#!/usr/bin/env python3 """ Complete System Test for FRED ML Tests the entire workflow: Streamlit โ†’ Lambda โ†’ S3 โ†’ Reports """ import os import sys import json import time import boto3 import subprocess from pathlib import Path from datetime import datetime, timedelta def print_header(title): """Print a formatted header""" print(f"\n{'='*60}") print(f"๐Ÿงช {title}") print(f"{'='*60}") def print_success(message): """Print success message""" print(f"โœ… {message}") def print_error(message): """Print error message""" print(f"โŒ {message}") def print_warning(message): """Print warning message""" print(f"โš ๏ธ {message}") def print_info(message): """Print info message""" print(f"โ„น๏ธ {message}") def check_prerequisites(): """Check if all prerequisites are met""" print_header("Checking Prerequisites") # Check Python version if sys.version_info < (3, 9): print_error("Python 3.9+ is required") return False print_success(f"Python {sys.version_info.major}.{sys.version_info.minor} detected") # Check required packages required_packages = ['boto3', 'pandas', 'numpy', 'requests'] missing_packages = [] for package in required_packages: try: __import__(package) print_success(f"{package} is available") except ImportError: missing_packages.append(package) print_error(f"{package} is missing") if missing_packages: print_error(f"Missing packages: {', '.join(missing_packages)}") print_info("Run: pip install -r requirements.txt") return False # Check AWS credentials try: sts = boto3.client('sts') identity = sts.get_caller_identity() print_success(f"AWS credentials configured for account: {identity['Account']}") except Exception as e: print_error(f"AWS credentials not configured: {e}") return False # Check AWS CLI try: result = subprocess.run(['aws', '--version'], capture_output=True, text=True, check=True) print_success("AWS CLI is available") except (subprocess.CalledProcessError, FileNotFoundError): print_warning("AWS CLI not found (optional)") return True def test_aws_services(): """Test AWS services connectivity""" print_header("Testing AWS Services") # Test S3 try: s3 = boto3.client('s3', region_name='us-west-2') response = s3.head_bucket(Bucket='fredmlv1') print_success("S3 bucket 'fredmlv1' is accessible") except Exception as e: print_error(f"S3 bucket access failed: {e}") return False # Test Lambda try: lambda_client = boto3.client('lambda', region_name='us-west-2') response = lambda_client.get_function(FunctionName='fred-ml-processor') print_success("Lambda function 'fred-ml-processor' exists") print_info(f"Runtime: {response['Configuration']['Runtime']}") print_info(f"Memory: {response['Configuration']['MemorySize']} MB") print_info(f"Timeout: {response['Configuration']['Timeout']} seconds") except Exception as e: print_error(f"Lambda function not found: {e}") return False # Test SSM try: ssm = boto3.client('ssm', region_name='us-west-2') response = ssm.get_parameter(Name='/fred-ml/api-key', WithDecryption=True) api_key = response['Parameter']['Value'] if api_key and api_key != 'your-fred-api-key-here': print_success("FRED API key is configured in SSM") else: print_error("FRED API key not properly configured") return False except Exception as e: print_error(f"SSM parameter not found: {e}") return False return True def test_lambda_function(): """Test Lambda function invocation""" print_header("Testing Lambda Function") try: lambda_client = boto3.client('lambda', region_name='us-west-2') # Test payload test_payload = { 'indicators': ['GDP', 'UNRATE'], 'start_date': '2024-01-01', 'end_date': '2024-01-31', 'options': { 'visualizations': True, 'correlation': True, 'forecasting': False, 'statistics': True } } print_info("Invoking Lambda function...") response = lambda_client.invoke( FunctionName='fred-ml-processor', InvocationType='RequestResponse', Payload=json.dumps(test_payload) ) response_payload = json.loads(response['Payload'].read().decode('utf-8')) if response['StatusCode'] == 200 and response_payload.get('status') == 'success': print_success("Lambda function executed successfully") print_info(f"Report ID: {response_payload.get('report_id')}") print_info(f"Report Key: {response_payload.get('report_key')}") return