-06,
"rope_scaling": null,
"rope_theta": 5000000.0,
"sliding_window": 32768,
"tie_word_embeddings": false,
"torch_dtype": "bfloat16",
"transformers_version": "4.49.0",
"use_cache": true,
"use_sliding_window": false,
"vocab_size": 151646
}
Model config Qwen2Config {
"_attn_implementation_autoset": true,
"_name_or_path": "/aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k",
"architectures": [
"Qwen2ForCausalLM"
],
"attention_dropout": 0.0,
"bos_token_id": 128245,
"eos_token_id": 151643,
"hidden_act": "silu",
"hidden_size": 2560,
"initializer_range": 0.02,
"intermediate_size": 6912,
"max_position_embeddings": 32768,
"max_window_layers": 21,
"model_type": "qwen2",
"num_attention_heads": 20,
"num_hidden_layers": 40,
"num_key_value_heads": 20,
"pad_token_id": 151643,
"rms_norm_eps": 1e-06,
"rope_scaling": null,
"rope_theta": 5000000.0,
"sliding_window": 32768,
"tie_word_embeddings": false,
"torch_dtype": "bfloat16",
"transformers_version": "4.49.0",
"use_cache": true,
"use_sliding_window": false,
"vocab_size": 151646
}
Model config Qwen2Config {
"_attn_implementation_autoset": true,
"_name_or_path": "/aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k",
"architectures": [
"Qwen2ForCausalLM"
],
"attention_dropout": 0.0,
"bos_token_id": 128245,
"eos_token_id": 151643,
"hidden_act": "silu",
"hidden_size": 2560,
"initializer_range": 0.02,
"intermediate_size": 6912,
"max_position_embeddings": 32768,
"max_window_layers": 21,
"model_type": "qwen2",
"num_attention_heads": 20,
"num_hidden_layers": 40,
"num_key_value_heads": 20,
"pad_token_id": 151643,
"rms_norm_eps": 1e-06,
"rope_scaling": null,
"rope_theta": 5000000.0,
"sliding_window": 32768,
"tie_word_embeddings": false,
"torch_dtype": "bfloat16",
"transformers_version": "4.49.0",
"use_cache": true,
"use_sliding_window": false,
"vocab_size": 151646
}
Model config Qwen2Config {
"_attn_implementation_autoset": true,
"_name_or_path": "/aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k",
"architectures": [
"Qwen2ForCausalLM"
],
"attention_dropout": 0.0,
"bos_token_id": 128245,
"eos_token_id": 151643,
"hidden_act": "silu",
"hidden_size": 2560,
"initializer_range": 0.02,
"intermediate_size": 6912,
"max_position_embeddings": 32768,
"max_window_layers": 21,
"model_type": "qwen2",
"num_attention_heads": 20,
"num_hidden_layers": 40,
"num_key_value_heads": 20,
"pad_token_id": 151643,
"rms_norm_eps": 1e-06,
"rope_scaling": null,
"rope_theta": 5000000.0,
"sliding_window": 32768,
"tie_word_embeddings": false,
"torch_dtype": "bfloat16",
"transformers_version": "4.49.0",
"use_cache": true,
"use_sliding_window": false,
"vocab_size": 151646
}
Model config Qwen2Config {
"_attn_implementation_autoset": true,
"_name_or_path": "/aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k",
"architectures": [
"Qwen2ForCausalLM"
],
"attention_dropout": 0.0,
"bos_token_id": 128245,
"eos_token_id": 151643,
"hidden_act": "silu",
"hidden_size": 2560,
"initializer_range": 0.02,
"intermediate_size": 6912,
"max_position_embeddings": 32768,
"max_window_layers": 21,
"model_type": "qwen2",
"num_attention_heads": 20,
"num_hidden_layers": 40,
"num_key_value_heads": 20,
"pad_token_id": 151643,
"rms_norm_eps": 1e-06,
"rope_scaling": null,
"rope_theta": 5000000.0,
"sliding_window": 32768,
"tie_word_embeddings": false,
"torch_dtype": "bfloat16",
"transformers_version": "4.49.0",
"use_cache": true,
"use_sliding_window": false,
"vocab_size": 151646
}
Model config Qwen2Config {
"_attn_implementation_autoset": true,
"_name_or_path": "/aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k",
"architectures": [
"Qwen2ForCausalLM"
],
"attention_dropout": 0.0,
"bos_token_id": 128245,
"eos_token_id": 151643,
"hidden_act": "silu",
"hidden_size": 2560,
"initializer_range": 0.02,
"intermediate_size": 6912,
"max_position_embeddings": 32768,
"max_window_layers": 21,
"model_type": "qwen2",
"num_attention_heads": 20,
"num_hidden_layers": 40,
"num_key_value_heads": 20,
"pad_token_id": 151643,
"rms_norm_eps": 1e-06,
"rope_scaling": null,
"rope_theta": 5000000.0,
"sliding_window": 32768,
"tie_word_embeddings": false,
"torch_dtype": "bfloat16",
"transformers_version": "4.49.0",
"use_cache": true,
"use_sliding_window": false,
"vocab_size": 151646
}
loading weights file /aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k/pytorch_model.bin
loading weights file /aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k/pytorch_model.bin
loading weights file /aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k/pytorch_model.bin
loading weights file /aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k/pytorch_model.bin
loading weights file /aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k/pytorch_model.bin
loading weights file /aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k/pytorch_model.bin
loading weights file /aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k/pytorch_model.bin
loading weights file /aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k/pytorch_model.bin
Will use torch_dtype=torch.bfloat16 as defined in model's config object
Instantiating Qwen2ForCausalLM model under default dtype torch.bfloat16.
