Upload 4 files
Browse files- .gitattributes +1 -0
- DebertaV3.cs +175 -0
- deberta-v3-base-zeroshot-v1.1-all-33.onnx +3 -0
- deberta-v3-base-zeroshot-v1.1-all-33.sentis +3 -0
- vocab.txt +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
deberta-v3-base-zeroshot-v1.1-all-33.sentis filter=lfs diff=lfs merge=lfs -text
|
DebertaV3.cs
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
using System;
|
2 |
+
using System.Collections.Generic;
|
3 |
+
using System.Linq;
|
4 |
+
using Unity.Sentis;
|
5 |
+
using UnityEngine;
|
6 |
+
|
7 |
+
public sealed class DebertaV3 : MonoBehaviour
|
8 |
+
{
|
9 |
+
public ModelAsset model;
|
10 |
+
public TextAsset vocabulary;
|
11 |
+
public bool multipleTrueClasses;
|
12 |
+
public string text = "Angela Merkel is a politician in Germany and leader of the CDU";
|
13 |
+
public string hypothesisTemplate = "This example is about {}";
|
14 |
+
public string[] classes = { "politics", "economy", "entertainment", "environment" };
|
15 |
+
|
16 |
+
Ops ops;
|
17 |
+
IWorker engine;
|
18 |
+
ITensorAllocator allocator;
|
19 |
+
string[] vocabularyTokens;
|
20 |
+
|
21 |
+
const int padToken = 0;
|
22 |
+
const int startToken = 1;
|
23 |
+
const int separatorToken = 2;
|
24 |
+
const int vocabToTokenOffset = 260;
|
25 |
+
const BackendType backend = BackendType.GPUCompute;
|
26 |
+
|
27 |
+
void Start()
|
28 |
+
{
|
29 |
+
vocabularyTokens = vocabulary.text.Split("\n");
|
30 |
+
|
31 |
+
allocator = new TensorCachingAllocator();
|
32 |
+
ops = WorkerFactory.CreateOps(backend, allocator);
|
33 |
+
|
34 |
+
Model loadedModel = ModelLoader.Load(model);
|
35 |
+
engine = WorkerFactory.CreateWorker(backend, loadedModel);
|
36 |
+
|
37 |
+
string[] hypotheses = classes.Select(x => hypothesisTemplate.Replace("{}", x)).ToArray();
|
38 |
+
Batch batch = GetTokenizedBatch(text, hypotheses);
|
39 |
+
float[] scores = GetBatchScores(batch);
|
40 |
+
|
41 |
+
for (int i = 0; i < scores.Length; i++)
|
42 |
+
{
|
43 |
+
Debug.Log($"[{classes[i]}] Entailment Score: {scores[i]}");
|
44 |
+
}
|
45 |
+
}
|
46 |
+
|
47 |
+
float[] GetBatchScores(Batch batch)
|
48 |
+
{
|
49 |
+
using var inputIds = new TensorInt(new TensorShape(batch.BatchCount, batch.BatchLength), batch.BatchedTokens);
|
50 |
+
using var attentionMask = new TensorInt(new TensorShape(batch.BatchCount, batch.BatchLength), batch.BatchedMasks);
|
51 |
+
|
52 |
+
Dictionary<string, Tensor> inputs = new()
|
53 |
+
{
|
54 |
+
{"input_ids", inputIds},
|
55 |
+
{"attention_mask", attentionMask}
|
56 |
+
};
|
57 |
+
|
58 |
+
engine.Execute(inputs);
|
59 |
+
TensorFloat logits = (TensorFloat)engine.PeekOutput("logits");
|
60 |
+
float[] scores = ScoresFromLogits(logits);
|
61 |
+
|
62 |
+
return scores;
|
63 |
+
}
|
64 |
+
|
65 |
+
Batch GetTokenizedBatch(string prompt, string[] hypotheses)
|
66 |
+
{
|
67 |
+
Batch batch = new Batch();
|
68 |
+
|
69 |
+
List<int> promptTokens = Tokenize(prompt);
|
70 |
+
promptTokens.Insert(0, startToken);
|
71 |
+
|
72 |
+
List<int>[] tokenizedHypotheses = hypotheses.Select(Tokenize).ToArray();
|
73 |
+
int maxTokenLength = tokenizedHypotheses.Max(x => x.Count);
|
74 |
+
|
75 |
+
// Each example in the batch follows this format:
|
76 |
+
// Start Prompt Separator Hypothesis Separator Padding
|
77 |
+
|
78 |
+
int[] batchedTokens = tokenizedHypotheses.SelectMany(hypothesis => promptTokens
|
79 |
+
.Append(separatorToken)
|
80 |
+
.Concat(hypothesis)
|
81 |
+
.Append(separatorToken)
|
82 |
+
.Concat(Enumerable.Repeat(padToken, maxTokenLength - hypothesis.Count)))
|
83 |
+
.ToArray();
|
84 |
+
|
85 |
+
|
86 |
+
// The attention masks have the same length as the tokens.
