File size: 16,246 Bytes
2b395f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
#!/usr/bin/env python3
"""
Complete System Test for FRED ML
Tests the entire workflow: Streamlit β†’ Lambda β†’ S3 β†’ Reports
"""

import os
import sys
import json
import time
import boto3
import subprocess
from pathlib import Path
from datetime import datetime, timedelta

def print_header(title):
    """Print a formatted header"""
    print(f"\n{'='*60}")
    print(f"πŸ§ͺ {title}")
    print(f"{'='*60}")

def print_success(message):
    """Print success message"""
    print(f"βœ… {message}")

def print_error(message):
    """Print error message"""
    print(f"❌ {message}")

def print_warning(message):
    """Print warning message"""
    print(f"⚠️  {message}")

def print_info(message):
    """Print info message"""
    print(f"ℹ️  {message}")

def check_prerequisites():
    """Check if all prerequisites are met"""
    print_header("Checking Prerequisites")
    
    # Check Python version
    if sys.version_info < (3, 9):
        print_error("Python 3.9+ is required")
        return False
    print_success(f"Python {sys.version_info.major}.{sys.version_info.minor} detected")
    
    # Check required packages
    required_packages = ['boto3', 'pandas', 'numpy', 'requests']
    missing_packages = []
    
    for package in required_packages:
        try:
            __import__(package)
            print_success(f"{package} is available")
        except ImportError:
            missing_packages.append(package)
            print_error(f"{package} is missing")
    
    if missing_packages:
        print_error(f"Missing packages: {', '.join(missing_packages)}")
        print_info("Run: pip install -r requirements.txt")
        return False
    
    # Check AWS credentials
    try:
        sts = boto3.client('sts')
        identity = sts.get_caller_identity()
        print_success(f"AWS credentials configured for account: {identity['Account']}")
    except Exception as e:
        print_error(f"AWS credentials not configured: {e}")
        return False
    
    # Check AWS CLI
    try:
        result = subprocess.run(['aws', '--version'], capture_output=True, text=True, check=True)
        print_success("AWS CLI is available")
    except (subprocess.CalledProcessError, FileNotFoundError):
        print_warning("AWS CLI not found (optional)")
    
    return True

def test_aws_services():
    """Test AWS services connectivity"""
    print_header("Testing AWS Services")
    
    # Test S3
    try:
        s3 = boto3.client('s3', region_name='us-west-2')
        response = s3.head_bucket(Bucket='fredmlv1')
        print_success("S3 bucket 'fredmlv1' is accessible")
    except Exception as e:
        print_error(f"S3 bucket access failed: {e}")
        return False
    
    # Test Lambda
    try:
        lambda_client = boto3.client('lambda', region_name='us-west-2')
        response = lambda_client.get_function(FunctionName='fred-ml-processor')
        print_success("Lambda function 'fred-ml-processor' exists")
        print_info(f"Runtime: {response['Configuration']['Runtime']}")
        print_info(f"Memory: {response['Configuration']['MemorySize']} MB")
        print_info(f"Timeout: {response['Configuration']['Timeout']} seconds")
    except Exception as e:
        print_error(f"Lambda function not found: {e}")
        return False
    
    # Test SSM
    try:
        ssm = boto3.client('ssm', region_name='us-west-2')
        response = ssm.get_parameter(Name='/fred-ml/api-key', WithDecryption=True)
        api_key = response['Parameter']['Value']
        if api_key and api_key != 'your-fred-api-key-here':
            print_success("FRED API key is configured in SSM")
        else:
            print_error("FRED API key not properly configured")
            return False
    except Exception as e:
        print_error(f"SSM parameter not found: {e}")
        return False
    
    return True

def test_lambda_function():
    """Test Lambda function invocation"""
    print_header("Testing Lambda Function")
    
    try:
        lambda_client = boto3.client('lambda', region_name='us-west-2')
        
        # Test payload
        test_payload = {
            'indicators': ['GDP', 'UNRATE'],
            'start_date': '2024-01-01',
            'end_date': '2024-01-31',
            'options': {
                'visualizations': True,
                'correlation': True,
                'forecasting': False,
                'statistics': True
            }
        }
        
        print_info("Invoking Lambda function...")
        response = lambda_client.invoke(
            FunctionName='fred-ml-processor',
            InvocationType='RequestResponse',
            Payload=json.dumps(test_payload)
        )
        
        response_payload = json.loads(response['Payload'].read().decode('utf-8'))
        
        if response['StatusCode'] == 200 and response_payload.get('status') == 'success':
            print_success("Lambda function executed successfully")
            print_info(f"Report ID: {response_payload.get('report_id')}")
            print_info(f"Report Key: {response_payload.get('report_key')}")
            return response_payload
        else:
            print_error(f"Lambda function failed: {response_payload}")
            return None
            
    except Exception as e:
        print_error(f"Lambda invocation failed: {e}")
        return None

def test_s3_storage():
    """Test S3 storage and retrieval"""
    print_header("Testing S3 Storage")
    
    try:
        s3 = boto3.client('s3', region_name='us-west-2')
        