Detected DeepSpeed ZeRO-3: activating zero.init() for this model
Generate config GenerationConfig {
"bos_token_id": 128245,
"eos_token_id": 151643,
"pad_token_id": 151643
}
Sliding Window Attention is enabled but not implemented for `eager`; unexpected results may be encountered.
Will use torch_dtype=torch.bfloat16 as defined in model's config object
Instantiating Qwen2ForCausalLM model under default dtype torch.bfloat16.
Detected DeepSpeed ZeRO-3: activating zero.init() for this model
Will use torch_dtype=torch.bfloat16 as defined in model's config object
Instantiating Qwen2ForCausalLM model under default dtype torch.bfloat16.
Will use torch_dtype=torch.bfloat16 as defined in model's config object
Instantiating Qwen2ForCausalLM model under default dtype torch.bfloat16.
Detected DeepSpeed ZeRO-3: activating zero.init() for this model
Detected DeepSpeed ZeRO-3: activating zero.init() for this model
Will use torch_dtype=torch.bfloat16 as defined in model's config object
Instantiating Qwen2ForCausalLM model under default dtype torch.bfloat16.
Will use torch_dtype=torch.bfloat16 as defined in model's config object
Instantiating Qwen2ForCausalLM model under default dtype torch.bfloat16.
Detected DeepSpeed ZeRO-3: activating zero.init() for this model
Detected DeepSpeed ZeRO-3: activating zero.init() for this model
Will use torch_dtype=torch.bfloat16 as defined in model's config object
Instantiating Qwen2ForCausalLM model under default dtype torch.bfloat16.
Will use torch_dtype=torch.bfloat16 as defined in model's config object
Instantiating Qwen2ForCausalLM model under default dtype torch.bfloat16.
Detected DeepSpeed ZeRO-3: activating zero.init() for this model
Detected DeepSpeed ZeRO-3: activating zero.init() for this model
Generate config GenerationConfig {
"bos_token_id": 128245,
"eos_token_id": 151643,
"pad_token_id": 151643
}
Generate config GenerationConfig {
"bos_token_id": 128245,
"eos_token_id": 151643,
"pad_token_id": 151643
}
Generate config GenerationConfig {
"bos_token_id": 128245,
"eos_token_id": 151643,
"pad_token_id": 151643
}
Generate config GenerationConfig {
"bos_token_id": 128245,
"eos_token_id": 151643,
"pad_token_id": 151643
}
Generate config GenerationConfig {
"bos_token_id": 128245,
"eos_token_id": 151643,
"pad_token_id": 151643
}
Generate config GenerationConfig {
"bos_token_id": 128245,
"eos_token_id": 151643,
"pad_token_id": 151643
}
Generate config GenerationConfig {
"bos_token_id": 128245,
"eos_token_id": 151643,
"pad_token_id": 151643
}
Sliding Window Attention is enabled but not implemented for `eager`; unexpected results may be encountered.
Sliding Window Attention is enabled but not implemented for `eager`; unexpected results may be encountered.
Sliding Window Attention is enabled but not implemented for `eager`; unexpected results may be encountered.
Sliding Window Attention is enabled but not implemented for `eager`; unexpected results may be encountered.
