Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,15 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
# Model Card for Model ID
|
@@ -11,37 +20,41 @@ tags: []
|
|
11 |
|
12 |
## Model Details
|
13 |
|
|
|
|
|
|
|
|
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
|
18 |
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
|
20 |
-
- **Developed by
|
21 |
- **Funded by [optional]:** [More Information Needed]
|
22 |
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type
|
24 |
-
- **Language(s) (NLP)
|
25 |
-
- **License
|
26 |
-
- **Finetuned from model [optional]
|
27 |
|
28 |
### Model Sources [optional]
|
29 |
|
30 |
-
|
|
|
31 |
|
32 |
-
- **Repository
|
33 |
- **Paper [optional]:** [More Information Needed]
|
34 |
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
|
39 |
|
40 |
### Direct Use
|
41 |
|
42 |
-
|
43 |
|
44 |
-
[More Information Needed]
|
45 |
|
46 |
### Downstream Use [optional]
|
47 |
|
@@ -51,19 +64,20 @@ This is the model card of a 🤗 transformers model that has been pushed on the
|
|
51 |
|
52 |
### Out-of-Scope Use
|
53 |
|
54 |
-
|
|
|
55 |
|
56 |
-
[More Information Needed]
|
57 |
|
58 |
## Bias, Risks, and Limitations
|
59 |
|
60 |
-
|
|
|
|
|
61 |
|
62 |
-
[More Information Needed]
|
63 |
|
64 |
### Recommendations
|
65 |
|
66 |
-
|
67 |
|
68 |
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
|
@@ -71,19 +85,117 @@ Users (both direct and downstream) should be made aware of the risks, biases and
|
|
71 |
|
72 |
Use the code below to get started with the model.
|
73 |
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
## Training Details
|
77 |
|
|
|
|
|
|
|
|
|
78 |
### Training Data
|
79 |
|
80 |
-
|
81 |
|
82 |
-
[More Information Needed]
|
83 |
|
84 |
### Training Procedure
|
85 |
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
#### Preprocessing [optional]
|
89 |
|
@@ -92,35 +204,36 @@ Use the code below to get started with the model.
|
|
92 |
|
93 |
#### Training Hyperparameters
|
94 |
|
95 |
-
|
96 |
|
97 |
#### Speeds, Sizes, Times [optional]
|
98 |
|
99 |
-
|
|
|
|
|
100 |
|
101 |
-
[More Information Needed]
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
-
|
106 |
|
107 |
### Testing Data, Factors & Metrics
|
108 |
|
|
|
|
|
109 |
#### Testing Data
|
110 |
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
|
113 |
[More Information Needed]
|
114 |
|
115 |
#### Factors
|
116 |
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
|
119 |
[More Information Needed]
|
120 |
|
121 |
#### Metrics
|
122 |
|
123 |
-
|
124 |
|
125 |
[More Information Needed]
|
126 |
|
@@ -134,13 +247,14 @@ Use the code below to get started with the model.
|
|
134 |
|
135 |
## Model Examination [optional]
|
136 |
|
137 |
-
|
138 |
|
139 |
[More Information Needed]
|
140 |
|
141 |
## Environmental Impact
|
|
|
|
|
142 |
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
|
145 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
|
@@ -166,11 +280,10 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
|
|
166 |
|
167 |
#### Software
|
168 |
|
169 |
-
|
170 |
|
171 |
## Citation [optional]
|
172 |
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
|
175 |
**BibTeX:**
|
176 |
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: cc
|
4 |
+
datasets:
|
5 |
+
- kinokokoro/ichikara-instruction-003
|
6 |
+
language:
|
7 |
+
- ja
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
base_model:
|
11 |
+
- llm-jp/llm-jp-3-3.7b
|
12 |
+
- llm-jp/llm-jp-3-13b
|
13 |
---
|
14 |
|
15 |
# Model Card for Model ID
|
|
|
20 |
|
21 |
## Model Details
|
22 |
|
23 |
+
Final competition report for weblab.t.u-tokyo.ac.jp/lecture/course-list/large-language-model/
|
24 |
+
Using finetuning and some other methods to have better result for elyza-tasks-100-TV_0
|
25 |
+
With the optimization Technolkogy of Quantamize, PEFT.
