File size: 8,709 Bytes
2b395f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
#!/usr/bin/env python3
"""
FRED ML Development Testing
Simple testing script for development environment
"""
import os
import sys
import json
import time
from pathlib import Path
def test_streamlit_app():
"""Test Streamlit app functionality"""
print("π¨ Testing Streamlit app...")
try:
# Test app imports
sys.path.append('frontend')
from app import load_config, init_aws_clients
# Test configuration loading
config = load_config()
if config:
print("β
Streamlit app configuration loaded")
else:
print("β Failed to load Streamlit app configuration")
return False
# Test AWS client initialization
try:
s3_client, lambda_client = init_aws_clients()
print("β
AWS clients initialized")
except Exception as e:
print(f"β AWS client initialization failed: {str(e)}")
return False
print("β
Streamlit app test passed")
return True
except Exception as e:
print(f"β Streamlit app test failed: {str(e)}")
return False
def test_lambda_function():
"""Test Lambda function"""
print("β‘ Testing Lambda function...")
try:
import boto3
lambda_client = boto3.client('lambda')
# Get function info
function_info = lambda_client.get_function(FunctionName='fred-ml-processor')
print(f"β
Lambda function found: {function_info['Configuration']['FunctionArn']}")
# Test basic invocation
test_payload = {
'indicators': ['GDP', 'UNRATE'],
'start_date': '2023-01-01',
'end_date': '2023-12-31',
'test_mode': True
}
response = lambda_client.invoke(
FunctionName='fred-ml-processor',
InvocationType='RequestResponse',
Payload=json.dumps(test_payload)
)
if response['StatusCode'] == 200:
print("β
Lambda function invocation successful")
return True
else:
print(f"β Lambda invocation failed with status {response['StatusCode']}")
return False
except Exception as e:
print(f"β Lambda function test failed: {str(e)}")
return False
def test_s3_access():
"""Test S3 bucket access"""
print("π¦ Testing S3 bucket access...")
try:
import boto3
s3 = boto3.client('s3')
# Test bucket access
s3.head_bucket(Bucket='fredmlv1')
print("β
S3 bucket access successful")
# Test upload/download
test_data = "test content"
test_key = f"dev-test/test-{int(time.time())}.txt"
# Upload test file
s3.put_object(
Bucket='fredmlv1',
Key=test_key,
Body=test_data.encode('utf-8')
)
print("β
S3 upload successful")
# Download and verify
response = s3.get_object(Bucket='fredmlv1', Key=test_key)
downloaded_data = response['Body'].read().decode('utf-8')
if downloaded_data == test_data:
print("β
S3 download successful")
else:
print("β S3 download data mismatch")
return False
# Clean up test file
s3.delete_object(Bucket='fredmlv1', Key=test_key)
print("β
S3 cleanup successful")
return True
except Exception as e:
print(f"β S3 access test failed: {str(e)}")
return False
def test_fred_api():
"""Test FRED API access"""
print("π Testing FRED API...")
try:
from fredapi import Fred
fred = Fred(api_key=os.getenv('FRED_API_KEY'))
# Test basic API access
test_series = fred.get_series('GDP', limit=5)
if len(test_series) > 0:
print(f"β
FRED API access successful - retrieved {len(test_series)} data points")
return True
else:
print("β FRED API returned no data")
return False
except Exception as e:
print(f"β FRED API test failed: {str(e)}")
return False
def test_data_processing():
"""Test data processing capabilities"""
print("π Testing data processing...")
try:
import pandas as pd
import numpy as np
from fredapi import Fred
fred = Fred(api_key=os.getenv('FRED_API_KEY'))
# Get test data
test_data = {}
indicators = ['GDP', 'UNRATE', 'CPIAUCSL']
for indicator in indicators:
try:
data = fred.get_series(indicator, limit=100)
test_data[indicator] = data
print(f"β
Retrieved {indicator}: {len(data)} observations")
except Exception as e:
print(f"β Failed to retrieve {indicator}: {str(e)}")
if not test_data:
print("β No test data retrieved")
return False
# Test data processing
df = pd.DataFrame(test_data)
df = df.dropna()
if len(df) > 0:
# Test basic statistics
summary = df.describe()
correlation = df.corr()
print(f"β
Data processing successful - {len(df)} data points processed")
print(f" Summary statistics calculated")
print(f" Correlation matrix shape: {correlation.shape}")
return True
else:
print("β No valid data after processing")
return False
except Exception as e:
print(f"β Data processing test failed: {str(e)}")
return False
def test_visualization():
"""Test visualization generation"""
print("π¨ Testing visualization generation...")
try:
import matplotlib.pyplot as plt
import plotly.express as px
import seaborn as sns
import pandas as pd
import numpy as np
# Create test data
np.random.seed(42)
dates = pd.date_range('2023-01-01', '2024-01-01', freq='M')
test_data = pd.DataFrame({
'GDP': np.random.normal(100, 5, len(dates)),
'UNRATE': np.random.normal(5, 1, len(dates)),
'CPIAUCSL': np.random.normal(200, 10, len(dates))
}, index=dates)
# Test matplotlib
fig, ax = plt.subplots(figsize=(10, 6))
test_data.plot(ax=ax)
plt.title('Test Visualization')
plt.close() # Don't display, just test creation
print("β
Matplotlib visualization created")
# Test plotly
fig = px.line(test_data, title='Test Plotly Visualization')
fig.update_layout(showlegend=True)
print("β
Plotly visualization created")
# Test seaborn
plt.figure(figsize=(8, 6))
sns.heatmap(test_data.corr(), annot=True, cmap='coolwarm')
plt.title('Test Correlation Heatmap')
plt.close()
print("β
Seaborn visualization created")
print("β
All visualization tests passed")
return True
except Exception as e:
print(f"β Visualization test failed: {str(e)}")
return False
def main():
"""Main testing function"""
print("π§ͺ FRED ML Development Testing")
print("=" * 50)
tests = [
("Streamlit App", test_streamlit_app),
("Lambda Function", test_lambda_function),
("S3 Bucket Access", test_s3_access),
("FRED API", test_fred_api),
("Data Processing", test_data_processing),
("Visualization", test_visualization)
]
passed = 0
total = len(tests)
for test_name, test_func in tests:
print(f"\nπ Running {test_name} test...")
if test_func():
passed += 1
else:
print(f"β {test_name} test failed")
print(f"\nπ Test Summary: {passed}/{total} tests passed")
if passed == total:
print("β
All development tests passed!")
print("\nπ― Your development environment is ready!")
print("You can now:")
print("1. Run the Streamlit app: streamlit run frontend/app.py")
print("2. Test the complete system: python scripts/test_complete_system.py")
return True
else:
print("β Some tests failed. Please check the issues above.")
return False
if __name__ == '__main__':
success = main()
sys.exit(0 if success else 1) |