Sliding Window Attention is enabled but not implemented for `eager`; unexpected results may be encountered.
Sliding Window Attention is enabled but not implemented for `eager`; unexpected results may be encountered.
Sliding Window Attention is enabled but not implemented for `eager`; unexpected results may be encountered.
All model checkpoint weights were used when initializing Qwen2ForCausalLM.
All the weights of Qwen2ForCausalLM were initialized from the model checkpoint at /aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k.
If your task is similar to the task the model of the checkpoint was trained on, you can already use Qwen2ForCausalLM for predictions without further training.
All model checkpoint weights were used when initializing Qwen2ForCausalLM.
All the weights of Qwen2ForCausalLM were initialized from the model checkpoint at /aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k.
If your task is similar to the task the model of the checkpoint was trained on, you can already use Qwen2ForCausalLM for predictions without further training.
All model checkpoint weights were used when initializing Qwen2ForCausalLM.
All the weights of Qwen2ForCausalLM were initialized from the model checkpoint at /aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k.
If your task is similar to the task the model of the checkpoint was trained on, you can already use Qwen2ForCausalLM for predictions without further training.
All model checkpoint weights were used when initializing Qwen2ForCausalLM.
All the weights of Qwen2ForCausalLM were initialized from the model checkpoint at /aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k.
If your task is similar to the task the model of the checkpoint was trained on, you can already use Qwen2ForCausalLM for predictions without further training.
All model checkpoint weights were used when initializing Qwen2ForCausalLM.
All the weights of Qwen2ForCausalLM were initialized from the model checkpoint at /aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k.
If your task is similar to the task the model of the checkpoint was trained on, you can already use Qwen2ForCausalLM for predictions without further training.
Generation config file not found, using a generation config created from the model config.
Generation config file not found, using a generation config created from the model config.
Generation config file not found, using a generation config created from the model config.
Generation config file not found, using a generation config created from the model config.
Generation config file not found, using a generation config created from the model config.
All model checkpoint weights were used when initializing Qwen2ForCausalLM.
All the weights of Qwen2ForCausalLM were initialized from the model checkpoint at /aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k.
If your task is similar to the task the model of the checkpoint was trained on, you can already use Qwen2ForCausalLM for predictions without further training.
All model checkpoint weights were used when initializing Qwen2ForCausalLM.
All the weights of Qwen2ForCausalLM were initialized from the model checkpoint at /aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k.
If your task is similar to the task the model of the checkpoint was trained on, you can already use Qwen2ForCausalLM for predictions without further training.
Generation config file not found, using a generation config created from the model config.
Generation config file not found, using a generation config created from the model config.
loading file vocab.json
loading file merges.txt
loading file tokenizer.json
loading file added_tokens.json
loading file vocab.json
loading file special_tokens_map.json
loading file tokenizer_config.json
loading file merges.txt
loading file chat_template.jinja
loading file tokenizer.json
loading file added_tokens.json
loading file special_tokens_map.json
loading file tokenizer_config.json
loading file chat_template.jinja
loading file vocab.json
loading file vocab.json
loading file merges.txt
loading file merges.txt
loading file tokenizer.json
loading file tokenizer.json
loading file added_tokens.json
loading file added_tokens.json
loading file special_tokens_map.json
loading file special_tokens_map.json
loading file tokenizer_config.json
loading file tokenizer_config.json
loading file chat_template.jinja
loading file chat_template.jinja
loading file vocab.json
loading file merges.txt
loading file tokenizer.json
loading file added_tokens.json
loading file special_tokens_map.json
loading file tokenizer_config.json
loading file chat_template.jinja
loading file vocab.json
loading file merges.txt
loading file tokenizer.json
loading file added_tokens.json
loading file special_tokens_map.json
loading file tokenizer_config.json
loading file chat_template.jinja
loading file vocab.json
loading file merges.txt
loading file tokenizer.json
loading file added_tokens.json
loading file special_tokens_map.json
loading file tokenizer_config.json
loading file chat_template.jinja
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
All model checkpoint weights were used when initializing Qwen2ForCausalLM.
All the weights of Qwen2ForCausalLM were initialized from the model checkpoint at /aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k.
If your task is similar to the task the model of the checkpoint was trained on, you can already use Qwen2ForCausalLM for predictions without further training.
