from importlib import import_module from typing import Tuple import torch import transformers from torch import nn from torch.nn import functional as F __all__ = ["patch"] def _get_unpad_data(attention_mask: torch.Tensor, *args, **kwargs) -> Tuple[torch.Tensor, torch.Tensor, int]: if hasattr(_get_unpad_data, "seqlens_in_batch"): seqlens_in_batch = _get_unpad_data.seqlens_in_batch else: seqlens_in_batch = torch.sum(attention_mask, dim=1) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) return indices, cu_seqlens, max_seqlen_in_batch def set_seqlens_in_batch(seqlens_in_batch: torch.Tensor) -> None: _get_unpad_data.seqlens_in_batch = seqlens_in_batch def patch(model: nn.Module) -> None: if transformers.__version__ < "4.43.0": m = import_module(model.__module__) if not hasattr(m, "_get_unpad_data"): raise ValueError(f"Module {m} does not have function '_get_unpad_data' for packing") m._get_unpad_data = _get_unpad_data else: transformers.modeling_flash_attention_utils._get_unpad_data = _get_unpad_data