Lab1806 commited on
Commit
207ec8a
·
verified ·
1 Parent(s): 0e74032

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -1
README.md CHANGED
@@ -26,7 +26,7 @@ The FairyR1 model represents a further exploration of our earlier work [TinyR1](
26
 
27
  In this effort, we overhauled the distillation data pipeline: raw examples from datasets such as AIMO/NuminaMath-1.5 for mathematics and OpenThoughts-114k for code were first passed through multiple 'teacher' models to generate candidate answers. These candidates were then carefully selected, restructured, and refined, especially for the chain-of-thought(CoT). Subsequently, we applied multi-stage filtering—including automated correctness checks for math problems and length-based selection (2K–8K tokens for math samples, 4K–8K tokens for code samples). This yielded two focused training sets of roughly 6.6K math examples and 3.8K code examples.
28
 
29
- On the modeling side, rather than training three separate specialists as before, we limited our scope to just two domain experts (math and code), each trained independently under identical hyperparameters (e.g., learning rate and batch size) for about five epochs. We then fused these experts into a single 32B-parameter model using the [AcreeFusion](https://arxiv.org/pdf/2403.13257) tool. By streamlining both the data distillation workflow and the specialist-model merging process, FairyR1 achieves task-competitive results with only a fraction of the parameters and computational cost of much larger models.
30
 
31
  ## Result Analysis and Key Contributions:
32
 
 
26
 
27
  In this effort, we overhauled the distillation data pipeline: raw examples from datasets such as AIMO/NuminaMath-1.5 for mathematics and OpenThoughts-114k for code were first passed through multiple 'teacher' models to generate candidate answers. These candidates were then carefully selected, restructured, and refined, especially for the chain-of-thought(CoT). Subsequently, we applied multi-stage filtering—including automated correctness checks for math problems and length-based selection (2K–8K tokens for math samples, 4K–8K tokens for code samples). This yielded two focused training sets of roughly 6.6K math examples and 3.8K code examples.
28
 
29
+ On the modeling side, rather than training three separate specialists as before, we limited our scope to just two domain experts (math and code), each trained independently under identical hyperparameters (e.g., learning rate and batch size) for about five epochs. We then fused these experts into a single 32B-parameter model using the [ArceeFusion](https://arxiv.org/pdf/2403.13257) tool. By streamlining both the data distillation workflow and the specialist-model merging process, FairyR1 achieves task-competitive results with only a fraction of the parameters and computational cost of much larger models.
30
 
31
  ## Result Analysis and Key Contributions:
32