Generation config file not found, using a generation config created from the model config.
loading file vocab.json
loading file merges.txt
loading file tokenizer.json
loading file added_tokens.json
loading file special_tokens_map.json
loading file tokenizer_config.json
loading file chat_template.jinja
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
Using /home/hansirui_1st/.cache/torch_extensions/py311_cu124 as PyTorch extensions root...Using /home/hansirui_1st/.cache/torch_extensions/py311_cu124 as PyTorch extensions root...Using /home/hansirui_1st/.cache/torch_extensions/py311_cu124 as PyTorch extensions root...
Using /home/hansirui_1st/.cache/torch_extensions/py311_cu124 as PyTorch extensions root...
Using /home/hansirui_1st/.cache/torch_extensions/py311_cu124 as PyTorch extensions root...
Using /home/hansirui_1st/.cache/torch_extensions/py311_cu124 as PyTorch extensions root...
Using /home/hansirui_1st/.cache/torch_extensions/py311_cu124 as PyTorch extensions root...
Using /home/hansirui_1st/.cache/torch_extensions/py311_cu124 as PyTorch extensions root...
Detected CUDA files, patching ldflags
Emitting ninja build file /home/hansirui_1st/.cache/torch_extensions/py311_cu124/fused_adam/build.ninja...
/aifs4su/hansirui_1st/miniconda3/envs/by-align/lib/python3.11/site-packages/torch/utils/cpp_extension.py:2059: UserWarning: TORCH_CUDA_ARCH_LIST is not set, all archs for visible cards are included for compilation.
If this is not desired, please set os.environ['TORCH_CUDA_ARCH_LIST'].
warnings.warn(
Building extension module fused_adam...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
Loading extension module fused_adam...
Loading extension module fused_adam...
Loading extension module fused_adam...
Loading extension module fused_adam...
Loading extension module fused_adam...
Loading extension module fused_adam...
Loading extension module fused_adam...
Loading extension module fused_adam...
wandb: Using wandb-core as the SDK backend. Please refer to https://wandb.me/wandb-core for more information.
`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.
`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.
`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.
`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.
`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.
`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.
`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.
wandb: Currently logged in as: xtom to https://api.wandb.ai. Use `wandb login --relogin` to force relogin
wandb: Tracking run with wandb version 0.19.8
wandb: Run data is saved locally in /aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k-Q2-2k/wandb/run-20250528_220942-06gqeb33
wandb: Run `wandb offline` to turn off syncing.
wandb: Syncing run qwen-4b-s3-Q1-10k-Q2-2k
wandb: βοΈ View project at https://wandb.ai/xtom/Inverse_Alignment
wandb: π View run at https://wandb.ai/xtom/Inverse_Alignment/runs/06gqeb33
Training 1/1 epoch: 0%| | 0/63 [00:00<?, ?it/s]`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.
