Paradox455 commited on
Commit
cd0ba53
·
1 Parent(s): 1c107d3

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -178.78 +/- 51.28
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f39ca772670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f39ca772700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f39ca772790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f39ca772820>", "_build": "<function ActorCriticPolicy._build at 0x7f39ca7728b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f39ca772940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f39ca7729d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f39ca772a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f39ca772af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f39ca772b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f39ca772c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f39ca772ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f39ca76b8d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673858942832569764, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE0MwL0HTVI/+7umvjl3Nb+cxS8+W8A1PQAAAAAAAAAAZpTavaTAvz9ObCu/R2AdPrQe3T2tPZU9AAAAAAAAAABdkVy+vOJAP+3ur77sakC/MQuUPYUz3bsAAAAAAAAAAC0io777OBk/vrL8vgOsYr8IOoG9u3jGvAAAAAAAAAAAVtHpPq6IqD4Wld8+Qt+Nv62/qz5m1fU9AAAAAAAAAACAyn+9t7hwP+aWg75pYky/0V5ePv5ZLD4AAAAAAAAAAJPDFT8WfRo/s6I4P0RxTr8MBZg9413+OgAAAAAAAAAAdnVEv+gnmb4Q81S/Q3j6vrPBBb8Fx5e/AACAPwAAAADNVCk+iz0QP4pinz3fOEu/vhRUPhIQD70AAAAAAAAAABBNWb5atJ8/8gEkvxYWAb8QdV49LnsivgAAAAAAAAAASFRMv0i22L2IONc7DTaXPBdv9Dffiag7AACAPwAAgD9W3yc/QQsbP3DXDz+bv1W/sZysPgw8zD0AAAAAAAAAAF0wrD5Zl54+goYiP50/nL+qrM49hUUAPgAAAAAAAAAA2nnFveYsST+czYy+bYqDv6hzdDxKe629AAAAAAAAAACaACS+VPlPP06rZj1ceDK/7IxqvoUM5j0AAAAAAAAAAJpC8Dygp6c/+KtrPqAB3L7WD9i8K3NmvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8gpET8okN8CUhpRSlIwBbJRLf4wBdJRHQHHcDyjHn2Z1fZQoaAZoCWgPQwh23zE89glRwJSGlFKUaBVLdWgWR0Bx3Ewg1WKedX2UKGgGaAloD0MIsOWV622/NcCUhpRSlGgVS1ZoFkdAcdzhM8HObHV9lChoBmgJaA9DCL+2fvrPsFnAlIaUUpRoFUtZaBZHQHHdJgkTpPh1fZQoaAZoCWgPQwjRdeEH5y1JwJSGlFKUaBVLa2gWR0Bx3hCCz1K5dX2UKGgGaAloD0MIstR6v9EfU8CUhpRSlGgVS0xoFkdAcd42OQyRCHV9lChoBmgJaA9DCKPKMO4GEUbAlIaUUpRoFUt+aBZHQHHee23KB/Z1fZQoaAZoCWgPQwjjb3uCxAVTwJSGlFKUaBVLXWgWR0Bx3sse4kNXdX2UKGgGaAloD0MICoLHt3dPSsCUhpRSlGgVS3ZoFkdAcd8lTFVDKHV9lChoBmgJaA9DCE7xuKgWPGHAlIaUUpRoFUtvaBZHQHHfPOUt7KJ1fZQoaAZoCWgPQwim0HmNXW5DwJSGlFKUaBVLVGgWR0Bx33I0ZWJadX2UKGgGaAloD0MIOiF00CV3bcCUhpRSlGgVS1xoFkdAceEZ4fOlf3V9lChoBmgJaA9DCAXbiCe7vVXAlIaUUpRoFUtnaBZHQHHhVSflIVd1fZQoaAZoCWgPQwhi9UcYBkBWwJSGlFKUaBVLf2gWR0Bx4YJ+lTFVdX2UKGgGaAloD0MIfv0QGyzcNMCUhpRSlGgVS3RoFkdAceMJ5VwPy3V9lChoBmgJaA9DCM5V8xyRxUrAlIaUUpRoFUufaBZHQHHjMVQAMlV1fZQoaAZoCWgPQwh3EDtT6G5XwJSGlFKUaBVLbmgWR0Bx4+qioKlYdX2UKGgGaAloD0MIBkzg1t2fVcCUhpRSlGgVS1BoFkdAceQiY9gWrXV9lChoBmgJaA9DCBv0pbc/MlLAlIaUUpRoFUtpaBZHQHHkcGorFwV1fZQoaAZoCWgPQwjN5JttbrVUwJSGlFKUaBVLUWgWR0Bx5IywfQrudX2UKGgGaAloD0MIokJ1c/HeUMCUhpRSlGgVS2ZoFkdAceSGkN4JNXV9lChoBmgJaA9DCI0o7Q2+HFXAlIaUUpRoFUt8aBZHQHHlOGCZnct1fZQoaAZoCWgPQwhT7Ggc6slTwJSGlFKUaBVLZ2gWR0Bx5V+iJwbVdX2UKGgGaAloD0MIuw1qv7XZU8CUhpRSlGgVS15oFkdAceXHc1wYL3V9lChoBmgJaA9DCLUy4Zf6fUXAlIaUUpRoFUtMaBZHQHHmsw5/9YR1fZQoaAZoCWgPQwiXdf9YiDNQwJSGlFKUaBVLcWgWR0Bx51F4LThHdX2UKGgGaAloD0MIv+/fvDgxT8CUhpRSlGgVS3NoFkdAcedCemNzbXV9lChoBmgJaA9DCLgjnBa86D/AlIaUUpRoFUuKaBZHQHHn02gnMMZ1fZQoaAZoCWgPQwiIad/cX8xSwJSGlFKUaBVLY2gWR0Bx6ACuEEkjdX2UKGgGaAloD0MImPijqDNLSsCUhpRSlGgVS1BoFkdAceigmZ3LWHV9lChoBmgJaA9DCI6xE16ClUrAlIaUUpRoFUtEaBZHQHHoue4Cp3p1fZQoaAZoCWgPQwhYOEnzxyRMwJSGlFKUaBVLb2gWR0Bx6SHUMG5ddX2UKGgGaAloD0MIqvOo+L82VsCUhpRSlGgVS1toFkdAcek3wCr923V9lChoBmgJaA9DCJNvtrkxClPAlIaUUpRoFUtRaBZHQHHqisny/bl1fZQoaAZoCWgPQwjr/Ntlv4RXwJSGlFKUaBVLaWgWR0Bx66kAPuohdX2UKGgGaAloD0MIo1pEFJM+WcCUhpRSlGgVS19oFkdAcevA2Q4jr3V9lChoBmgJaA9DCHL9uz5zwFnAlIaUUpRoFUt7aBZHQHHs203Ov+x1fZQoaAZoCWgPQwgZINEEit5RwJSGlFKUaBVLVWgWR0Bx7Skadc0MdX2UKGgGaAloD0MIBwySPq3GT8CUhpRSlGgVS4NoFkdAce2AT7EYO3V9lChoBmgJaA9DCDkKEAUzEE/AlIaUUpRoFUtSaBZHQHHtul9Brvd1fZQoaAZoCWgPQwi5quy7IqxowJSGlFKUaBVLkWgWR0Bx7fZOBUaRdX2UKGgGaAloD0MI4bchxmsgSsCUhpRSlGgVS0NoFkdAce3/XXiBG3V9lChoBmgJaA9DCPT4vU1/xFXAlIaUUpRoFUtuaBZHQHHuR/ZuhsZ1fZQoaAZoCWgPQwjbwvNSsTZVwJSGlFKUaBVLhWgWR0Bx7uSzPa+OdX2UKGgGaAloD0MIhLcHISCVVcCUhpRSlGgVS15oFkdAce9OPNmlInV9lChoBmgJaA9DCCfcK/NWPT/AlIaUUpRoFUtFaBZHQHHvfbCaZx91fZQoaAZoCWgPQwifc7frpRdawJSGlFKUaBVLeWgWR0Bx75telbeNdX2UKGgGaAloD0MI/HH75ZMZUcCUhpRSlGgVS2NoFkdAcfAQ1aW5Y3V9lChoBmgJaA9DCK7zb5f9uVrAlIaUUpRoFUuNaBZHQHHxsdtEXtV1fZQoaAZoCWgPQwhtyaoIN9tPwJSGlFKUaBVLT2gWR0Bx8tKQJXyRdX2UKGgGaAloD0MIHEKVmj3qR8CUhpRSlGgVS0xoFkdAcfMvwEyLynV9lChoBmgJaA9DCG5S0Vj7UzvAlIaUUpRoFUtLaBZHQHHzZGnXNC91fZQoaAZoCWgPQwhRvwtbMw9hwJSGlFKUaBVLUmgWR0Bx83Nke6qbdX2UKGgGaAloD0MILSKKyRsgTcCUhpRSlGgVS2xoFkdAcfOR+BpYcXV9lChoBmgJaA9DCBHGT+PeRVDAlIaUUpRoFUt9aBZHQHH0qQJXyRV1fZQoaAZoCWgPQwhnYyXmWdBZwJSGlFKUaBVLXWgWR0Bx9PjWCmMwdX2UKGgGaAloD0MIKAr0iTy7QcCUhpRSlGgVS2toFkdAcfWmYBvJinV9lChoBmgJaA9DCK2JBb6iNFHAlIaUUpRoFUtHaBZHQHH26RMewLV1fZQoaAZoCWgPQwjv/nivWvxXwJSGlFKUaBVLb2gWR0Bx94Q9RrJsdX2UKGgGaAloD0MIVmXfFcE1TsCUhpRSlGgVS5RoFkdAcfe2TPjXF3V9lChoBmgJaA9DCCzWcJF7ckbAlIaUUpRoFUtmaBZHQHH3vpY9xId1fZQoaAZoCWgPQwjPvBx2329WwJSGlFKUaBVLdmgWR0Bx+EI7eVLSdX2UKGgGaAloD0MIG4S53csRQsCUhpRSlGgVS4BoFkdAcfhpOvdM03V9lChoBmgJaA9DCLywNVt5YSTAlIaUUpRoFUuCaBZHQHH5abrkbP11fZQoaAZoCWgPQwgrE36pnwNDwJSGlFKUaBVLYWgWR0Bx+qYLLIPtdX2UKGgGaAloD0MIK8JNRpVvaMCUhpRSlGgVS2RoFkdAcfstSAH3UXV9lChoBmgJaA9DCOY8Y1+yD1LAlIaUUpRoFUttaBZHQHH7UJv5xip1fZQoaAZoCWgPQwjzrQ/rDbJhwJSGlFKUaBVLZ2gWR0Bx+3zRQaaTdX2UKGgGaAloD0MIB3jSwmWzRMCUhpRSlGgVS2doFkdAcfub+tKZlXV9lChoBmgJaA9DCAr4NZIE50nAlIaUUpRoFUtNaBZHQHH+DFuNxVB1fZQoaAZoCWgPQwh2xYzw9mASwJSGlFKUaBVLdmgWR0Bx/nywwCbMdX2UKGgGaAloD0MIQl2kUBbNVMCUhpRSlGgVS05oFkdAcf6yGSIP9XV9lChoBmgJaA9DCCHLgok/bEvAlIaUUpRoFUt8aBZHQHH+p3X7LuB1fZQoaAZoCWgPQwiAtWrXhOBVwJSGlFKUaBVLdmgWR0Bx/zuNPxhEdX2UKGgGaAloD0MIHCjwTj5jTsCUhpRSlGgVS1VoFkdAcf9so2GZeHV9lChoBmgJaA9DCISc9/9xPFjAlIaUUpRoFUtiaBZHQHH/vwmVqvh1fZQoaAZoCWgPQwiCrKdWXzNVwJSGlFKUaBVLdWgWR0ByAHrY5DJEdX2UKGgGaAloD0MIiudsAaFjU8CUhpRSlGgVS3BoFkdAcgCmQKa5PXV9lChoBmgJaA9DCOqScYxkeVLAlIaUUpRoFUtgaBZHQHIBPDYRNAV1fZQoaAZoCWgPQwgXYvVHGMZBwJSGlFKUaBVLUGgWR0ByAd4u9OARdX2UKGgGaAloD0MIp3hcVAuyYsCUhpRSlGgVS2RoFkdAcgP8f3evZHV9lChoBmgJaA9DCAlszsEz4F3AlIaUUpRoFUtuaBZHQHID8La24NJ1fZQoaAZoCWgPQwiGHFvPENxTwJSGlFKUaBVLa2gWR0ByBCbmU4aQdX2UKGgGaAloD0MIodY07zhcXsCUhpRSlGgVS21oFkdAcgSdXT3IuHV9lChoBmgJaA9DCNKm6h7ZWVTAlIaUUpRoFUtRaBZHQHIFgPNFBpp1fZQoaAZoCWgPQwi4HRoWoyxJwJSGlFKUaBVLVmgWR0ByBbYoRZlndX2UKGgGaAloD0MIonxBCwkwL8CUhpRSlGgVS1BoFkdAcgYpEQXhwXV9lChoBmgJaA9DCDs1lxsM5UbAlIaUUpRoFUtPaBZHQHIHZnHvMKV1fZQoaAZoCWgPQwgVrdwLzDhKwJSGlFKUaBVLcGgWR0ByB3vphWo4dX2UKGgGaAloD0MIaQBvgQRHQcCUhpRSlGgVS3hoFkdAcgjGbTc7AHV9lChoBmgJaA9DCPILryR5yVTAlIaUUpRoFUt0aBZHQHIJEn9ehPF1fZQoaAZoCWgPQwibrbzkf85LwJSGlFKUaBVLV2gWR0ByCVpTMqz7dX2UKGgGaAloD0MIt376z5p/BsCUhpRSlGgVS3hoFkdAcgn61b7j1nV9lChoBmgJaA9DCBIvT+cKH2LAlIaUUpRoFUtzaBZHQHIKY8EFGG51fZQoaAZoCWgPQwhLdmwE4idNwJSGlFKUaBVLbGgWR0ByCqXb/Ot5dX2UKGgGaAloD0MI2ZPA5hygUcCUhpRSlGgVS1poFkdAcgyHim2srHV9lChoBmgJaA9DCAw6IXTQtVPAlIaUUpRoFUtRaBZHQHIM6VUuL751fZQoaAZoCWgPQwjtYS8UsJ9FwJSGlFKUaBVLZmgWR0ByDQ/PgNwzdX2UKGgGaAloD0MIC7Q7pBj8UcCUhpRSlGgVS2RoFkdAcg5J3xFy73V9lChoBmgJaA9DCDT0T3Cx7lzAlIaUUpRoFUt5aBZHQHIOisXBP9F1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5dc2f30687690156f6886fccc08139ed8ff89ad3c6de1c664eaa83896f95fe70
3
+ size 147287
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f39ca772670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f39ca772700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f39ca772790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f39ca772820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f39ca7728b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f39ca772940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f39ca7729d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f39ca772a60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f39ca772af0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f39ca772b80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f39ca772c10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f39ca772ca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f39ca76b8d0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 114688,
47
+ "_total_timesteps": 100000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673858942832569764,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE0MwL0HTVI/+7umvjl3Nb+cxS8+W8A1PQAAAAAAAAAAZpTavaTAvz9ObCu/R2AdPrQe3T2tPZU9AAAAAAAAAABdkVy+vOJAP+3ur77sakC/MQuUPYUz3bsAAAAAAAAAAC0io777OBk/vrL8vgOsYr8IOoG9u3jGvAAAAAAAAAAAVtHpPq6IqD4Wld8+Qt+Nv62/qz5m1fU9AAAAAAAAAACAyn+9t7hwP+aWg75pYky/0V5ePv5ZLD4AAAAAAAAAAJPDFT8WfRo/s6I4P0RxTr8MBZg9413+OgAAAAAAAAAAdnVEv+gnmb4Q81S/Q3j6vrPBBb8Fx5e/AACAPwAAAADNVCk+iz0QP4pinz3fOEu/vhRUPhIQD70AAAAAAAAAABBNWb5atJ8/8gEkvxYWAb8QdV49LnsivgAAAAAAAAAASFRMv0i22L2IONc7DTaXPBdv9Dffiag7AACAPwAAgD9W3yc/QQsbP3DXDz+bv1W/sZysPgw8zD0AAAAAAAAAAF0wrD5Zl54+goYiP50/nL+qrM49hUUAPgAAAAAAAAAA2nnFveYsST+czYy+bYqDv6hzdDxKe629AAAAAAAAAACaACS+VPlPP06rZj1ceDK/7IxqvoUM5j0AAAAAAAAAAJpC8Dygp6c/+KtrPqAB3L7WD9i8K3NmvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.1468799999999999,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8gpET8okN8CUhpRSlIwBbJRLf4wBdJRHQHHcDyjHn2Z1fZQoaAZoCWgPQwh23zE89glRwJSGlFKUaBVLdWgWR0Bx3Ewg1WKedX2UKGgGaAloD0MIsOWV622/NcCUhpRSlGgVS1ZoFkdAcdzhM8HObHV9lChoBmgJaA9DCL+2fvrPsFnAlIaUUpRoFUtZaBZHQHHdJgkTpPh1fZQoaAZoCWgPQwjRdeEH5y1JwJSGlFKUaBVLa2gWR0Bx3hCCz1K5dX2UKGgGaAloD0MIstR6v9EfU8CUhpRSlGgVS0xoFkdAcd42OQyRCHV9lChoBmgJaA9DCKPKMO4GEUbAlIaUUpRoFUt+aBZHQHHee23KB/Z1fZQoaAZoCWgPQwjjb3uCxAVTwJSGlFKUaBVLXWgWR0Bx3sse4kNXdX2UKGgGaAloD0MICoLHt3dPSsCUhpRSlGgVS3ZoFkdAcd8lTFVDKHV9lChoBmgJaA9DCE7xuKgWPGHAlIaUUpRoFUtvaBZHQHHfPOUt7KJ1fZQoaAZoCWgPQwim0HmNXW5DwJSGlFKUaBVLVGgWR0Bx33I0ZWJadX2UKGgGaAloD0MIOiF00CV3bcCUhpRSlGgVS1xoFkdAceEZ4fOlf3V9lChoBmgJaA9DCAXbiCe7vVXAlIaUUpRoFUtnaBZHQHHhVSflIVd1fZQoaAZoCWgPQwhi9UcYBkBWwJSGlFKUaBVLf2gWR0Bx4YJ+lTFVdX2UKGgGaAloD0MIfv0QGyzcNMCUhpRSlGgVS3RoFkdAceMJ5VwPy3V9lChoBmgJaA9DCM5V8xyRxUrAlIaUUpRoFUufaBZHQHHjMVQAMlV1fZQoaAZoCWgPQwh3EDtT6G5XwJSGlFKUaBVLbmgWR0Bx4+qioKlYdX2UKGgGaAloD0MIBkzg1t2fVcCUhpRSlGgVS1BoFkdAceQiY9gWrXV9lChoBmgJaA9DCBv0pbc/MlLAlIaUUpRoFUtpaBZHQHHkcGorFwV1fZQoaAZoCWgPQwjN5JttbrVUwJSGlFKUaBVLUWgWR0Bx5IywfQrudX2UKGgGaAloD0MIokJ1c/HeUMCUhpRSlGgVS2ZoFkdAceSGkN4JNXV9lChoBmgJaA9DCI0o7Q2+HFXAlIaUUpRoFUt8aBZHQHHlOGCZnct1fZQoaAZoCWgPQwhT7Ggc6slTwJSGlFKUaBVLZ2gWR0Bx5V+iJwbVdX2UKGgGaAloD0MIuw1qv7XZU8CUhpRSlGgVS15oFkdAceXHc1wYL3V9lChoBmgJaA9DCLUy4Zf6fUXAlIaUUpRoFUtMaBZHQHHmsw5/9YR1fZQoaAZoCWgPQwiXdf9YiDNQwJSGlFKUaBVLcWgWR0Bx51F4LThHdX2UKGgGaAloD0MIv+/fvDgxT8CUhpRSlGgVS3NoFkdAcedCemNzbXV9lChoBmgJaA9DCLgjnBa86D/AlIaUUpRoFUuKaBZHQHHn02gnMMZ1fZQoaAZoCWgPQwiIad/cX8xSwJSGlFKUaBVLY2gWR0Bx6ACuEEkjdX2UKGgGaAloD0MImPijqDNLSsCUhpRSlGgVS1BoFkdAceigmZ3LWHV9lChoBmgJaA9DCI6xE16ClUrAlIaUUpRoFUtEaBZHQHHoue4Cp3p1fZQoaAZoCWgPQwhYOEnzxyRMwJSGlFKUaBVLb2gWR0Bx6SHUMG5ddX2UKGgGaAloD0MIqvOo+L82VsCUhpRSlGgVS1toFkdAcek3wCr923V9lChoBmgJaA9DCJNvtrkxClPAlIaUUpRoFUtRaBZHQHHqisny/bl1fZQoaAZoCWgPQwjr/Ntlv4RXwJSGlFKUaBVLaWgWR0Bx66kAPuohdX2UKGgGaAloD0MIo1pEFJM+WcCUhpRSlGgVS19oFkdAcevA2Q4jr3V9lChoBmgJaA9DCHL9uz5zwFnAlIaUUpRoFUt7aBZHQHHs203Ov+x1fZQoaAZoCWgPQwgZINEEit5RwJSGlFKUaBVLVWgWR0Bx7Skadc0MdX2UKGgGaAloD0MIBwySPq3GT8CUhpRSlGgVS4NoFkdAce2AT7EYO3V9lChoBmgJaA9DCDkKEAUzEE/AlIaUUpRoFUtSaBZHQHHtul9Brvd1fZQoaAZoCWgPQwi5quy7IqxowJSGlFKUaBVLkWgWR0Bx7fZOBUaRdX2UKGgGaAloD0MI4bchxmsgSsCUhpRSlGgVS0NoFkdAce3/XXiBG3V9lChoBmgJaA9DCPT4vU1/xFXAlIaUUpRoFUtuaBZHQHHuR/ZuhsZ1fZQoaAZoCWgPQwjbwvNSsTZVwJSGlFKUaBVLhWgWR0Bx7uSzPa+OdX2UKGgGaAloD0MIhLcHISCVVcCUhpRSlGgVS15oFkdAce9OPNmlInV9lChoBmgJaA9DCCfcK/NWPT/AlIaUUpRoFUtFaBZHQHHvfbCaZx91fZQoaAZoCWgPQwifc7frpRdawJSGlFKUaBVLeWgWR0Bx75telbeNdX2UKGgGaAloD0MI/HH75ZMZUcCUhpRSlGgVS2NoFkdAcfAQ1aW5Y3V9lChoBmgJaA9DCK7zb5f9uVrAlIaUUpRoFUuNaBZHQHHxsdtEXtV1fZQoaAZoCWgPQwhtyaoIN9tPwJSGlFKUaBVLT2gWR0Bx8tKQJXyRdX2UKGgGaAloD0MIHEKVmj3qR8CUhpRSlGgVS0xoFkdAcfMvwEyLynV9lChoBmgJaA9DCG5S0Vj7UzvAlIaUUpRoFUtLaBZHQHHzZGnXNC91fZQoaAZoCWgPQwhRvwtbMw9hwJSGlFKUaBVLUmgWR0Bx83Nke6qbdX2UKGgGaAloD0MILSKKyRsgTcCUhpRSlGgVS2xoFkdAcfOR+BpYcXV9lChoBmgJaA9DCBHGT+PeRVDAlIaUUpRoFUt9aBZHQHH0qQJXyRV1fZQoaAZoCWgPQwhnYyXmWdBZwJSGlFKUaBVLXWgWR0Bx9PjWCmMwdX2UKGgGaAloD0MIKAr0iTy7QcCUhpRSlGgVS2toFkdAcfWmYBvJinV9lChoBmgJaA9DCK2JBb6iNFHAlIaUUpRoFUtHaBZHQHH26RMewLV1fZQoaAZoCWgPQwjv/nivWvxXwJSGlFKUaBVLb2gWR0Bx94Q9RrJsdX2UKGgGaAloD0MIVmXfFcE1TsCUhpRSlGgVS5RoFkdAcfe2TPjXF3V9lChoBmgJaA9DCCzWcJF7ckbAlIaUUpRoFUtmaBZHQHH3vpY9xId1fZQoaAZoCWgPQwjPvBx2329WwJSGlFKUaBVLdmgWR0Bx+EI7eVLSdX2UKGgGaAloD0MIG4S53csRQsCUhpRSlGgVS4BoFkdAcfhpOvdM03V9lChoBmgJaA9DCLywNVt5YSTAlIaUUpRoFUuCaBZHQHH5abrkbP11fZQoaAZoCWgPQwgrE36pnwNDwJSGlFKUaBVLYWgWR0Bx+qYLLIPtdX2UKGgGaAloD0MIK8JNRpVvaMCUhpRSlGgVS2RoFkdAcfstSAH3UXV9lChoBmgJaA9DCOY8Y1+yD1LAlIaUUpRoFUttaBZHQHH7UJv5xip1fZQoaAZoCWgPQwjzrQ/rDbJhwJSGlFKUaBVLZ2gWR0Bx+3zRQaaTdX2UKGgGaAloD0MIB3jSwmWzRMCUhpRSlGgVS2doFkdAcfub+tKZlXV9lChoBmgJaA9DCAr4NZIE50nAlIaUUpRoFUtNaBZHQHH+DFuNxVB1fZQoaAZoCWgPQwh2xYzw9mASwJSGlFKUaBVLdmgWR0Bx/nywwCbMdX2UKGgGaAloD0MIQl2kUBbNVMCUhpRSlGgVS05oFkdAcf6yGSIP9XV9lChoBmgJaA9DCCHLgok/bEvAlIaUUpRoFUt8aBZHQHH+p3X7LuB1fZQoaAZoCWgPQwiAtWrXhOBVwJSGlFKUaBVLdmgWR0Bx/zuNPxhEdX2UKGgGaAloD0MIHCjwTj5jTsCUhpRSlGgVS1VoFkdAcf9so2GZeHV9lChoBmgJaA9DCISc9/9xPFjAlIaUUpRoFUtiaBZHQHH/vwmVqvh1fZQoaAZoCWgPQwiCrKdWXzNVwJSGlFKUaBVLdWgWR0ByAHrY5DJEdX2UKGgGaAloD0MIiudsAaFjU8CUhpRSlGgVS3BoFkdAcgCmQKa5PXV9lChoBmgJaA9DCOqScYxkeVLAlIaUUpRoFUtgaBZHQHIBPDYRNAV1fZQoaAZoCWgPQwgXYvVHGMZBwJSGlFKUaBVLUGgWR0ByAd4u9OARdX2UKGgGaAloD0MIp3hcVAuyYsCUhpRSlGgVS2RoFkdAcgP8f3evZHV9lChoBmgJaA9DCAlszsEz4F3AlIaUUpRoFUtuaBZHQHID8La24NJ1fZQoaAZoCWgPQwiGHFvPENxTwJSGlFKUaBVLa2gWR0ByBCbmU4aQdX2UKGgGaAloD0MIodY07zhcXsCUhpRSlGgVS21oFkdAcgSdXT3IuHV9lChoBmgJaA9DCNKm6h7ZWVTAlIaUUpRoFUtRaBZHQHIFgPNFBpp1fZQoaAZoCWgPQwi4HRoWoyxJwJSGlFKUaBVLVmgWR0ByBbYoRZlndX2UKGgGaAloD0MIonxBCwkwL8CUhpRSlGgVS1BoFkdAcgYpEQXhwXV9lChoBmgJaA9DCDs1lxsM5UbAlIaUUpRoFUtPaBZHQHIHZnHvMKV1fZQoaAZoCWgPQwgVrdwLzDhKwJSGlFKUaBVLcGgWR0ByB3vphWo4dX2UKGgGaAloD0MIaQBvgQRHQcCUhpRSlGgVS3hoFkdAcgjGbTc7AHV9lChoBmgJaA9DCPILryR5yVTAlIaUUpRoFUt0aBZHQHIJEn9ehPF1fZQoaAZoCWgPQwibrbzkf85LwJSGlFKUaBVLV2gWR0ByCVpTMqz7dX2UKGgGaAloD0MIt376z5p/BsCUhpRSlGgVS3hoFkdAcgn61b7j1nV9lChoBmgJaA9DCBIvT+cKH2LAlIaUUpRoFUtzaBZHQHIKY8EFGG51fZQoaAZoCWgPQwhLdmwE4idNwJSGlFKUaBVLbGgWR0ByCqXb/Ot5dX2UKGgGaAloD0MI2ZPA5hygUcCUhpRSlGgVS1poFkdAcgyHim2srHV9lChoBmgJaA9DCAw6IXTQtVPAlIaUUpRoFUtRaBZHQHIM6VUuL751fZQoaAZoCWgPQwjtYS8UsJ9FwJSGlFKUaBVLZmgWR0ByDQ/PgNwzdX2UKGgGaAloD0MIC7Q7pBj8UcCUhpRSlGgVS2RoFkdAcg5J3xFy73V9lChoBmgJaA9DCDT0T3Cx7lzAlIaUUpRoFUt5aBZHQHIOisXBP9F1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 28,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2ea3eb3741067e508b227db2a6403317ccdc531742484fd39a4b79d4820feb6
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36acadbcaf782ca9198c7c57260e95f7db5eaa4b90e42e6c8829c44274a5b722
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (281 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -178.77897072834895, "std_reward": 51.28362419251929, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-16T08:57:18.211182"}