Prince-1 commited on
Commit
c5abde2
·
verified ·
1 Parent(s): 80af32f

Build the rkllm format of model TinyLlama-1.1B-Chat-v1.0-RKLLM

Browse files
Files changed (3) hide show
  1. .gitattributes +1 -0
  2. README.md +72 -0
  3. TinyLlama-1.1B-Chat-v1.0.rkllm +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ TinyLlama-1.1B-Chat-v1.0.rkllm filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - cerebras/SlimPajama-627B
5
+ - bigcode/starcoderdata
6
+ - HuggingFaceH4/ultrachat_200k
7
+ - HuggingFaceH4/ultrafeedback_binarized
8
+ language:
9
+ - en
10
+ base_model:
11
+ - Prince-1/TinyLlama-1.1B-Chat-v1.0
12
+ tag:
13
+ - rkllm
14
+ - rk3588
15
+ - rockchip
16
+ widget:
17
+ - example_title: Fibonacci (Python)
18
+ messages:
19
+ - role: system
20
+ content: You are a chatbot who can help code!
21
+ - role: user
22
+ content: Write me a function to calculate the first 10 digits of the fibonacci sequence in Python and print it out to the CLI.
23
+ ---
24
+ <div align="center">
25
+
26
+ # TinyLlama-1.1B
27
+ </div>
28
+
29
+ https://github.com/jzhang38/TinyLlama
30
+
31
+ The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01.
32
+
33
+
34
+ We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
35
+
36
+ #### This Model
37
+ This is the chat model finetuned on top of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T). **We follow [HF's Zephyr](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha)'s training recipe.** The model was " initially fine-tuned on a variant of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT.
38
+ We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contain 64k prompts and model completions that are ranked by GPT-4."
39
+
40
+
41
+ #### How to use
42
+ You will need the transformers>=4.34
43
+ Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information.
44
+
45
+ ```python
46
+ # Install transformers from source - only needed for versions <= v4.34
47
+ # pip install git+https://github.com/huggingface/transformers.git
48
+ # pip install accelerate
49
+
50
+ import torch
51
+ from transformers import pipeline
52
+
53
+ pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", torch_dtype=torch.bfloat16, device_map="auto")
54
+
55
+ # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
56
+ messages = [
57
+ {
58
+ "role": "system",
59
+ "content": "You are a friendly chatbot who always responds in the style of a pirate",
60
+ },
61
+ {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
62
+ ]
63
+ prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
64
+ outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
65
+ print(outputs[0]["generated_text"])
66
+ # <|system|>
67
+ # You are a friendly chatbot who always responds in the style of a pirate.</s>
68
+ # <|user|>
69
+ # How many helicopters can a human eat in one sitting?</s>
70
+ # <|assistant|>
71
+ # ...
72
+ ```
TinyLlama-1.1B-Chat-v1.0.rkllm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6b6f8d21737caf71a5ed63b4b411a7acc50ec03ecc835b41b617a50dd34f742
3
+ size 2217802854