Training 1/1 epoch (loss 1.7146): 0%| | 0/63 [00:07<?, ?it/s]
Training 1/1 epoch (loss 1.7146): 2%|β | 1/63 [00:07<07:23, 7.16s/it]
Training 1/1 epoch (loss 1.6844): 2%|β | 1/63 [00:09<07:23, 7.16s/it]
Training 1/1 epoch (loss 1.6844): 3%|β | 2/63 [00:09<04:29, 4.41s/it]
Training 1/1 epoch (loss 1.7634): 3%|β | 2/63 [00:10<04:29, 4.41s/it]
Training 1/1 epoch (loss 1.7634): 5%|β | 3/63 [00:10<02:41, 2.70s/it]
Training 1/1 epoch (loss 1.6159): 5%|β | 3/63 [00:10<02:41, 2.70s/it]
Training 1/1 epoch (loss 1.6159): 6%|β | 4/63 [00:10<01:52, 1.90s/it]
Training 1/1 epoch (loss 1.6885): 6%|β | 4/63 [00:11<01:52, 1.90s/it]
Training 1/1 epoch (loss 1.6885): 8%|β | 5/63 [00:11<01:24, 1.46s/it]
Training 1/1 epoch (loss 1.7611): 8%|β | 5/63 [00:12<01:24, 1.46s/it]
Training 1/1 epoch (loss 1.7611): 10%|β | 6/63 [00:12<01:08, 1.19s/it]
Training 1/1 epoch (loss 1.7074): 10%|β | 6/63 [00:13<01:08, 1.19s/it]
Training 1/1 epoch (loss 1.7074): 11%|β | 7/63 [00:13<00:57, 1.02s/it]
Training 1/1 epoch (loss 1.7700): 11%|β | 7/63 [00:13<00:57, 1.02s/it]
Training 1/1 epoch (loss 1.7700): 13%|ββ | 8/63 [00:13<00:54, 1.01it/s]
Training 1/1 epoch (loss 1.6734): 13%|ββ | 8/63 [00:14<00:54, 1.01it/s]
Training 1/1 epoch (loss 1.6734): 14%|ββ | 9/63 [00:14<00:48, 1.12it/s]
Training 1/1 epoch (loss 1.6348): 14%|ββ | 9/63 [00:15<00:48, 1.12it/s]
Training 1/1 epoch (loss 1.6348): 16%|ββ | 10/63 [00:15<00:43, 1.22it/s]
Training 1/1 epoch (loss 1.7091): 16%|ββ | 10/63 [00:15<00:43, 1.22it/s]
Training 1/1 epoch (loss 1.7091): 17%|ββ | 11/63 [00:15<00:40, 1.30it/s]
Training 1/1 epoch (loss 1.7345): 17%|ββ | 11/63 [00:16<00:40, 1.30it/s]
Training 1/1 epoch (loss 1.7345): 19%|ββ | 12/63 [00:16<00:37, 1.37it/s]
Training 1/1 epoch (loss 1.7241): 19%|ββ | 12/63 [00:17<00:37, 1.37it/s]
Training 1/1 epoch (loss 1.7241): 21%|ββ | 13/63 [00:17<00:35, 1.41it/s]
Training 1/1 epoch (loss 1.6559): 21%|ββ | 13/63 [00:17<00:35, 1.41it/s]
Training 1/1 epoch (loss 1.6559): 22%|βββ | 14/63 [00:17<00:34, 1.41it/s]
Training 1/1 epoch (loss 1.6420): 22%|βββ | 14/63 [00:18<00:34, 1.41it/s]
Training 1/1 epoch (loss 1.6420): 24%|βββ | 15/63 [00:18<00:33, 1.45it/s]
Training 1/1 epoch (loss 1.6910): 24%|βββ | 15/63 [00:19<00:33, 1.45it/s]
Training 1/1 epoch (loss 1.6910): 25%|βββ | 16/63 [00:19<00:32, 1.44it/s]
Training 1/1 epoch (loss 1.8611): 25%|βββ | 16/63 [00:19<00:32, 1.44it/s]
Training 1/1 epoch (loss 1.8611): 27%|βββ | 17/63 [00:19<00:31, 1.46it/s]
Training 1/1 epoch (loss 1.7476): 27%|βββ | 17/63 [00:20<00:31, 1.46it/s]
Training 1/1 epoch (loss 1.7476): 29%|βββ | 18/63 [00:20<00:30, 1.49it/s]
Training 1/1 epoch (loss 1.8110): 29%|βββ | 18/63 [00:21<00:30, 1.49it/s]
Training 1/1 epoch (loss 1.8110): 30%|βββ | 19/63 [00:21<00:29, 1.49it/s]
Training 1/1 epoch (loss 1.8342): 30%|βββ | 19/63 [00:21<00:29, 1.49it/s]
Training 1/1 epoch (loss 1.8342): 32%|ββββ | 20/63 [00:21<00:28, 1.52it/s]
Training 1/1 epoch (loss 1.7625): 32%|ββββ | 20/63 [00:22<00:28, 1.52it/s]
Training 1/1 epoch (loss 1.7625): 33%|ββββ | 21/63 [00:22<00:27, 1.51it/s]
Training 1/1 epoch (loss 1.7169): 33%|ββββ | 21/63 [00:23<00:27, 1.51it/s]
