Trinoid commited on
Commit
a5591ad
·
verified ·
1 Parent(s): 604decd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -43
README.md CHANGED
@@ -1,43 +1,54 @@
1
- # Microsoft 365 Data Management Expert
2
-
3
- This model is fine-tuned from deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B for answering questions about Microsoft 365 data management,
4
- specifically focusing on SharePoint, OneDrive, and Teams. It provides detailed responses about:
5
-
6
- - Data governance
7
- - Retention policies
8
- - Permissions management
9
- - Version control
10
- - Sensitivity labels
11
- - Document lifecycle
12
- - Compliance features
13
- - And more
14
-
15
- ## Model Details
16
-
17
- - **Base Model**: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
18
- - **Training**: Fine-tuned using LoRA
19
- - **Task**: Question-answering about Microsoft 365 data management
20
- - **Language**: English
21
- - **License**: Same as base model
22
-
23
- ## Usage
24
-
25
- ```python
26
- from transformers import AutoTokenizer, AutoModelForCausalLM
27
-
28
- model = AutoModelForCausalLM.from_pretrained("YOUR_USERNAME/microsoft365_expert")
29
- tokenizer = AutoTokenizer.from_pretrained("YOUR_USERNAME/microsoft365_expert")
30
-
31
- # Example usage
32
- question = "What is data governance in Microsoft 365?"
33
- inputs = tokenizer(question, return_tensors="pt")
34
- outputs = model.generate(**inputs, max_new_tokens=2048)
35
- response = tokenizer.decode(outputs[0], skip_special_tokens=True)
36
- print(response)
37
- ```
38
-
39
- ## Limitations
40
-
41
- - Responses are based on training data and may not reflect the latest Microsoft 365 updates
42
- - Should be used as a reference, not as the sole source for compliance decisions
43
- - May require fact-checking against official Microsoft documentation
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ language: en
6
+ tags:
7
+ - deepseek
8
+ - text-generation
9
+ - conversational
10
+ ---
11
+
12
+ # Microsoft 365 Data Management Expert
13
+
14
+ This model is fine-tuned from deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B for answering questions about Microsoft 365 data management,
15
+ specifically focusing on SharePoint, OneDrive, and Teams. It provides detailed responses about:
16
+
17
+ - Data governance
18
+ - Retention policies
19
+ - Permissions management
20
+ - Version control
21
+ - Sensitivity labels
22
+ - Document lifecycle
23
+ - Compliance features
24
+ - And more
25
+
26
+ ## Model Details
27
+
28
+ - **Base Model**: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
29
+ - **Training**: Fine-tuned using LoRA
30
+ - **Task**: Question-answering about Microsoft 365 data management
31
+ - **Language**: English
32
+ - **License**: Same as base model
33
+
34
+ ## Usage
35
+
36
+ ```python
37
+ from transformers import AutoTokenizer, AutoModelForCausalLM
38
+
39
+ model = AutoModelForCausalLM.from_pretrained("YOUR_USERNAME/microsoft365_expert")
40
+ tokenizer = AutoTokenizer.from_pretrained("YOUR_USERNAME/microsoft365_expert")
41
+
42
+ # Example usage
43
+ question = "What is data governance in Microsoft 365?"
44
+ inputs = tokenizer(question, return_tensors="pt")
45
+ outputs = model.generate(**inputs, max_new_tokens=2048)
46
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
47
+ print(response)
48
+ ```
49
+
50
+ ## Limitations
51
+
52
+ - Responses are based on training data and may not reflect the latest Microsoft 365 updates
53
+ - Should be used as a reference, not as the sole source for compliance decisions
54
+ - May require fact-checking against official Microsoft documentation