|
87 |
+
// Each attention mask contains repeating 1s for each token, except for padding tokens.
|
88 |
+
|
89 |
+
int[] batchedMasks = tokenizedHypotheses.SelectMany(hypothesis => Enumerable.Repeat(1, promptTokens.Count + 1)
|
90 |
+
.Concat(Enumerable.Repeat(1, hypothesis.Count + 1))
|
91 |
+
.Concat(Enumerable.Repeat(0, maxTokenLength - hypothesis.Count)))
|
92 |
+
.ToArray();
|
93 |
+
|
94 |
+
batch.BatchCount = hypotheses.Length;
|
95 |
+
batch.BatchLength = batchedTokens.Length / hypotheses.Length;
|
96 |
+
batch.BatchedTokens = batchedTokens;
|
97 |
+
batch.BatchedMasks = batchedMasks;
|
98 |
+
|
99 |
+
return batch;
|
100 |
+
}
|
101 |
+
|
102 |
+
float[] ScoresFromLogits(TensorFloat logits)
|
103 |
+
{
|
104 |
+
// The logits represent the model's predictions for entailment and non-entailment for each example in the batch.
|
105 |
+
// They are of shape [batch size, 2], with two values per example.
|
106 |
+
// To obtain a single value (score) per example, a softmax function is applied
|
107 |
+
|
108 |
+
TensorFloat tensorScores;
|
109 |
+
if (multipleTrueClasses || logits.shape.length == 1)
|
110 |
+
{
|
111 |
+
// Softmax over the entailment vs. contradiction dimension for each label independently
|
112 |
+
tensorScores = ops.Softmax(logits, -1);
|
113 |
+
}
|
114 |
+
else
|
115 |
+
{
|
116 |
+
// Softmax over all candidate labels
|
117 |
+
tensorScores = ops.Softmax(logits, 0);
|
118 |
+
}
|
119 |
+
|
120 |
+
tensorScores.MakeReadable();
|
121 |
+
float[] tensorArray = tensorScores.ToReadOnlyArray();
|
122 |
+
|
123 |
+
tensorScores.Dispose();
|
124 |
+
|
125 |
+
// Select the first column which is the column where the scores are stored
|
126 |
+
float[] scores = new float[tensorArray.Length / 2];
|
127 |
+
for (int i = 0; i < scores.Length; i++)
|
128 |
+
{
|
129 |
+
scores[i] = tensorArray[i * 2];
|
130 |
+
}
|
131 |
+
|
132 |
+
return scores;
|
133 |
+
}
|
134 |
+
|
135 |
+
List<int> Tokenize(string input)
|
136 |
+
{
|
137 |
+
string[] words = input.Split(null);
|
138 |
+
|
139 |
+
List<int> ids = new();
|
140 |
+
|
141 |
+
foreach (string word in words)
|
142 |
+
{
|
143 |
+
int start = 0;
|
144 |
+
for(int i = word.Length; i >= 0;i--)
|
145 |
+
{
|
146 |
+
string subWord = start == 0 ? "▁" + word.Substring(start, i) : word.Substring(start, i-start);
|
147 |
+
int index = Array.IndexOf(vocabularyTokens, subWord);
|
148 |
+
if (index >= 0)
|
149 |
+
{
|
150 |
+
ids.Add(index + vocabToTokenOffset);
|
151 |
+
if (i == word.Length) break;
|
152 |
+
start = i;
|
153 |
+
i = word.Length + 1;
|
154 |
+
}
|
155 |
+
}
|
156 |
+
}
|
157 |
+
|
158 |
+
return ids;
|
159 |
+
}
|
160 |
+
|
161 |
+
void OnDestroy()
|
162 |
+
{
|
163 |
+
engine?.Dispose();
|
164 |
+
allocator?.Dispose();
|
165 |
+
ops?.Dispose();
|
166 |
+
}
|
167 |
+
|
168 |
+
struct Batch
|
169 |
+
{
|
170 |
+
public int BatchCount;
|
171 |
+
public int BatchLength;
|
172 |
+
public int[] BatchedTokens;
|
173 |
+
public int[] BatchedMasks;
|
174 |
+
}
|
175 |
+
}
|
deberta-v3-base-zeroshot-v1.1-all-33.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2cda45c4074994990222c0192ab5083fb99fb9d3e4dacdffb4c97a754b4d97c5
|
3 |
+
size 738563189
|
deberta-v3-base-zeroshot-v1.1-all-33.sentis
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4999ac24dac25a77affb5b0086e93228d6d17716f653bdd780875fc243b53ab
|
3 |
+
size 775143176
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|