        # List reports
        response = s3.list_objects_v2(
            Bucket='fredmlv1',
            Prefix='reports/'
        )
        
        if 'Contents' in response:
            print_success(f"Found {len(response['Contents'])} report(s) in S3")
            
            # Get the latest report
            latest_report = max(response['Contents'], key=lambda x: x['LastModified'])
            print_info(f"Latest report: {latest_report['Key']}")
            print_info(f"Size: {latest_report['Size']} bytes")
            print_info(f"Last modified: {latest_report['LastModified']}")
            
            # Download and verify report
            report_response = s3.get_object(
                Bucket='fredmlv1',
                Key=latest_report['Key']
            )
            
            report_data = json.loads(report_response['Body'].read().decode('utf-8'))
            
            # Verify report structure
            required_fields = ['report_id', 'timestamp', 'indicators', 'statistics', 'data']
            for field in required_fields:
                if field not in report_data:
                    print_error(f"Missing required field: {field}")
                    return False
            
            print_success("Report structure is valid")
            print_info(f"Indicators: {report_data['indicators']}")
            print_info(f"Data points: {len(report_data['data'])}")
            
            return latest_report['Key']
        else:
            print_error("No reports found in S3")
            return None
            
    except Exception as e:
        print_error(f"S3 verification failed: {e}")
        return None

def test_visualizations():
    """Test visualization storage"""
    print_header("Testing Visualizations")
    
    try:
        s3 = boto3.client('s3', region_name='us-west-2')
        
        # List visualizations
        response = s3.list_objects_v2(
            Bucket='fredmlv1',
            Prefix='visualizations/'
        )
        
        if 'Contents' in response:
            print_success(f"Found {len(response['Contents'])} visualization(s) in S3")
            
            # Check for specific visualization types
            visualization_types = ['time_series.png', 'correlation.png']
            for viz_type in visualization_types:
                viz_objects = [obj for obj in response['Contents'] if viz_type in obj['Key']]
                if viz_objects:
                    print_success(f"{viz_type}: {len(viz_objects)} file(s)")
                else:
                    print_warning(f"{viz_type}: No files found")
        else:
            print_warning("No visualizations found in S3 (this might be expected)")
        
        return True
        
    except Exception as e:
        print_error(f"Visualization verification failed: {e}")
        return False

def test_streamlit_app():
    """Test Streamlit app components"""
    print_header("Testing Streamlit App")
    
    try:
        # Test configuration loading
        project_root = Path(__file__).parent.parent
        sys.path.append(str(project_root / 'frontend'))
        
        from app import load_config, init_aws_clients
        
        # Test configuration
        config = load_config()
        if config['s3_bucket'] == 'fredmlv1' and config['lambda_function'] == 'fred-ml-processor':
            print_success("Streamlit configuration is correct")
        else:
            print_error("Streamlit configuration mismatch")
            return False
        
        # Test AWS clients
        s3_client, lambda_client = init_aws_clients()
        if s3_client and lambda_client:
            print_success("AWS clients initialized successfully")
        else:
            print_error("Failed to initialize AWS clients")
            return False
        
        return True
        
    except Exception as e:
        print_error(f"Streamlit app test failed: {e}")
        return False

def test_data_quality():
    """Test data quality and completeness"""
    print_header("Testing Data Quality")
    
    try:
        s3 = boto3.client('s3', region_name='us-west-2')
        
        # Get the latest report
        response = s3.list_objects_v2(
            Bucket='fredmlv1',
            Prefix='reports/'
        )
        
        if 'Contents' in response:
            latest_report = max(response['Contents'], key=lambda x: x['LastModified'])
            
            # Download report
            report_response = s3.get_object(
                Bucket='fredmlv1',
                Key=latest_report['Key']
            )
            
            report_data = json.loads(report_response['Body'].read().decode('utf-8'))
            
            # Verify data quality
            if len(report_data['data']) > 0:
                print_success("Data points found")
            else:
                print_error("No data points found")
                return False
            
            if len(report_data['statistics']) > 0:
                print_success("Statistics generated")
            else:
                print_error("No statistics found")
                return False
            
            # Check for requested indicators
            test_indicators = ['GDP', 'UNRATE']
            for indicator in test_indicators:
                if indicator in report_data['indicators']:
                    print_success(f"Indicator '{indicator}' found")
                else:
                    print_error(f"Indicator '{indicator}' missing")
                    return False
            
