--- library_name: transformers license: apache-2.0 base_model: openai/whisper-tiny datasets: - PhanithLIM/ams-speech-dataset - openslr/openslr - google/fleurs - PhanithLIM/kh-wmc - PhanithLIM/wmc-international-news - PhanithLIM/rfi-news-dataset - PhanithLIM/aakanee-kh - rinabuoy/khm-asr-open - seanghay/khmer_grkpp_speech - seanghay/khmer_mpwt_speech - seanghay/km-speech-corpus model-index: - name: Khmer Whisper Small PhanithLIM results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Google Fleurs type: google/fleurs config: km_kh split: test metrics: - name: CER type: cer value: 22.511 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: WMC type: PhanithLIM/asr-wmc-evaluate split: test metrics: - name: CER type: cer value: 12.581 tags: - generated_from_trainer metrics: - wer --- # whisper-tiny-aug-7-may-lightning-v1 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1300 - Wer: 86.2590 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0747 | 1.0 | 712 | 0.4463 | 102.0236 | | 0.3496 | 2.0 | 1424 | 0.2607 | 98.4686 | | 0.2411 | 3.0 | 2136 | 0.2071 | 92.8878 | | 0.1966 | 4.0 | 2848 | 0.1819 | 94.1085 | | 0.1699 | 5.0 | 3560 | 0.1653 | 92.2555 | | 0.1514 | 6.0 | 4272 | 0.1533 | 88.5561 | | 0.1377 | 7.0 | 4984 | 0.1452 | 88.0289 | | 0.1265 | 8.0 | 5696 | 0.1391 | 86.8913 | | 0.117 | 9.0 | 6408 | 0.1331 | 87.4382 | | 0.1089 | 10.0 | 7120 | 0.1300 | 86.2590 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.7.0+cu128 - Datasets 3.5.1 - Tokenizers 0.21.1