Update README.md
Browse files
README.md
CHANGED
|
@@ -1,199 +1,122 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
library_name: transformers
|
| 3 |
-
tags: []
|
| 4 |
---
|
| 5 |
|
| 6 |
-
# Model Card for Model ID
|
| 7 |
|
| 8 |
-
|
| 9 |
|
|
|
|
| 10 |
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
|
| 18 |
-
This
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
|
| 28 |
-
### Model Sources [optional]
|
| 29 |
|
| 30 |
-
|
| 31 |
|
| 32 |
-
-
|
| 33 |
-
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
|
| 40 |
-
|
| 41 |
|
| 42 |
-
|
| 43 |
|
| 44 |
-
|
|
|
|
| 45 |
|
| 46 |
-
|
|
|
|
| 47 |
|
| 48 |
-
|
|
|
|
| 49 |
|
| 50 |
-
|
| 51 |
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
-
|
|
|
|
|
|
|
| 59 |
|
| 60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
|
| 62 |
-
|
| 63 |
|
| 64 |
-
|
| 65 |
|
| 66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
|
| 68 |
-
|
| 69 |
|
| 70 |
-
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
-
|
| 82 |
-
[More Information Needed]
|
| 83 |
-
|
| 84 |
-
### Training Procedure
|
| 85 |
-
|
| 86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
-
|
| 88 |
-
#### Preprocessing [optional]
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#### Training Hyperparameters
|
| 94 |
-
|
| 95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
-
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
|
|
|
| 1 |
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- PKU-ML/Erdos
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
metrics:
|
| 8 |
+
- accuracy
|
| 9 |
+
base_model:
|
| 10 |
+
- Qwen/Qwen2.5-7B-Instruct
|
| 11 |
+
pipeline_tag: text-generation
|
| 12 |
+
tags:
|
| 13 |
+
- graph
|
| 14 |
+
- chat
|
| 15 |
library_name: transformers
|
|
|
|
| 16 |
---
|
| 17 |
|
|
|
|
| 18 |
|
| 19 |
+
# G1-Direct-SFT-7B
|
| 20 |
|
| 21 |
+
## Introduction
|
| 22 |
|
| 23 |
+
G1 is the series of large language models trained on our benchmark [Erdos](https://huggingface.co/datasets/PKU-ML/Erdos) for solving graph reasoning tasks, based on Qwen2.5-Instruct.
|
| 24 |
+
We apply Group Relative Policy Optimization (GRPO) for reinforcement learning with supervised finetuning as a prelimary step.
|
| 25 |
|
| 26 |
+
G1 brings the following improvements:
|
| 27 |
|
| 28 |
+
- **Significant improvement on graph reasoning**: G1 models achieve up to 46% improvement over baselines on Erdős, with the 7B variant matching OpenAI’s o3-mini and the 3B model surpassing Qwen2.5-72B-Instruct by notable margins.
|
| 29 |
+
- **Strong Generalization to unseen graph tasks**: G1 exhibits zero-shot generalization on unseen graph tasks, improving performance on *other graph reasoning benchmarks* (GraphWiz, GraphArena) and *real-world graphs* (Cora, PubMed).
|
| 30 |
+
- **NO Compromise on general reasoning**: Crucially, G1 preserves general reasoning ability (GSM8K, MATH, MMLU-Pro), proving its versatility.