            # Verify date range
            if report_data['start_date'] == '2024-01-01' and report_data['end_date'] == '2024-01-31':
                print_success("Date range is correct")
            else:
                print_error("Date range mismatch")
                return False
            
            print_success("Data quality verification passed")
            print_info(f"Data points: {len(report_data['data'])}")
            print_info(f"Indicators: {report_data['indicators']}")
            print_info(f"Date range: {report_data['start_date']} to {report_data['end_date']}")
            
            return True
        else:
            print_error("No reports found for data quality verification")
            return False
            
    except Exception as e:
        print_error(f"Data quality verification failed: {e}")
        return False

def test_performance():
    """Test performance metrics"""
    print_header("Testing Performance Metrics")
    
    try:
        cloudwatch = boto3.client('cloudwatch', region_name='us-west-2')
        
        # Get Lambda metrics for the last hour
        end_time = datetime.now()
        start_time = end_time - timedelta(hours=1)
        
        # Get invocation metrics
        response = cloudwatch.get_metric_statistics(
            Namespace='AWS/Lambda',
            MetricName='Invocations',
            Dimensions=[{'Name': 'FunctionName', 'Value': 'fred-ml-processor'}],
            StartTime=start_time,
            EndTime=end_time,
            Period=300,
            Statistics=['Sum']
        )
        
        if response['Datapoints']:
            invocations = sum(point['Sum'] for point in response['Datapoints'])
            print_success(f"Lambda invocations: {invocations}")
        else:
            print_warning("No Lambda invocation metrics found")
        
        # Get duration metrics
        response = cloudwatch.get_metric_statistics(
            Namespace='AWS/Lambda',
            MetricName='Duration',
            Dimensions=[{'Name': 'FunctionName', 'Value': 'fred-ml-processor'}],
            StartTime=start_time,
            EndTime=end_time,
            Period=300,
            Statistics=['Average', 'Maximum']
        )
        
        if response['Datapoints']:
            avg_duration = sum(point['Average'] for point in response['Datapoints']) / len(response['Datapoints'])
            max_duration = max(point['Maximum'] for point in response['Datapoints'])
            print_success(f"Average duration: {avg_duration:.2f}ms")
            print_success(f"Maximum duration: {max_duration:.2f}ms")
        else:
            print_warning("No Lambda duration metrics found")
        
        return True
        
    except Exception as e:
        print_warning(f"Performance metrics test failed: {e}")
        return True  # Don't fail for metrics issues

def generate_test_report(results):
    """Generate test report"""
    print_header("Test Results Summary")
    
    total_tests = len(results)
    passed_tests = sum(1 for result in results.values() if result)
    failed_tests = total_tests - passed_tests
    
    print(f"Total Tests: {total_tests}")
    print(f"Passed: {passed_tests}")
    print(f"Failed: {failed_tests}")
    print(f"Success Rate: {(passed_tests/total_tests)*100:.1f}%")
    
    print("\nDetailed Results:")
    for test_name, result in results.items():
        status = "βœ… PASS" if result else "❌ FAIL"
        print(f"  {test_name}: {status}")
    
    # Save report to file
    report_data = {
        'timestamp': time.strftime('%Y-%m-%d %H:%M:%S'),
        'total_tests': total_tests,
        'passed_tests': passed_tests,
        'failed_tests': failed_tests,
        'success_rate': (passed_tests/total_tests)*100,
        'results': results
    }
    
    report_file = Path(__file__).parent.parent / 'test_report.json'
    with open(report_file, 'w') as f:
        json.dump(report_data, f, indent=2)
    
    print(f"\nπŸ“„ Detailed report saved to: {report_file}")
    
    return passed_tests == total_tests

def main():
    """Main test execution"""
    print_header("FRED ML Complete System Test")
    
    # Check prerequisites
    if not check_prerequisites():
        print_error("Prerequisites not met. Exiting.")
        sys.exit(1)
    
    # Run tests
    results = {}
    
    results['AWS Services'] = test_aws_services()
    results['Lambda Function'] = test_lambda_function() is not None
    results['S3 Storage'] = test_s3_storage() is not None
    results['Visualizations'] = test_visualizations()
    results['Streamlit App'] = test_streamlit_app()
    results['Data Quality'] = test_data_quality()
    results['Performance'] = test_performance()
    
    # Generate report
    success = generate_test_report(results)
    
    if success:
        print_header("πŸŽ‰ All Tests Passed!")
        print_success("FRED ML system is working correctly")
        sys.exit(0)
    else:
        print_header("❌ Some Tests Failed")
        print_error("Please check the detailed report and fix any issues")
        sys.exit(1)

if __name__ == "__main__":
    main()