|
26 |
+
|
27 |
### Model Description
|
28 |
|
29 |
+
https://drive.google.com/drive/folders/1TcEpKngy72fbxXcu4VxoVUbPfvg8Z1z0
|
30 |
|
31 |
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
32 |
|
33 |
+
- **Developed by:Yohei.KObayashi with modification by Hiroshi Hayashi
|
34 |
- **Funded by [optional]:** [More Information Needed]
|
35 |
- **Shared by [optional]:** [More Information Needed]
|
36 |
+
- **Model type: llm-jp/llm-jp
|
37 |
+
- **Language(s) (NLP): Japanese
|
38 |
+
- **License: CC-BY-NC-SA
|
39 |
+
- **Finetuned from model [optional]:Quantamize, PEFT
|
40 |
|
41 |
### Model Sources [optional]
|
42 |
|
43 |
+
llm-jp-3 1.8B, 3.7B, 13B
|
44 |
+
|
45 |
|
46 |
+
- **Repository:-- [More Information Needed]
|
47 |
- **Paper [optional]:** [More Information Needed]
|
48 |
- **Demo [optional]:** [More Information Needed]
|
49 |
|
50 |
## Uses
|
51 |
|
52 |
+
Learn and get experience to use fine tuning technology and learn how to inplement such fine tuning technologies
|
53 |
|
54 |
### Direct Use
|
55 |
|
56 |
+
No intension to be used with such case
|
57 |
|
|
|
58 |
|
59 |
### Downstream Use [optional]
|
60 |
|
|
|
64 |
|
65 |
### Out-of-Scope Use
|
66 |
|
67 |
+
This code is only for students and trainee fo AI implementation.
|
68 |
+
Not fully tested for the actual project use case
|
69 |
|
|
|
70 |
|
71 |
## Bias, Risks, and Limitations
|
72 |
|
73 |
+
This program and updated file is generated by the code by Yohei Kobayashi for training coase by Matsuo-lab @ Tokyo university.
|
74 |
+
https://weblab.t.u-tokyo.ac.jp/lecture/course-list/large-language-model/
|
75 |
+
Please contact Matsuo-Lab if you plan to use this code and any files related to this project.
|
76 |
|
|
|
77 |
|
78 |
### Recommendations
|
79 |
|
80 |
+
Any students who tries using LLM, this is very useful to understand and get started fromthe perspective of academic perpose
|
81 |
|
82 |
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
83 |
|
|
|
85 |
|
86 |
Use the code below to get started with the model.
|
87 |
|
88 |
+
from transformers import (
|
89 |
+
AutoModelForCausalLM,
|
90 |
+
AutoTokenizer,
|
91 |
+
BitsAndBytesConfig,
|
92 |
+
)
|
93 |
+
from peft import PeftModel
|
94 |
+
import torch
|
95 |
+
from tqdm import tqdm
|
96 |
+
import json
|
97 |
+
|
98 |
+
HF_TOKEN = "Hugging Face Token"
|
99 |
+
|
100 |
+
model_id = "" # < Model folder path
|
101 |
+
adapter_id = "" # Hugging Face ID
|
102 |
+
|
103 |
+
# QLoRA config
|
104 |
+
bnb_config = BitsAndBytesConfig(
|
105 |
+
load_in_4bit=True,
|
106 |
+
bnb_4bit_quant_type="nf4",
|
107 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
108 |
+
)
|
109 |
+
|
110 |
+
# Load model
|
111 |
+
model = AutoModelForCausalLM.from_pretrained(
|
112 |
+
model_id,
|
113 |
+
quantization_config=bnb_config,
|
114 |
+
device_map="auto",
|
115 |
+
token = HF_TOKEN
|
116 |
+
)
|
117 |
+
|
118 |
+
# Load tokenizer
|
119 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token = HF_TOKEN)
|
120 |
+
|
121 |
+
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
|
122 |
+
|
123 |
+
datasets = []
|
124 |
+
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
|
125 |
+
item = ""
|
126 |
+
for line in f:
|
127 |
+
line = line.strip()
|
128 |
+
item += line
|
129 |
+
if item.endswith("}"):
|
130 |
+
datasets.append(json.loads(item))
|
131 |
+
item = ""
|
132 |
+