|
| 31 |
|
|
|
|
| 32 |
|
| 33 |
+
**This repo contains the G1-Direct-SFT-7B model**, which has the following features:
|
| 34 |
+
- Type: Causal Language Models
|
| 35 |
+
- Training Stage: SFT
|
| 36 |
+
- Architecture: the same with Qwen2.5-Instruct
|
| 37 |
+
- Number of Parameters: 7.62B
|
| 38 |
+
- Context Length: Full 32,768 tokens and generation 8192 tokens
|
| 39 |
|
| 40 |
+
For more details, please refer to our [paper](https://arxiv.org/pdf/2505.18499) and [GitHub](https://github.com/PKU-ML/G1/tree/main).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
|
|
|
| 42 |
|
| 43 |
+
## Requirements
|
| 44 |
|
| 45 |
+
The model is trained based on Qwen/Qwen2.5-7B-Instruct. The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
|
|
|
|
|
|
|
| 46 |
|
| 47 |
+
With `transformers<4.37.0`, you will encounter the following error:
|
| 48 |
+
```
|
| 49 |
+
KeyError: 'qwen2'
|
| 50 |
+
```
|
| 51 |
|
|
|
|
| 52 |
|
| 53 |
+
## Quickstart
|
| 54 |
|
| 55 |
+
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
|
| 56 |
|
| 57 |
+
```python
|
| 58 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 59 |
|
| 60 |
+
INSTRUCTION_TEMPLATE = """
|
| 61 |
+
{instruction}
|
| 62 |
|
| 63 |
+
Solve the above problem efficiently and clearly. The last line of your response should be of the following format: 'Therefore, the final answer is: $\\boxed{{ANSWER}}$. I hope it is correct' (without quotes) where ANSWER is just the final number or expression that solves the problem. Think step by step before answering.
|
| 64 |
+
""".strip()
|
| 65 |
|
| 66 |
+
model_name = "PKU-ML/G1-Direct-SFT-7B"
|
| 67 |
|
| 68 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 69 |
+
model_name,
|
| 70 |
+
torch_dtype="auto",
|
| 71 |
+
device_map="auto"
|
| 72 |
+
)
|
| 73 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 74 |
|
| 75 |
+
prompt = "The task is to determine the degree centrality of a node in the graph.\n\n"\
|
| 76 |
+
"Degree centrality for a node is the fraction of nodes it is connected to.\n\n"\
|
| 77 |
+
"Here is an undirected graph containing nodes from 1 to 15. The edges are: (1, 15), (15, 11), (2, 3), (2, 6), (3, 6), (3, 7), (6, 7), (6, 8), (7, 8), (7, 14), (4, 10), (10, 5), (10, 12), (8, 14), (8, 9), (12, 11), (12, 13).\n\n"\
|
| 78 |
+
"Question: What is the degree centrality of node 2 in the graph?\n\n"\
|
| 79 |
+
"You need to format your answer as a float number."
|
| 80 |
+
messages = [
|
| 81 |
+
{"role": "user", "content": INSTRUCTION_TEMPLATE.format(instruction=prompt)}
|
| 82 |
+
]
|
| 83 |
+
text = tokenizer.apply_chat_template(
|
| 84 |
+
messages,
|
| 85 |
+
tokenize=False,
|
| 86 |
+
add_generation_prompt=True
|
| 87 |
+
)
|
| 88 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 89 |
|
| 90 |
+
generated_ids = model.generate(
|
| 91 |
+
**model_inputs,
|
| 92 |
+
max_new_tokens=4096,
|
| 93 |
+
top_p=0.95,
|
| 94 |
+
top_k=30,
|
| 95 |
+
temperature=0.6
|
| 96 |
+
)
|
| 97 |
+
generated_ids = [
|
| 98 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
| 99 |
+
]
|
| 100 |
|
| 101 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 102 |
+
print(response)
|
| 103 |
+
```
|
| 104 |
|
|
|
|
| 105 |
|
| 106 |
+
## Evaluation & Performance
|
| 107 |
|
| 108 |
+
Detailed evaluation results are reported in this [📑 paper](https://arxiv.org/pdf/2505.18499).
|
| 109 |
|
|
|
|
| 110 |
|
| 111 |
+
## Citation
|
| 112 |
|
| 113 |
+
If you find our work helpful, feel free to give us a cite.
|
| 114 |
|
| 115 |
+
```
|
| 116 |
+
@article{guo2025g1,
|
| 117 |
+
title={G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning},
|
| 118 |
+
author={Guo, Xiaojun and Li, Ang and Wang, Yifei and Jegelka, Stefanie and Wang, Yisen},
|
| 119 |
+
journal={arXiv preprint arXiv:2505.18499},
|
| 120 |
+
year={2025}
|
| 121 |
+
}
|
| 122 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|