response_payload else: print_error(f"Lambda function failed: {response_payload}") return None except Exception as e: print_error(f"Lambda invocation failed: {e}") return None def test_s3_storage(): """Test S3 storage and retrieval""" print_header("Testing S3 Storage") try: s3 = boto3.client('s3', region_name='us-west-2') # List reports response = s3.list_objects_v2( Bucket='fredmlv1', Prefix='reports/' ) if 'Contents' in response: print_success(f"Found {len(response['Contents'])} report(s) in S3") # Get the latest report latest_report = max(response['Contents'], key=lambda x: x['LastModified']) print_info(f"Latest report: {latest_report['Key']}") print_info(f"Size: {latest_report['Size']} bytes") print_info(f"Last modified: {latest_report['LastModified']}") # Download and verify report report_response = s3.get_object( Bucket='fredmlv1', Key=latest_report['Key'] ) report_data = json.loads(report_response['Body'].read().decode('utf-8')) # Verify report structure required_fields = ['report_id', 'timestamp', 'indicators', 'statistics', 'data'] for field in required_fields: if field not in report_data: print_error(f"Missing required field: {field}") return False print_success("Report structure is valid") print_info(f"Indicators: {report_data['indicators']}") print_info(f"Data points: {len(report_data['data'])}") return latest_report['Key'] else: print_error("No reports found in S3") return None except Exception as e: print_error(f"S3 verification failed: {e}") return None def test_visualizations(): """Test visualization storage""" print_header("Testing Visualizations") try: s3 = boto3.client('s3', region_name='us-west-2') # List visualizations response = s3.list_objects_v2( Bucket='fredmlv1', Prefix='visualizations/' ) if 'Contents' in response: print_success(f"Found {len(response['Contents'])} visualization(s) in S3") # Check for specific visualization types visualization_types = ['time_series.png', 'correlation.png'] for viz_type in visualization_types: viz_objects = [obj for obj in response['Contents'] if viz_type in obj['Key']] if viz_objects: print_success(f"{viz_type}: {len(viz_objects)} file(s)") else: print_warning(f"{viz_type}: No files found") else: print_warning("No visualizations found in S3 (this might be expected)") return True except Exception as e: print_error(f"Visualization verification failed: {e}") return False def test_streamlit_app(): """Test Streamlit app components""" print_header("Testing Streamlit App") try: # Test configuration loading project_root = Path(__file__).parent.parent sys.path.append(str(project_root / 'frontend')) from app import load_config, init_aws_clients # Test configuration config = load_config() if config['s3_bucket'] == 'fredmlv1' and config['lambda_function'] == 'fred-ml-processor': print_success("Streamlit configuration is correct") else: print_error("Streamlit configuration mismatch") return False # Test AWS clients s3_client, lambda_client = init_aws_clients() if s3_client and lambda_client: print_success("AWS clients initialized successfully") else: print_error("Failed to initialize AWS clients") return False return True except Exception as e: print_error(f"Streamlit app test failed: {e}") return False def test_data_quality(): """Test data quality and completeness""" print_header("Testing Data Quality") try: s3 = boto3.client('s3', region_name='us-west-2') # Get the latest report response = s3.list_objects_v2( Bucket='fredmlv1', Prefix='reports/' ) if 'Contents' in response: latest_report = max(response['Contents'], key=lambda x: x['LastModified']) # Download report report_response = s3.get_object( Bucket='fredmlv1', Key=latest_report['Key'] ) report_data = json.loads(report_response['Body'].read().decode('utf-8')) # Verify data quality if len(report_data['data']) > 0: print_success("Data points found") else: print_error("No data points found") return False if len(report_data['statistics']) > 0: print_success("Statistics generated") else: print_error("No statistics found") return False # Check for requested indicators test_indicators = ['GDP', 'UNRATE'] for indicator in test_indicators: if indicator in report_data['indicators']: print_success(f"Indicator '{indicator}' found") else: print_error(f"Indicator '{indicator}' missing") return False # Verify date range if report_data['start_date'] == '2024-01-01' and report_data['end_date'] == '2024-01-31': print_success("Date range is correct") else: print_error("Date range mismatch") return False print_success("Data quality verification passed") print_info(f"Data points: {len(report_data['data'])}") print_info(f"Indicators: {report_data['indicators']}") print_info(f"Date range: {report_data['start_date']} to {report_data['end_date']}") return True else: print_error("No reports found for data quality verification") return False except Exception as e: print_error(f"Data quality verification failed: {e}") return False def test_performance(): """Test performance metrics""" print_header("Testing Performance Metrics") try: cloudwatch = boto3.client('cloudwatch', region_name='us-west-2') # Get Lambda metrics for the last hour end_time = datetime.now() start_time = end_time - timedelta(hours=1) # Get invocation metrics response = cloudwatch.get_metric_statistics( Namespace='AWS/Lambda', MetricName='Invocations', Dimensions=[{'Name': 'FunctionName', 'Value': 'fred-ml-processor'}], StartTime=start_time, EndTime=end_time, Period=300, Statistics=['Sum'] ) if response['Datapoints']: invocations = sum(point['Sum'] for point in response['Datapoints']) print_success(f"Lambda invocations: {invocations}") else: print_warning("No Lambda invocation metrics found") # Get duration metrics response = cloudwatch.get_metric_statistics( Namespace='AWS/Lambda', MetricName='Duration', Dimensions=[{'Name': 'FunctionName', 'Value': 'fred-ml-processor'}], StartTime=start_time, EndTime=end_time, Period=300, Statistics=['Average', 'Maximum'] ) if response['Datapoints']: avg_duration = sum(point['Average'] for point in response['Datapoints']) / len(response['Datapoints']) max_duration = max(point['Maximum'] for point in response['Datapoints']) print_success(f"Average duration: {avg_duration:.2f}ms") print_success(f"Maximum duration: {max_duration:.2f}ms") else: print_warning("No Lambda duration metrics found") return True except Exception as e: print_warning(f"Performance metrics test failed: {e}") return True # Don't fail for metrics issues def generate_test_report(results): """Generate test report""" print_header("Test Results Summary") total_tests = len(results) passed_tests = sum(1 for result in results.values() if result) failed_tests = total_tests - passed_tests print(f"Total Tests: {total_tests}") print(f"Passed: {passed_tests}") print(f"Failed: {failed_tests}") print(f"Success Rate: {(passed_tests/total_tests)*100:.1f}%") print("\nDetailed Results:") for test_name, result in results.items(): status = "โœ… PASS" if result else "โŒ FAIL" print(f" {test_name}: {status}") # Save report to file report_data = { 'timestamp': time.strftime('%Y-%m-%d %H:%M:%S'), 'total_tests': total_tests, 'passed_tests': passed_tests, 'failed_tests': failed_tests, 'success_rate': (passed_tests/total_tests)*100, 'results': results } report_file = Path(__file__).parent.parent / 'test_report.json' with open(report_file, 'w') as f: json.dump(report_data, f, indent=2) print(f"\n๐Ÿ“„ Detailed report saved to: {report_file}") return passed_tests == total_tests def main(): """Main test execution""" print_header("FRED ML Complete System Test") # Check prerequisites if not check_prerequisites(): print_error("Prerequisites not met. Exiting.") sys.exit(1) # Run tests results = {} results['AWS Services'] = test_aws_services() results['Lambda Function'] = test_lambda_function() is not None results['S3 Storage'] = test_s3_storage() is not None results['Visualizations'] = test_visualizations() results['Streamlit App'] = test_streamlit_app() results['Data Quality'] = test_data_quality() results['Performance'] = test_performance() # Generate report success = generate_test_report(results) if success: print_header("๐ŸŽ‰ All Tests Passed!") print_success("FRED ML system is working correctly") sys.exit(0) else: print_header("โŒ Some Tests Failed") print_error("Please check the detailed report and fix any issues") sys.exit(1) if __name__ == "__main__": main()