Update README.md
Browse files
README.md
CHANGED
@@ -1,43 +1,54 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
-
|
8 |
-
-
|
9 |
-
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
-
|
18 |
-
-
|
19 |
-
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
|
3 |
+
library_name: peft
|
4 |
+
pipeline_tag: text-generation
|
5 |
+
language: en
|
6 |
+
tags:
|
7 |
+
- deepseek
|
8 |
+
- text-generation
|
9 |
+
- conversational
|
10 |
+
---
|
11 |
+
|
12 |
+
# Microsoft 365 Data Management Expert
|
13 |
+
|
14 |
+
This model is fine-tuned from deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B for answering questions about Microsoft 365 data management,
|
15 |
+
specifically focusing on SharePoint, OneDrive, and Teams. It provides detailed responses about:
|
16 |
+
|
17 |
+
- Data governance
|
18 |
+
- Retention policies
|
19 |
+
- Permissions management
|
20 |
+
- Version control
|
21 |
+
- Sensitivity labels
|
22 |
+
- Document lifecycle
|
23 |
+
- Compliance features
|
24 |
+
- And more
|
25 |
+
|
26 |
+
## Model Details
|
27 |
+
|
28 |
+
- **Base Model**: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
|
29 |
+
- **Training**: Fine-tuned using LoRA
|
30 |
+
- **Task**: Question-answering about Microsoft 365 data management
|
31 |
+
- **Language**: English
|
32 |
+
- **License**: Same as base model
|
33 |
+
|
34 |
+
## Usage
|
35 |
+
|
36 |
+
```python
|
37 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
38 |
+
|
39 |
+
model = AutoModelForCausalLM.from_pretrained("YOUR_USERNAME/microsoft365_expert")
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained("YOUR_USERNAME/microsoft365_expert")
|
41 |
+
|
42 |
+
# Example usage
|
43 |
+
question = "What is data governance in Microsoft 365?"
|
44 |
+
inputs = tokenizer(question, return_tensors="pt")
|
45 |
+
outputs = model.generate(**inputs, max_new_tokens=2048)
|
46 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
47 |
+
print(response)
|
48 |
+
```
|
49 |
+
|
50 |
+
## Limitations
|
51 |
+
|
52 |
+
- Responses are based on training data and may not reflect the latest Microsoft 365 updates
|
53 |
+
- Should be used as a reference, not as the sole source for compliance decisions
|
54 |
+
- May require fact-checking against official Microsoft documentation
|