# CLIP Sparse Autoencoder Checkpoint This model is a sparse autoencoder trained on CLIP's internal representations. ## Model Details ### Architecture - **Layer**: 3 - **Layer Type**: hook_resid_post - **Model**: open-clip:laion/CLIP-ViT-B-32-DataComp.XL-s13B-b90K - **Dictionary Size**: 49152 - **Input Dimension**: 768 - **Expansion Factor**: 64 - **CLS Token Only**: False ### Training - **Training Images**: 1299988 - **Learning Rate**: 0.0000 - **L1 Coefficient**: 0.0000 - **Batch Size**: 4096 - **Context Size**: 50 ## Performance Metrics ### Sparsity - **L0 (Active Features)**: 64.0000 - **Dead Features**: 0 - **Mean Passes Since Fired**: 0.1956 ### Reconstruction - **Explained Variance**: 0.7059 - **Explained Variance Std**: 0.0623 - **MSE Loss**: 0.0025 - **L1 Loss**: 0 - **Overall Loss**: 0.0025 ## Training Details - **Training Duration**: 5113 seconds - **Final Learning Rate**: 0.0000 - **Warm Up Steps**: 200 - **Gradient Clipping**: 1 ## Additional Information - **Original Checkpoint Path**: /network/scratch/p/praneet.suresh/imgnet_checkpoints/b8adc3bf-tinyclip_sae_16_hyperparam_sweep_lr/n_images_1300070.pt - **Wandb Run**: https://wandb.ai/perceptual-alignment/topk-imagenet-all_patches-sweep/runs/4adj74y4 - **Random Seed**: 42