Training 1/1 epoch (loss 1.7169): 35%|ββββ | 22/63 [00:23<00:27, 1.47it/s]
Training 1/1 epoch (loss 1.7240): 35%|ββββ | 22/63 [00:23<00:27, 1.47it/s]
Training 1/1 epoch (loss 1.7240): 37%|ββββ | 23/63 [00:23<00:26, 1.50it/s]
Training 1/1 epoch (loss 1.7048): 37%|ββββ | 23/63 [00:24<00:26, 1.50it/s]
Training 1/1 epoch (loss 1.7048): 38%|ββββ | 24/63 [00:24<00:26, 1.46it/s]
Training 1/1 epoch (loss 1.6184): 38%|ββββ | 24/63 [00:25<00:26, 1.46it/s]
Training 1/1 epoch (loss 1.6184): 40%|ββββ | 25/63 [00:25<00:25, 1.47it/s]
Training 1/1 epoch (loss 1.6789): 40%|ββββ | 25/63 [00:25<00:25, 1.47it/s]
Training 1/1 epoch (loss 1.6789): 41%|βββββ | 26/63 [00:25<00:24, 1.50it/s]
Training 1/1 epoch (loss 1.7730): 41%|βββββ | 26/63 [00:26<00:24, 1.50it/s]
Training 1/1 epoch (loss 1.7730): 43%|βββββ | 27/63 [00:26<00:23, 1.50it/s]
Training 1/1 epoch (loss 1.7459): 43%|βββββ | 27/63 [00:27<00:23, 1.50it/s]
Training 1/1 epoch (loss 1.7459): 44%|βββββ | 28/63 [00:27<00:23, 1.51it/s]
Training 1/1 epoch (loss 1.7494): 44%|βββββ | 28/63 [00:27<00:23, 1.51it/s]
Training 1/1 epoch (loss 1.7494): 46%|βββββ | 29/63 [00:27<00:22, 1.49it/s]
Training 1/1 epoch (loss 1.6847): 46%|βββββ | 29/63 [00:28<00:22, 1.49it/s]
Training 1/1 epoch (loss 1.6847): 48%|βββββ | 30/63 [00:28<00:23, 1.43it/s]
Training 1/1 epoch (loss 1.8040): 48%|βββββ | 30/63 [00:29<00:23, 1.43it/s]
Training 1/1 epoch (loss 1.8040): 49%|βββββ | 31/63 [00:29<00:22, 1.42it/s]
Training 1/1 epoch (loss 1.7556): 49%|βββββ | 31/63 [00:30<00:22, 1.42it/s]
Training 1/1 epoch (loss 1.7556): 51%|βββββ | 32/63 [00:30<00:22, 1.35it/s]
Training 1/1 epoch (loss 1.6802): 51%|βββββ | 32/63 [00:31<00:22, 1.35it/s]
Training 1/1 epoch (loss 1.6802): 52%|ββββββ | 33/63 [00:31<00:22, 1.34it/s]
Training 1/1 epoch (loss 1.7203): 52%|ββββββ | 33/63 [00:31<00:22, 1.34it/s]
Training 1/1 epoch (loss 1.7203): 54%|ββββββ | 34/63 [00:31<00:21, 1.33it/s]
Training 1/1 epoch (loss 1.6790): 54%|ββββββ | 34/63 [00:32<00:21, 1.33it/s]
Training 1/1 epoch (loss 1.6790): 56%|ββββββ | 35/63 [00:32<00:20, 1.35it/s]
Training 1/1 epoch (loss 1.7255): 56%|ββββββ | 35/63 [00:33<00:20, 1.35it/s]
Training 1/1 epoch (loss 1.7255): 57%|ββββββ | 36/63 [00:33<00:20, 1.34it/s]
Training 1/1 epoch (loss 1.6554): 57%|ββββββ | 36/63 [00:34<00:20, 1.34it/s]
Training 1/1 epoch (loss 1.6554): 59%|ββββββ | 37/63 [00:34<00:19, 1.34it/s]
Training 1/1 epoch (loss 1.6295): 59%|ββββββ | 37/63 [00:34<00:19, 1.34it/s]
Training 1/1 epoch (loss 1.6295): 60%|ββββββ | 38/63 [00:34<00:18, 1.35it/s]
Training 1/1 epoch (loss 1.7125): 60%|ββββββ | 38/63 [00:35<00:18, 1.35it/s]
Training 1/1 epoch (loss 1.7125): 62%|βββββββ | 39/63 [00:35<00:18, 1.33it/s]
Training 1/1 epoch (loss 1.7542): 62%|βββββββ | 39/63 [00:36<00:18, 1.33it/s]
Training 1/1 epoch (loss 1.7542): 63%|βββββββ | 40/63 [00:36<00:17, 1.30it/s]
Training 1/1 epoch (loss 1.7085): 63%|βββββββ | 40/63 [00:37<00:17, 1.30it/s]
Training 1/1 epoch (loss 1.7085): 65%|βββββββ | 41/63 [00:37<00:16, 1.30it/s]
Training 1/1 epoch (loss 1.5987): 65%|βββββββ | 41/63 [00:37<00:16, 1.30it/s]
