--- license: cc-by-4.0 pipeline_tag: image-to-image tags: - pytorch - super-resolution --- [Link to Github Release](https://github.com/Phhofm/models/releases/tag/4xNomos2_hq_mosr) # 4xNomos2_hq_mosr Scale: 4 Architecture: [MoSR](https://github.com/umzi2/MoSR) Architecture Option: [mosr](https://github.com/umzi2/MoSR/blob/95c5bf73cca014493fe952c2fbc0bdbe593da08f/neosr/archs/mosr_arch.py#L117) Author: Philip Hofmann License: CC-BY-0.4 Purpose: Upscaler Subject: Photography Input Type: Images Release Date: 25.08.2024 Dataset: [nomosv2](https://github.com/muslll/neosr/?tab=readme-ov-file#-datasets) Dataset Size: 6000 OTF (on the fly augmentations): No Pretrained Model: [4xmssim_mosr_pretrain](https://github.com/Phhofm/models/releases/tag/4xmssim_mosr_pretrain) Iterations: 190'000 Batch Size: 6 Patch Size: 64 Description: A 4x [MoSR](https://github.com/umzi2/MoSR) upscaling model, meant for non-degraded input, since this model was trained on non-degraded input to give good quality output. If your input is degraded, use a 1x degrade model first. So for example if your input is a .jpg file, you could use a 1x dejpg model first. PS I also provide an onnx conversion in the Attachements, I verified correct output with chainner: ## Model Showcase: [Slowpics](https://slow.pics/c/cqGJb0gT) (Click on image for better view) ![Example1](https://github.com/user-attachments/assets/f7af4d9c-c40f-45bf-a2b5-7d11fea31ee8) ![Example2](https://github.com/user-attachments/assets/4796cd41-fa12-493b-abb0-c4a62c6baa0c) ![Example3](https://github.com/user-attachments/assets/d069d258-3151-4b28-9328-caace08a3390) ![Example4](https://github.com/user-attachments/assets/8826faa6-d52c-468a-ab6a-7c60d30410f8) ![Example5](https://github.com/user-attachments/assets/350d9810-715e-424e-911e-2d4818ddaa31) ![Example6](https://github.com/user-attachments/assets/803997bc-c640-4bac-ab0f-76fc8e1d594b) ![Example7](https://github.com/user-attachments/assets/dd81d313-b07a-426c-ad4d-376f48631f05) ![Example8](https://github.com/user-attachments/assets/932617fc-a5c4-46b6-95a5-553bc302d027) ![Example9](https://github.com/user-attachments/assets/2e205c4d-5da2-47ca-b9f4-c5218be7d74d)