--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - PhanithLIM/ams-speech-dataset - openslr/openslr - google/fleurs - PhanithLIM/kh-wmc - PhanithLIM/wmc-international-news - PhanithLIM/rfi-news-dataset - PhanithLIM/aakanee-kh - rinabuoy/khm-asr-open - seanghay/khmer_grkpp_speech - seanghay/khmer_mpwt_speech - seanghay/km-speech-corpus metrics: - wer - cer model-index: - name: whisper-medium-aug-05-june results: [] language: - km --- # whisper-medium-aug-05-june This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0721 - Wer: 78.5554 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.1867 | 1.0 | 2847 | 0.0867 | 78.8824 | | 0.0689 | 2.0 | 5694 | 0.0720 | 75.8348 | | 0.0485 | 3.0 | 8541 | 0.0706 | 77.7656 | | 0.0362 | 4.0 | 11388 | 0.0690 | 77.5133 | | 0.0274 | 5.0 | 14235 | 0.0721 | 78.5554 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.7.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1