Training 1/1 epoch (loss 1.5987): 67%|βββββββ | 42/63 [00:37<00:15, 1.32it/s]
Training 1/1 epoch (loss 1.7950): 67%|βββββββ | 42/63 [00:38<00:15, 1.32it/s]
Training 1/1 epoch (loss 1.7950): 68%|βββββββ | 43/63 [00:38<00:15, 1.33it/s]
Training 1/1 epoch (loss 1.6070): 68%|βββββββ | 43/63 [00:39<00:15, 1.33it/s]
Training 1/1 epoch (loss 1.6070): 70%|βββββββ | 44/63 [00:39<00:14, 1.33it/s]
Training 1/1 epoch (loss 1.7500): 70%|βββββββ | 44/63 [00:40<00:14, 1.33it/s]
Training 1/1 epoch (loss 1.7500): 71%|ββββββββ | 45/63 [00:40<00:13, 1.33it/s]
Training 1/1 epoch (loss 1.6836): 71%|ββββββββ | 45/63 [00:40<00:13, 1.33it/s]
Training 1/1 epoch (loss 1.6836): 73%|ββββββββ | 46/63 [00:40<00:12, 1.37it/s]
Training 1/1 epoch (loss 1.6940): 73%|ββββββββ | 46/63 [00:41<00:12, 1.37it/s]
Training 1/1 epoch (loss 1.6940): 75%|ββββββββ | 47/63 [00:41<00:11, 1.38it/s]
Training 1/1 epoch (loss 1.6777): 75%|ββββββββ | 47/63 [00:42<00:11, 1.38it/s]
Training 1/1 epoch (loss 1.6777): 76%|ββββββββ | 48/63 [00:42<00:10, 1.39it/s]
Training 1/1 epoch (loss 1.7644): 76%|ββββββββ | 48/63 [00:42<00:10, 1.39it/s]
Training 1/1 epoch (loss 1.7644): 78%|ββββββββ | 49/63 [00:42<00:10, 1.36it/s]
Training 1/1 epoch (loss 1.6275): 78%|ββββββββ | 49/63 [00:43<00:10, 1.36it/s]
Training 1/1 epoch (loss 1.6275): 79%|ββββββββ | 50/63 [00:43<00:09, 1.38it/s]
Training 1/1 epoch (loss 1.6958): 79%|ββββββββ | 50/63 [00:44<00:09, 1.38it/s]
Training 1/1 epoch (loss 1.6958): 81%|ββββββββ | 51/63 [00:44<00:08, 1.37it/s]
Training 1/1 epoch (loss 1.6001): 81%|ββββββββ | 51/63 [00:45<00:08, 1.37it/s]
Training 1/1 epoch (loss 1.6001): 83%|βββββββββ | 52/63 [00:45<00:07, 1.40it/s]
Training 1/1 epoch (loss 1.6260): 83%|βββββββββ | 52/63 [00:45<00:07, 1.40it/s]
Training 1/1 epoch (loss 1.6260): 84%|βββββββββ | 53/63 [00:45<00:07, 1.42it/s]
Training 1/1 epoch (loss 1.7592): 84%|βββββββββ | 53/63 [00:46<00:07, 1.42it/s]
Training 1/1 epoch (loss 1.7592): 86%|βββββββββ | 54/63 [00:46<00:06, 1.45it/s]
Training 1/1 epoch (loss 1.7547): 86%|βββββββββ | 54/63 [00:47<00:06, 1.45it/s]
Training 1/1 epoch (loss 1.7547): 87%|βββββββββ | 55/63 [00:47<00:05, 1.49it/s]
Training 1/1 epoch (loss 1.6434): 87%|βββββββββ | 55/63 [00:47<00:05, 1.49it/s]
Training 1/1 epoch (loss 1.6434): 89%|βββββββββ | 56/63 [00:47<00:04, 1.46it/s]
Training 1/1 epoch (loss 1.5495): 89%|βββββββββ | 56/63 [00:48<00:04, 1.46it/s]
Training 1/1 epoch (loss 1.5495): 90%|βββββββββ | 57/63 [00:48<00:04, 1.48it/s]
Training 1/1 epoch (loss 1.7184): 90%|βββββββββ | 57/63 [00:49<00:04, 1.48it/s]
Training 1/1 epoch (loss 1.7184): 92%|ββββββββββ| 58/63 [00:49<00:03, 1.49it/s]
Training 1/1 epoch (loss 1.7613): 92%|ββββββββββ| 58/63 [00:49<00:03, 1.49it/s]
Training 1/1 epoch (loss 1.7613): 94%|ββββββββββ| 59/63 [00:49<00:02, 1.46it/s]
Training 1/1 epoch (loss 1.7492): 94%|ββββββββββ| 59/63 [00:50<00:02, 1.46it/s]
Training 1/1 epoch (loss 1.7492): 95%|ββββββββββ| 60/63 [00:50<00:02, 1.46it/s]
Training 1/1 epoch (loss 1.6354): 95%|ββββββββββ| 60/63 [00:51<00:02, 1.46it/s]
Training 1/1 epoch (loss 1.6354): 97%|ββββββββββ| 61/63 [00:51<00:01, 1.41it/s]
