Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- transformers
|
5 |
+
- smollm
|
6 |
+
- pruned-model
|
7 |
+
- instruct
|
8 |
+
- small-llm
|
9 |
+
- text-generation
|
10 |
+
model_creator: HuggingFaceTB
|
11 |
+
base_model: HuggingFaceTB/SmolLM-135M-Instruct
|
12 |
+
model_name: SmolLM-90M-Instruct-Pruned
|
13 |
+
pipeline_tag: text-generation
|
14 |
+
language:
|
15 |
+
- en
|
16 |
+
---
|
17 |
+
|
18 |
+
# SmolLM-90M-Instruct-Pruned 🧠💡
|
19 |
+
|
20 |
+
A **pruned** version of [`HuggingFaceTB/SmolLM-135M-Instruct`](https://huggingface.co/HuggingFaceTB/SmolLM-135M-Instruct), reduced from **135M** parameters to approximately **90M** for faster inference and reduced memory usage, while maintaining reasonable performance for instruction-style tasks.
|
21 |
+
|
22 |
+
## 🔧 What’s Inside
|
23 |
+
|
24 |
+
- Base: `SmolLM-135M-Instruct`
|
25 |
+
- Parameters: **~90M**
|
26 |
+
- Pruning method: Structured pruning (e.g., attention heads, MLP layers) using PyTorch/NVIDIA pruning tools *(customize if needed)*.
|
27 |
+
- Vocabulary, tokenizer, and training objectives remain **identical** to the base model.
|
28 |
+
|
29 |
+
## 🚀 Intended Use
|
30 |
+
|
31 |
+
This model is optimized for:
|
32 |
+
|
33 |
+
- **Low-latency applications**
|
34 |
+
- **Edge deployments**
|
35 |
+
- **Instruction-following tasks** with compact models
|
36 |
+
- Use in environments with **limited VRAM or compute**
|
37 |
+
|
38 |
+
### Example Use
|
39 |
+
|
40 |
+
```python
|
41 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
42 |
+
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM-135M-Instruct")
|
44 |
+
model = AutoModelForCausalLM.from_pretrained("your-username/SmolLM-90M-Instruct-Pruned")
|
45 |
+
|
46 |
+
prompt = "Explain quantum computing to a 10-year-old."
|
47 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
48 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
49 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
50 |
+
```
|