results = []
|
133 |
+
for data in tqdm(datasets):
|
134 |
+
|
135 |
+
input = data["input"]
|
136 |
+
prompt = f"""### Direction
|
137 |
+
{input}
|
138 |
+
### Answers
|
139 |
+
"""
|
140 |
+
|
141 |
+
input_ids = tokenizer(prompt, return_tensors="pt").to(model.device)
|
142 |
+
outputs = model.generate(**input_ids, max_new_tokens=512, do_sample=False, repetition_penalty=1.2,)
|
143 |
+
output = tokenizer.decode(outputs[0][input_ids.input_ids.size(1):], skip_special_tokens=True)
|
144 |
+
|
145 |
+
results.append({"task_id": data["task_id"], "input": input, "output": output})
|
146 |
+
|
147 |
+
results = []
|
148 |
+
for data in tqdm(datasets):
|
149 |
+
|
150 |
+
input = data["input"]
|
151 |
+
|
152 |
+
prompt = f"""### 指示
|
153 |
+
{input}
|
154 |
+
### 回答
|
155 |
+
"""
|
156 |
+
|
157 |
+
tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
|
158 |
+
attention_mask = torch.ones_like(tokenized_input)
|
159 |
+
with torch.no_grad():
|
160 |
+
outputs = model.generate(
|
161 |
+
tokenized_input,
|
162 |
+
attention_mask=attention_mask,
|
163 |
+
max_new_tokens=100,
|
164 |
+
do_sample=False,
|
165 |
+
repetition_penalty=1.2,
|
166 |
+
pad_token_id=tokenizer.eos_token_id
|
167 |
+
)[0]
|
168 |
+
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
|
169 |
+
|
170 |
+
results.append({"task_id": data["task_id"], "input": input, "output": output})
|
171 |
+
|
172 |
+
import re
|
173 |
+
jsonl_id = re.sub(".*/", "", adapter_id)
|
174 |
+
with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f:
|
175 |
+
for result in results:
|
176 |
+
json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters
|
177 |
+
f.write('\n')
|
178 |
+
|
179 |
+
|
180 |
## Training Details
|
181 |
|
182 |
+
Used "Ichikara Instruction"
|
183 |
+
ichikara-instruction-003-001-1.json
|
184 |
+
|
185 |
+
|
186 |
### Training Data
|
187 |
|
188 |
+
https://liat-aip.sakura.ne.jp/wp/llmのための日本語インストラクションデータ作成/llmのための日本語インストラクションデータ-公開/
|
189 |
|
|
|
190 |
|
191 |
### Training Procedure
|
192 |
|
193 |
+
PEFT
|
194 |
+
LoRA rank : 16
|
195 |
+
Scaling factor : lora_alpha 32
|
196 |
+
Dropout ratio : 0.05
|
197 |
+
No Bias
|
198 |
+
|
199 |
|
200 |
#### Preprocessing [optional]
|
201 |
|
|
|
204 |
|
205 |
#### Training Hyperparameters
|
206 |
|
207 |
+
|
208 |
|
209 |
#### Speeds, Sizes, Times [optional]
|
210 |
|
211 |
+
36:53
|
212 |
+
864/864
|
213 |
+
Epoch 0/1
|
214 |
|
|
|
215 |
|
216 |
## Evaluation
|
217 |
|
218 |
+
elyza-tasks-100-TV_0.jsonl
|
219 |
|
220 |
### Testing Data, Factors & Metrics
|
221 |
|
222 |
+
elyza-tasks-100 with latest TV and TV show related information
|
223 |
+
|
224 |
#### Testing Data
|
225 |
|
|
|
226 |
|
227 |
[More Information Needed]
|
228 |
|
229 |
#### Factors
|
230 |
|
|
|
231 |
|
232 |
[More Information Needed]
|
233 |
|
234 |
#### Metrics
|
235 |
|
236 |
+
accuracy with limiteation of model execution time
|
237 |
|
238 |
[More Information Needed]
|
239 |
|
|
|
247 |
|
248 |
## Model Examination [optional]
|
249 |
|
250 |
+
|
251 |
|
252 |
[More Information Needed]
|
253 |
|
254 |
## Environmental Impact
|
255 |
+
CPU memory : 48GB
|
256 |
+
GPU: L4 (24G)
|
257 |
|
|
|
258 |
|
259 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
260 |
|
|
|
280 |
|
281 |
#### Software
|
282 |
|
283 |
+
Python 3.10.6
|
284 |
|
285 |
## Citation [optional]
|
286 |
|
|
|
287 |
|
288 |
**BibTeX:**
|
289 |
|