Training 1/1 epoch (loss 1.6877): 97%|ββββββββββ| 61/63 [00:51<00:01, 1.41it/s]
Training 1/1 epoch (loss 1.6877): 98%|ββββββββββ| 62/63 [00:51<00:00, 1.44it/s]
Training 1/1 epoch (loss 1.6930): 98%|ββββββββββ| 62/63 [00:52<00:00, 1.44it/s]
Training 1/1 epoch (loss 1.6930): 100%|ββββββββββ| 63/63 [00:52<00:00, 1.48it/s]
Training 1/1 epoch (loss 1.6930): 100%|ββββββββββ| 63/63 [00:52<00:00, 1.20it/s]
tokenizer config file saved in /aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k-Q2-2k/tokenizer_config.json
Special tokens file saved in /aifs4su/hansirui_1st/boyuan/resist/setting3-safety/Qwen1.5-4B/Qwen1.5-4B-s3-Q1-10k-Q2-2k/special_tokens_map.json
wandb: ERROR Problem finishing run
Exception ignored in atexit callback: <bound method rank_zero_only.<locals>.wrapper of <safe_rlhf.logger.Logger object at 0x1551041f9150>>
Traceback (most recent call last):
File "/home/hansirui_1st/jiayi/resist/setting3/safe_rlhf/utils.py", line 212, in wrapper
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/home/hansirui_1st/jiayi/resist/setting3/safe_rlhf/logger.py", line 183, in close
self.wandb.finish()
File "/aifs4su/hansirui_1st/miniconda3/envs/by-align/lib/python3.11/site-packages/wandb/sdk/wandb_run.py", line 449, in wrapper
return func(self, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/aifs4su/hansirui_1st/miniconda3/envs/by-align/lib/python3.11/site-packages/wandb/sdk/wandb_run.py", line 391, in wrapper
return func(self, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/aifs4su/hansirui_1st/miniconda3/envs/by-align/lib/python3.11/site-packages/wandb/sdk/wandb_run.py", line 2106, in finish
return self._finish(exit_code)
^^^^^^^^^^^^^^^^^^^^^^^
File "/aifs4su/hansirui_1st/miniconda3/envs/by-align/lib/python3.11/site-packages/wandb/sdk/wandb_run.py", line 2127, in _finish
self._atexit_cleanup(exit_code=exit_code)
File "/aifs4su/hansirui_1st/miniconda3/envs/by-align/lib/python3.11/site-packages/wandb/sdk/wandb_run.py", line 2352, in _atexit_cleanup
self._on_finish()
File "/aifs4su/hansirui_1st/miniconda3/envs/by-align/lib/python3.11/site-packages/wandb/sdk/wandb_run.py", line 2609, in _on_finish
wait_with_progress(
File "/aifs4su/hansirui_1st/miniconda3/envs/by-align/lib/python3.11/site-packages/wandb/sdk/mailbox/wait_with_progress.py", line 24, in wait_with_progress
return wait_all_with_progress(
^^^^^^^^^^^^^^^^^^^^^^^
File "/aifs4su/hansirui_1st/miniconda3/envs/by-align/lib/python3.11/site-packages/wandb/sdk/mailbox/wait_with_progress.py", line 87, in wait_all_with_progress
return asyncio_compat.run(progress_loop_with_timeout)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/aifs4su/hansirui_1st/miniconda3/envs/by-align/lib/python3.11/site-packages/wandb/sdk/lib/asyncio_compat.py", line 27, in run
future = executor.submit(runner.run, fn)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/aifs4su/hansirui_1st/miniconda3/envs/by-align/lib/python3.11/concurrent/futures/thread.py", line 169, in submit
raise RuntimeError('cannot schedule new futures after '
RuntimeError: cannot schedule new futures after interpreter shutdown
|